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Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is

transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral

leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis.
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1. Introduction

Leishmaniasis is a group of vector-borne infectious protozoan diseases endemic to nearly one hundred countries .

Leishmaniasis is considered by the WHO to be a neglected tropical disease and a major international health challenge. In

addition to malaria, it is the deadliest parasitic disease worldwide. Nearly 0.71–1 million new cases and approximately

20,000 to 65,000 deaths are reported annually, predominantly in socioeconomically vulnerable communities with limited

access to essential medicines. Over 20 different species of Leishmania are reported to be infective to humans,

categorized as Old World (Mediterranean countries, Asia, and Africa) and New World (America) forms. The dipteran fly

Phlebotomus and its subspecies in the Old World and Lutzomyia in the New World are proven vectors for human

leishmaniasis. The disease globally affects approximately 14 million people, with over one billion people at high risk of

infection . A World Health Organization (WHO)-sponsored epidemiological report indicates that there are nearly 12

million active cases of leishmaniasis. The incidence of cutaneous leishmaniasis is two to three times more common than

visceral leishmaniasis . At present, this disease results in 20,000 to 65,000 deaths reported annually and is included

among the 18 most neglected tropical diseases (NTDs). Approximately one hundred species of these dipteran insects

belonging to the genera Phlebotomus and Lutzomyia are known as the main vectors involved in biological transmission .

Leishmania has a complex life cycle characterized by the presence of digenetic stages: flagellated promastigotes and

flagellated amastigotes . The metacyclic promastigote form in sand flies is responsible for infection in healthy

individuals. The amastigote form is known for its pathogenesis, having a spherical shape with a rudimentary flagellum.

Amastigotes reside, propagate, and persist within the host’s mononuclear phagocytic cells . Leishmaniasis represents a

wide spectrum pathology ranging from less severe and self-curable cutaneous leishmaniasis (CL) to more severe and

fatal visceral leishmaniasis (VL). The clinical symptoms due to parasitic infections are classified into three types of

disease: cutaneous, mucocutaneous, and visceral leishmaniasis . Cutaneous leishmaniasis is manifested by the

development of skin lesions and is the most common type prevalent in the Middle East. Visceral leishmaniasis, on the

other hand, is distinguished by the occurrence of hepatosplenomegaly, fever, and weight loss, and is considered as a

serious health hazard for the infected individual. Mucocutaneous leishmaniasis (MCL) is characterized by damage to oral

mucous membranes in the nose, mouth, and throat, which potentiates inflammation and face disfiguration . Recently, a

new subgenus, Mundinia, has been reported, and a member of this group (L. martiniquensis) causes VL in Southeast

Asian regions. L. martiniquensis typically causes VL in humans and can be treated with amphotericin B as a first-line

chemotherapeutic option. It has been reported that VL caused by L. martiniquensis has a higher relapse rate and occurs

in individuals with HIV infection .

In addition to two other kinetoplastid pathogens, viz. for Trypanosoma cruzi and Trypanosoma brucei, the management of

leishmaniasis requires integrated and multidisciplinary strategies that include vector control, enhanced diagnostics, and

increased awareness of new therapies with safe and efficient medicines . There is still no effective vaccine available,

and the control of the disease primarily rests on chemotherapy, the majority of which is costly and has a wide array of side

effects . Pentavalent antimonials (sodium stibogluconate, meglumine antimoniate or generic formulations) have

been used as standard drugs in countries such as India and Nepal for over 60 years and remain the primary treatment

options in many endemic regions despite widespread parasite resistance . A single dose of the polyene antibiotic

amphotericin B demonstrated a 95% efficiency against visceral leishmaniasis in India . Intravenous administration of

liposomal amphotericin B has become a standard treatment in many countries but remains expensive, even for single-

course treatments . Miltefosine, an alkyl-lysophospholipid analog, was initially developed as an anticancer
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compound and is considered as a first-line effective oral drug against Leishmania . Miltefosine has been used

successfully for the treatment of VL in India since 2002 and has been incorporated into the visceral leishmaniasis

elimination program for the Indian subcontinent . Despite some success, miltefosine administration registers

considerable resistance, with relapse in nearly 20% of patients post-treatment . Miltefosine was also found to be

effective against cutaneous and mucocutaneous leishmaniasis in South America, with considerable differences in percent

success in therapy programs . The aminoglycoside paromomycin has been approved for the treatment of VL. The

efficacy of paromomycin against VL patients has been demonstrated in phase III clinical trials in India . However,

paromomycin has also shown shortcomings in efficacy across geographical regions, as demonstrated by its less than

satisfactory trial in Sudan compared to India . It is known that the drugs used act via different cellular and molecular

mechanisms, causing a variety of outcomes including the apoptosis of parasites, but are also widely associated with

variable toxicity and setbacks in sought-after results. These difficulties are further complicated by the emergence of drug

resistance against parasites across the globe that have persisted alongside conventional chemotherapy practiced in

endemic areas. This significantly lowers the susceptibility to drugs and the emergence of difficult-to-treat resistant variants

of the same species .

Many investigators have highlighted the need to discover new drug targets employing the knowledge of parasite

biochemistry to develop revolutionary new drugs by using emerging technologies. Several natural and synthetic drugs as

well as repurposed drugs have been screened and attempted against free parasites in clinical scenarios. Anti-leishmanial

peptides are one such strategy that has recently gained in importance, particularly with active promotion strategies by

pharmaceutical companies . The commercialization of peptide-based drugs needs to rely heavily on their utility and

clinical success with ease of synthesis, water solubility, sound biocompatibility, selectivity, versatility, tenability, and low

toxicity . Antimicrobial peptides (AMPs) are small molecules (<100 amino acids long) with positive charges and

amphipathic specificities (hydrophobic and hydrophilic regions). AMPs act by affecting membranes by

destabilization/disruption of phospholipids and induce cell death by increasing the permeability of the cell membrane and

are less likely to be selective to resistant variants . AMPs also pass through the membrane and interrupt or

destabilize nucleic acid or protein synthesis and/or compromise enzyme (protease) functions or cell membrane synthesis.

Thus, AMPs are an interesting candidate for effective therapeutic success against leishmaniasis . The leishmanicidal

effects of these peptides have been published in recent reports including the structural characteristics and inevitable

challenges .

2. Chemotherapy in Leishmaniasis: Current Drugs, Limitations, and
Challenges

The focus of this section relates to the discussion on the currently existing drugs in use for the treatment of VL. These

include pentavalent antimonials, pentamidine, various formulations of amphotericin B (AmB), paromomycin, and

miltefosine (Table 1 and Figure 1). These medications are also in use for the treatment of CL and MCL and PKDL.

Treatment of VL considerably varies between the endemic regions spanning from India to Africa. The WHO approved and

recommended regimens for known endemic VL foci are summarized in Table 1. Approximately 25 drugs or combinations

are in use for humans with leishmaniasis .
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Figure 1. The biochemical characterization of FDA-approved drugs in Leishmania infection including the mode of action

against the parasites.

WHO-OMS (2004) declared that liposomal amphotericin B, miltefosine, and paromomycin are the most promising drugs

for the treatment of leishmanial infections. The search for potential new drugs and targets has been a very active area of

research in the last couple of decades, with the publication of several important reviews 

.

Table 1. Details of the FDA-approved drugs for leishmaniasis, summarizing the cellular and molecular targets and

limitations including side effects.

Drugs Structure Comments Efficacy Resistance Uses Toxicity Ref.

Meglumine
antimoniate

i.v. or i.m.
First-line
treatment.

Varies
between 35 and
95% based
on area.

High
resistance
in some
regions of
India.

VL,
CL

Cardiotoxicity
arthralgia, anorexia,
fever,
urticaria and
significant
toxicity to the liver,
kidneys, and spleen.
Hospitalization
and constant
monitoring of
patients during
treatment
are needed.

Paromomycin i.m.

A Phase III trial of
Paromomycin (15
mg kg  (11 mg
base) for 21 days
showed 95% cure
rate. Effective
against PKDL.

No effective
resistance.

CL,
PKDL

Pain at the injection
site, kidney toxicity,
liver toxicity, and
hearing toxicity.

Amphotericin
B

i.v.
Very effective in
regions with
resistance.

>90% No effective
resistance. VL

Infusion-related
reactions, anemia,
nephrotoxicity,
myocarditis, and
even death of the
patient.
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Drugs Structure Comments Efficacy Resistance Uses Toxicity Ref.

Pentamidine

Pentamidine is a
second-line
leishmaniasis
treatment that is
mostly used for
CL.

With cure rates
ranging from 35%
with L. braziliensis
in Peru to 90%
with L.
guyanensis in
Suriname, efficacy
is very variable.

Yes CL,
VL

Heart damage, joint
pain, loss of appetite,
fever, urticaria, and
serious liver, kidneys,
and spleen damage.
During treatment,
patients must be
hospitalized and
constantly watched.

Miltefosine

p.o.
Teratogenic.
Increasing
treatment
failures.

93–95% in India,
65–85% in Africa.

No effective
resistance
described.

CL,
VL

It can cause birth
defects, stomach
problems, kidney
damage, and liver
damage and cannot
be given to pregnant
women.

A wide range of compounds of multiple families have been identified as potential hits and leads, and some of which are in

clinical trials. Several candidates such as inhibitors impairing thiol metabolism, sterol, glycolytic, folate and trypanothione

metabolism, etc. are important to consider (Table 2). These drugs and the commonly used chemotherapy (Table 1) still

lack the ability to provide efficient control against Leishmania. Several combinations have been employed in clinical

practice  including less toxic drug delivery systems (DDSs) such as PLGA nanoparticles or liposomes , poly-

aggregated forms of AmpB , or amphiphilic antimony . Below, researchers describe in more detail the current

treatment options including their inadequacies and the need for new chemical entities.

Table 2. Identification of novel antileishmanial drugs specific to biochemical pathways critical for the survival of

Leishmania donovani.

Pathway Drug Target Drug Candidate Mode of
Action Refs.

Sterol
Biosynthesis
Pathway

Squalene
epoxidase Spiro[indole-3,3′-pyrrolizidine]-2-one DNA topoisomerase IB

inhibitor.

HMGR enzyme Mevastatin Hampers HMGR activity.

Sterol alpha-14
demethylase Avodart Induces ROS and causes

apoptosis in the parasite.

HMGR enzyme Glycyrrhizic acid Inhibits HMGR enzyme.

Purine Salvage
Pathway

mRNA
translation

5-fluorouracil
4-thiouracil

Binds to RNA and blocks cell
growth.

Glycolytic
Pathway GAPDH

Artesunate

Inhibits the parasites’
glycolytic enzymes GPDH.Quinine

Mefloquine
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Pathway Drug Target Drug Candidate Mode of
Action Refs.

Folate
Biosynthesis
Pathway

DHFR

Methotrexate (MTX, 1)

Inhibits DHFR.Cycloguanil

Trimethoprim (TMP, 2)

ZINC57774418 (Z18)

Inhibits DHFR activity.

ZINC69844431 (Z31)

ZINC71746025 (Z25)

D11596 (DB96)

3,4-dihydropyrimidine-2-one

5-(3,5-dimethoxybenzyl) pyrimidine-2,4-
diamine

DHFR and PTR1

2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-
benzo[d]imidazole

DHFR-TS/PTR1 inhibitors.
2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-
benzo[d]imidazole-1H-benzo[d]oxazole

Trypanothione
Pathway TR

Trichloro [1,2-ethanediolato-O,O’]-tellurate
(AS101)

Induces ROS-mediated
apoptosis by binding to TR
cysteine residues.

β-sitosterol CCL Inhibit TR activity.

Hypusine
Pathway

Spermidine
synthase Hypericin ROS and spermidine

reduction.
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