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Genome-wide association studies have successfully mapped thousands of loci associated with complex traits. During the
last decade, functional genomics approaches combining genotype information with bulk RNA-sequencing data have
identified genes regulated by GWAS loci through expression quantitative trait locus (eQTL) analysis. eQTLs are divided
into two types: cis- and trans-: cis-eQTLs are the genomic sequence variants located within a distance cutoff (for example,
1Mb upstream or downstream) of a target gene (the ‘eGene’) (a gene that has an associated eQTL) and correlate with its
expression.  Single-cell RNA-Sequencing (scRNA-Seq) technologies have created new exciting opportunities for
spatiotemporal assessment of changes in gene expression at the single-cell level in complex and inherited conditions.
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| 1. Introduction

The studies of expression quantitative trait loci (eQTLs) offer insight into the molecular mechanisms of genetic variants
that are associated with complex diseases. By definition, eQTLs are divided into two types: cis- and trans-: cis-eQTLs are
the genomic sequence variants located within a distance cutoff (for example, 1Mb upstream or downstream) of a target
gene (the ‘eGene’) (a gene that has an associated eQTL) and correlate with its expression. Any eQTLs lying outside this
genomic window are thought to indirectly regulate gene expression and are considered trans-eQTLs @. For eQTL
mapping, high-throughput RNA sequencing (RNA-seq) has largely replaced microarray techniques due to better specificity
and sensitivity as well as the capacity to detect novel transcripts, splice junctions and allele-specific gene expression .

To date, nearly all eQTL studies have been conducted on bulk RNA samples, where the RNA is collected from millions of
lysed cells within a tissue or other biological sample. In a ‘bulk RNA-Seq’ experiment, the gene expression thus
represents an average expression across all cells in a sample. As a derivative of RNA sequencing, single-cell RNA
(scRNA) sequencing has emerged as technique for gene expression quantification in single cells Bl. The benefits of
scRNA-Seq lie in its capacity to profile cellular heterogeneity, cell-type-specific gene expression and identify rare cell
types. The researchers discuss the differences in the bulk and scRNA-Seq methods for eQTL analysis and summarize the
current literature in the field, highlighting the benefits and limitations of single-cell-based approaches. The researchers
anticipate that single-cell eQTL analysis on a population scale will likely become mainstream in the next few years.

eQTL analysis using scRNA-seq is a relatively new approach and only a dozen studies are available HRIEIIIEIL0[11][12]

(131[14][15]116] These studies show diverse applications of sScRNA-seq in identification of the quantitative effects of genetic
variants or loci using purified cell types I3 induced pluripotent stem cells (iPSCs) BIEILUILS] or whole organisms 22 and
to study population ancestry and cell type specific response to an environmental stimulus such as viral infection 2. |n the
following sections, the researchers review the published sc-studies for of cis-eQTL analysis, and compare the results to
bulk RNA-Seq based analysis (Figure 1; Table 1). Altogether, these studies highlight the power of scRNA-Seq in
determining cell type specific effects that are not evident in bulk RNA-seq analyses.
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Figure 1. Comparison of single-cell sequencing and bulk RNA-Seq for eQTL analysis. (A) The experimental workflow for

single-cell and bulk RNA-Seq. (B) Single-cell RNA sequencing expression profile includes cellular heterogeneity and

expression variability of each cell separately, whereas bulk RNA-Seq represents an average of all the cells in a tissue and

cellular heterogeneity cannot be estimated. SCRNA-Seq also allows estimation of variability in gene expression across

individual cells. (C) Violin plot of an example gene expression for a cis-eQTL. The variant is associated with significant

allele specific gene expression in individual cell types (left panel) but are masked in bulk tissue analysis. The tissue and

cell images were adapted from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Generic License.

Table 1. Summary of studies that utilized both scRNA-seq and bulk RNA-seq datasets for cis-eQTL analysis. The
replication of the sc-data in bulk setting within same study shows an overlap of identified signal from 41-79%, indicating

power of detecting cell type specific signals within scRNA-seq that are missed in a bulk setting.
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VATI1L expression was found repressed during differentiation but repression of the different alleles follows a different
timing. This study also took advantage of the resolution provided by single-cell data for co-expression network detection,
allowing genotype by environment (GXE) interaction analysis for selected gene-expression modules associated with cell
cycle and metabolism. They found that 668 eQTLs were associated with at least one environmental factor, of which 55%
had no evidence for a role in differentiation. The authors concluded that although a comparison of eQTL analysis using
scRNA-seq with bulk RNA-seq data showed that bulk RNA-seq is more powerful in eQTL identification (n = 961, p <5 x
1078), scRNA-Seq proved superior in detailed characterization of eQTLs in a spatiotemporal context, i.e., in recognizing
the role of 872 dynamic eQTLs during various stages of differentiation cell cycle or environment-induced cell states.

The use of the same HipSci resource 22 was recently extended to study the differentiation of 215 iPSC lines to midbrain
neural fate by mapping eQTLs at three developmental stages: progenitor-like, young neurons, and more mature neurons
(61, scRNA-seq profiles were generated from over 1 million cells generating 26 clusters of 12 distinct cell types. cis-eQTLs
were mapped for aggregated expression from each donor in main cellular populations identifying a total of 4828 eGenes
(Table 1). An overlap of eQTL signals identified in this study with GTEXx brain tissue revealed 50% concordance, a brain-
specific eQTL replication rate of 10-20%, and demonstrated that, as the tissue matures, the number of shared eQTLs
among these datasets increases. Overall, 2366 novel and unique eQTLs were identified in this study. Finally, a
colocalization analysis between 25 GWAS traits consisting of neurodegenerative disorders, or conditions related to
behavior and intelligence suggested that cell-type-specific colocalization analysis could be more powerful than bulk RNA-
seq-based colocalization. Altogether this study demonstrated that the identification of cell type specific eQTLs at distinct
time points in development allows the discovery of novel regulatory relationships.

scRNA-Seq has also been used to study the role of variance eQTLs (vQTL) in human development and disease using
7585 iPSCs derived from 54 Yoruba individuals (Table 1) 2. This generated a dataset with expression profile of 9957
genes from 5597 cells of 53 participants. Altogether, 235 single cells eQTLs were identified of which 79% replicated in
bulk data and 80% of bulk eQTLs replicated in single-cell data. Still, down sampling of the bulk RNA-Seq to the same
number recovered over one thousand more eQTLs suggesting that increased experimental noise of the scRNA-Seq leads
to lower power of discovery. They also identified five vQTLs that could alter the variance of expression independently of
the expression mean but explain less phenotypic variance than eQTLs. This again is likely caused by the experimental
noise and highlighted the need for larger sample sizes to study variant effects on the dispersion that tend to be smaller
than effects on the mean.

A reverse approach to iPSC differentiation recently evaluated the allelic effects of iPSC reprogramming from fibroblasts on
single-cell gene expression 12, Here, human skin fibroblasts were reprogrammed to iPSCs from 79 donors (Table 1). In
total 83,985 cells were sequenced using 3-scRNA-seq including 19,967 iPSCs. Based on the activity of regulating
transcription factors, they were able to classify fibroblasts into six types (SIX5*, HOXC6*, ATF1*, TEAD2*, KLF10* and
RXRB*) and iPSCs into four types (HIC2*, ATF2*, BRF2* and CEBPG™). In addition, single-cell cis-eQTLs were mapped
in six fibroblast cell lines as well as four IPSC lines that were derived from the same participants. Collectively, they
identified 46,103 eQTLs in 2985 genes representing 45,503 eQTLs for 2887 genes found in fibroblast cell types and 810
cis-eQTLs for 86 genes in iPSC derived cell types. Importantly, the majority of eGenes were predominantly cell type
specific and only identified in only one fibroblast type (77.6% of fibroblast eGenes) or one iPSC type (97.2% of iPSC
eGenes). Furthermore, the majority of the 283 eGenes that were significant in multiple cell types including the 14 eGenes
that overlapped between fibroblasts and reprogrammed iPSCs, were found to be regulated by different genetic loci. A
comparison with bulk RNA profile from GTEx cultured fibroblasts 22 showed only 41.1% overlap with the scRNA-seq
profile from fibroblasts in this study, but the allelic effects shared the same direction of effect. In line with this, the GTEx
cultured fibroblasts exhibited a positive correlation between allelic effect size and the number of cell types for which
eGenes were identified. This indicated that cell-type-specific elements are not entirely revealed from bulk RNA-seq data
because bulk gene expression profile presents mean expression across all cell types in biological sample under study.
Altogether, these data supported a highly cell-type-specific impact of eQTLs in cellular reprogramming and pluripotency.

| 4. scRNA-Seq in Determining Whole Organism Genetic Architecture

scRNA-seq has made it possible to sequence many cells simultaneously, analyze cell-type-specific genetic architecture
and compare it among different cell types to evaluate how genes regulate the fate of a cell into a particular type. Keeping
this as a goal, Ben-David et al. 29, piloted a study that showed scRNA-seq could be successfully applied to whole
organism in C. elegans. They cultured C. elegans to second larval stage L2 in F4 generation, dissociated 192,000 F4
worms and isolated the cells and processed using the 10x Genomics scRNA-seq platform. Two parental strains of worms
were cultured, processed, and sequenced separately and differentially expressed genes from their eQTL analysis were
evaluated in individual cell types and in all cells combined as well as in global manner. A global dataset was used to



identify cell types in parental scRNA-seq dataset. In total, they identified 1718 cis-eQTLs in 1294 genes across different
cell types. A cis-eQTL comparison with parental scRNA-seq dataset revealed 870 genes that were differentially
expressed; 23% of these had a cis-eQTL in the same tissue and 95% of cis-eQTLs had same direction of effect as
parental. An overlap with a previously published bulk RNA-seq [28] dataset from 200 recombinant and inbred lines from
parental strains showed that from 981 identified cis-eQTLs, 335 were shared between two studies and had correlated
effect sizes (Spearman’s p = 0.64, p < 2.2 x 10716): 50% of the eGenes detected in multiple cell types were also identified
in bulk and 28% of the eQTLs were detected in a single cell type. Finally, a cell type specific analysis of C. elegans
nervous system reveled 12,647 neurons in 81 distinct clusters. 163 cis-eQTLs and 132 eGenes were identified where
88% were cell-type specific. In a pan-neuronal cis-eQTL analysis, 36 of 69 (52%) eQTLs had opposing direction to cell-
type-specific eQTLs, confirming a subtype-specific effect. For example, nlp-21 had significantly opposing effects in RIC
interneurons and ring interneuron/motor neurons, but no significant effect was found in the pan-neuronal dataset. In
conclusion, this study provided direct evidence that the sc-eQTL mapping improves the power to detect cell-type-specific
effects but also effects that are specific to subtypes of cells. Although this study was the first one to utilize scRNA-seq in
whole-organism eQTL mapping, its applicability in more complex higher organisms could be limited.

| 5. Challenges of scRNA-Seq Based eQTL Mapping

The first pioneering studies outlined above have clearly demonstrated the advantage of scRNA-Seq in identifying cell-
type- and cell-state-specific eQTLs. Still, many of these studies demonstrated limited power for eQTL mapping due to
lower sample numbers that are largely imposed by the high cost of SCRNA-Seq experiments (Table 2). This limitation has
been addressed in two ways. First, the researchers have witnessed a growing array of methods for statistical
deconvolution of the bulk RNA-Seq data (Figure 3) that allows estimation of cell-type proportions based on prior
information from purified cell subpopulation (e.g., SCRNA-Seq or FACS quantification of the cell proportions). Different
deconvolution methods are now available, as exemplified by DeconRNAseq 24, CIBERSORT 28 CIBERSORTx [22],
MuSiC B9 DSA Bl and MMAD B2, these with other available methods have been recently compared and discussed 3]
(34 These tools are proving highly useful in reanalysis of both existing and new bulk RNA-Seq datasets to identify and
interpret the role of cell type specific eQTLs in complex diseases. Secondly, the optimized design of scRNA-seq
experiments can also substantially reduce the costs of population scale cell-type-specific eQTL mapping. Using PBMCs
from 120 individuals, Mandric et al. modeled the impact of the number of reads, number of individuals, number of cells,
level of sample multiplexing, and cell-type classification accuracy on the power of cis-eQTL studies. The authors
concluded that statistical power of cell-type-specific eQTL mapping can be maximized by increasing the sample size
(~100) and the number of cells per sample while performing low-coverage sequencing of 10,000 reads per cell 14l They
further provided a calculator which can guide the selection of sample size and the number of cells per individual for cell-
type-specific eQTL detection with the available budget. Still, the caveat of this approach is the risk of losing information
from rare cell types due to low and non-uniform coverage. The best way would be to run power calculations using R or R-
based packages 4331381 Cyrrent single-cell eQTL power calculations assume a standard linear model, and power for
eQTL discovery in specific cell types can be improved by incorporating allele-specific mapped reads B4, Additionally,
experimental variation, as witnessed in iPSC research, will introduce noise that would require much larger sample
numbers 1. Nevertheless, highlighting such experimental considerations will help researchers plan their eQTL mapping
experiments in a cost- and time-effective manner in the future.
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Figure 3. Graphical illustration of the deconvolution of mixed samples. Bulk transcriptomics data for an allele of a given
gene are a sum of expression of cell types 1, 2, 3 and 4. After computational deconvolution, cell types are separated, and
gene expression of each cell type is estimated considering cell-type proportions from a reference dataset (e.g., SCRNA-
Seq). The tissue and cell images were adapted from Servier Medical Art, licensed under a Creative Commons Attribution
3.0 Generic License.

Table 2. Example costs of RNA-Seq library prep and sequencing per sample, based on published service price estimates
at a university core facility *.

. . No. of Reads
Method Library Prep Cost/Sample Sequencing Cost/Sample (Millions)
Bulk RNA-seq (poly-A) $260 $125 40
scRNA-Seq (10x Genomics Chromium) $1610 $1750 450

Another limitation of the scRNA-Seq studies comes from the library configuration. Most of the studies thus far have used
the 10x Genomics Chromium platform that sequences the 3'- or 5'-end of mMRNA and does not allow the identification of
splicing QTLs for isoform detection or deep intronic QTLs. These issues can be addressed by the full-length sequencing
approaches such as SMART-seq 18 which, however, comes with a higher cost per cells. High technical noise arising from
ribosomal or mitochondrial contamination is another challenge in scRNA-seq data. So far, this caveat has been managed
by removing sequencing reads that map to >15-25% mitochondrial reads and >50% ribosomal reads 13l However, in
situations where nuclear genome expression is under study, nuclei isolated from purified cells can be used. This was
shown in a framework for colocalizing human eQTL with 21 complex traits by Eraslan et al. (2. Similar methods could
prove powerful in cis-eQTL analysis and understanding patterns of human disease and development.

High technical noise in scRNA-seq data is still a challenge. It arises due to a difference in sequencing platform,
sequencing depth, amplification bias, RNA capture efficiency and dropout events. Current noise reduction methods for
scRNA-seq data include correcting for batch effect and normalization of the sequencing data. A recent study
comprehensively analyzed 28 noise-reducing methods and tools in 55 scenarios comprising of real and simulated
datasets and proposed a guideline to select suitable procedures B8l The study concluded that not a single method can be
selected as generalized approach for all ScRNA-seq experiments, selection of an appropriate method needs caution and
depends on the study design. For example, the default setting of the mostly commonly used data analysis package Seurat
(39 yses a canonical correction analysis model that could cause erroneous mixing in a situation of severe cell composition
imbalance. In this case, reciprocal PCA model is recommended. Similarly, linear models are also sensitive to cell
population imbalances, and their performance is improved by using cell groups as covariate as in scMerge [28l20 By
unmasking the true biological signals of interest, such methods are expected to also improve the detection of significant
cis-eQTL associations in the future.

Finally, only a limited number of studies have reported scRNA-seq for eQTL analysis in human disease and development
91141 jndicating a gap in cell-type-specific knowledge about genomic architecture in this context. This also shows an
urgent need for large-scale sc studies that is another challenge and can be addressed in consortium-based studies 41,



