

Edible Mushrooms as Myco-Therapeutics

Subjects: **Biotechnology & Applied Microbiology**

Contributor: Tapan Mohanta

Polysaccharides (essentially β -D-glucans), chitinous substances, heteroglycans, proteoglycans, peptidoglycans, alkaloids, lactones, lectins, alkaloids, flavonoids, steroids, terpenoids, terpenes, phenols, nucleotides, glycoproteins, proteins, amino acids, antimicrobials, and minerals are the major bioactive compounds in these mushrooms. These bioactive compounds have chemo-preventive, anti-obesity, anti-diabetic, cardioprotective, and neuroprotective properties. Consumption of edible mushrooms reduces plasma triglyceride, total cholesterol, low-density lipoprotein, and plasma glucose levels. Polysaccharides from edible mushrooms suppress mRNA expression in 3T3-L1 adipocytes, contributing to their anti-obesity properties. Therefore, edible mushrooms or their active ingredients may help prevent obesity and other chronic ailments.

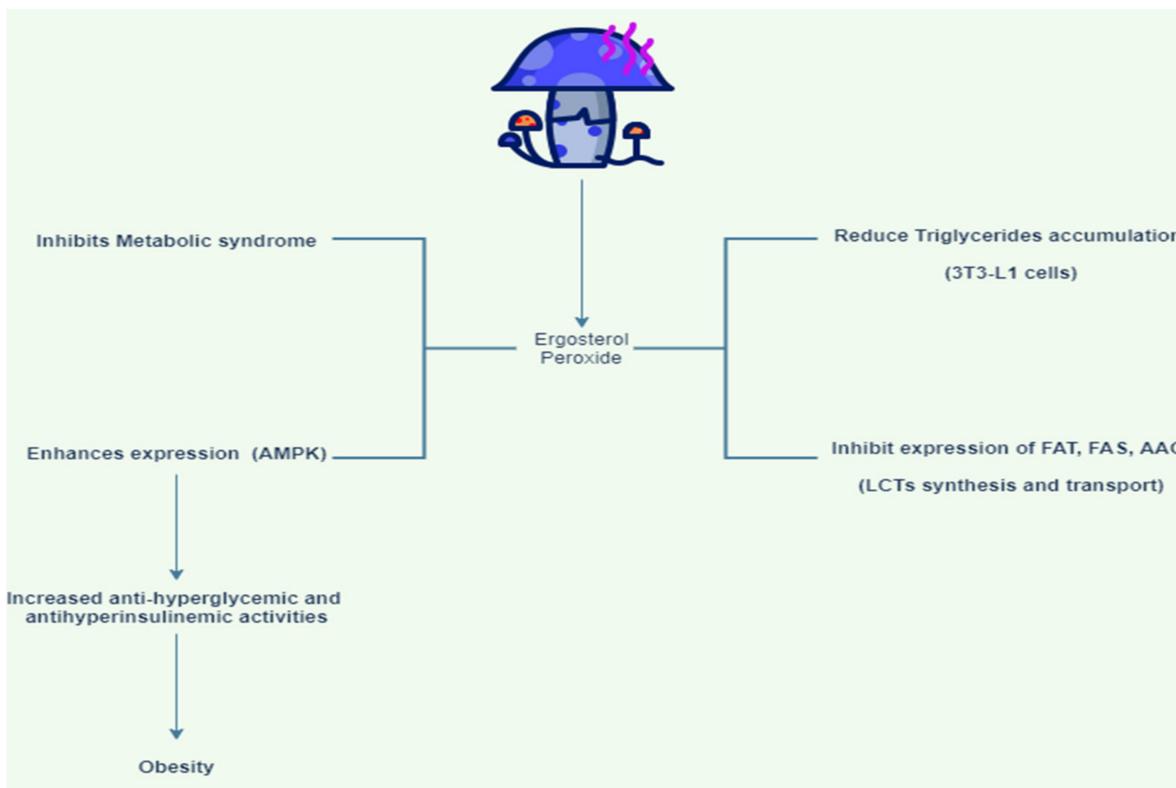
edible mushroom

obesity

body mass index

gut microbiota

anti-obesity agent


1. Introduction

Mushrooms are spore-bearing fruiting bodies of fungi that grow above the ground. They are rich in starches and proteins but are a poor source of fat ^[1]. Many researchers have reported the nutritional value of various mushrooms. Reis et al. reported the composition of *Agaricus bisporus* as 14.1% protein, 2.2% fat, and 74.0% carbohydrates, while another mushroom *Pleurotus ostreatus* contains 7.0% protein, 1.4% fat, and 85.9% carbohydrates ^[2]. Mushrooms also contain micronutrients, mainly various types of vitamin B such as riboflavin, niacin, and pantothenic acid ^[3]. The consumption of 100 g of mushrooms provide 22 calories. Oyster mushrooms are common in South Asian countries. They are used to make oyster sauce in Chinese cuisine. The cremini mushroom is also known as the baby Bella mushroom. The portobello mushroom is mainly used for highly woody flavours and has immunomodulatory properties ^[4]. Aromatic shiitake mushrooms in Italian foods have antiviral properties ^[5]. Maitake mushrooms have immune-protective and anti-tumour properties ^{[6][7]}. The pioppino mushroom (*Cyclocybe aegerita*) is a good source of nutrients (amino acids, malic acid, and sugars) and has anticancer, antifungal, and antiviral properties ^{[8][9]}.

Mushrooms are used as food and nutraceuticals. They are essential nutrient supplements that play a vital role in health and illnesses. They have low polyunsaturated fat. Therefore, eating mushrooms helps to reduce weight, as a low fat, low glucose, and high mannitol diet can prevent diabetes ^[10]. Mushrooms also have low sodium and no cholesterol, which prevents hypertension ^[11]. Mushrooms have high levels of antioxidants. Few researchers have reported their preventive effect against cancer ^{[12][13]}. Mushrooms possess antioxidant properties, which aids in the antioxidant defence mechanisms of cells ^[14]. They have anti-inflammatory properties and reduce the risk of obesity-related dyslipidaemia and hypertension ^{[4][5][15][16][17][18][19][20][21][22][23][24][25]}. Mushroom consumption on a

regular basis is useful in curing metabolic disorders that include obesity. Therefore, they could be nutraceuticals of choice in the future for anti-obesity treatment. *P. ostreatus*, frequently called the oyster mushroom, is one of the world's most widely consumed mushrooms after white button mushrooms (*A. bisporus*). *P. ostreatus* is especially significant since it can colonise and make use of a broad range of lignocellulosic substrates from natural deposits. It grows more rapidly than other edible mushrooms. In addition, *P. ostreatus* contains bioactive substances, including β -glucans, which aid in cardiometabolic health [26][27]. *P. ostreatus* has two-fold more β -glucan content compared to *A. bisporus*. They are nutritional fibres that have gained popularity due to their ability to reduce insulin obstruction, hypertension, dyslipidaemia, and obesity. β -glucans are exceptionally good supplements for human gastrointestinal health, and their fermentation is believed to contribute to the wellbeing of the intestine. These effects have been widely reported in studies with oat and grain β -glucans. Mevinolin, also known as lovastatin, has an inhibitory effect on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is also involved in decreasing cholesterol synthesis. In addition, in vitro digestion of *P. ostreatus* produces bioactive peptides that inhibit angiotensin-converting enzymes [28]. *P. ostreatus* contains abundant phenolic compounds which may be involved in lowering the blood pressure [29][30]. *P. ostreatus* has been used in animal studies and showed hypoglycaemic, hypolipidemic, and antioxidant effects. Animals consuming *P. ostreatus* exhibited reduced food intake and weight gain, suggesting the anti-obesogenic potential of this edible mushroom [29][30][31][32][33][34].

Ergosterol peroxide is a compound found in mushrooms that decreases the accumulation of fatty acids in 3T3-L1 cells (Figure 1) [35]. This compound inhibits the mRNA upregulation of sterol regulatory element binding protein-1c (SREBP-1c). SREBP-1c is a sterol response limiting protein that regulates the response of sterol in the body. In addition, ergosterol peroxide treatment inhibits the expression of unsaturated fat synthase, unsaturated fat translocase, and acetyl-coenzyme A carboxylase involved in the synthesis and transportation of long-chain unsaturated fatty acids. Since it aids in the prevention of obesity and related metabolic conditions, these reports suggest that ergosterol peroxide obtained from *G. lucidum* might be a potential drug for anti-obesity treatment [35]. AMP-activated protein kinase (AMPK) is a key regulator of homeostasis. Increased AMPK activity showed antihyperglycemic and anti-hyperinsulinemic effects which resulted in reduced obesity in mice. Consumption of *H. erinaceus* (a mushroom) powder reduced total plasma cholesterol and leptin levels in mice that were fed a diet containing the amount of fat tissue [36].

Figure 1. Pharmacological effects of ergosterol peroxide derived from mushrooms on obesity [35]. Ergosterol shows anti-obesity effect by reducing triglycerides accumulation, inhibiting expression of FAT, FAS, AAC, inhibiting metabolic syndrome, enhancing AMPK expression, increasing antihyperglycemic, and anti-hyperinsulinemic activities.

G. lucidum has anti-diabetic properties and has been used in conventional Chinese medicine. In mice following a high-fat diet (HFD), administration of water concentrate of *G. lucidum* mycelium (WEGL) reduced bodyweight, irritation, and insulin obstruction [37]. Along with reducing HFD-induced gut dysbiosis (as seen by lower Firmicutes-to-Bacteroidetes ratio and increased abundance of endotoxin producing proteobacteria), WEGL administration alleviates metabolic endotoxemia [38]. The weight-reducing and microbiota-regulatory effects can be passed on from WEGL-treated mice to HFD-administered ones by faecal exchange. In addition, high molecular weight polysaccharides (>300 kDa) present in the WEGL have shown anti-obesity and microbiota-regulating properties. *G. lucidum* and its high atomic weight polysaccharides can be used as prebiotics in overweight individuals to treat gut dysbiosis and metabolic disorders [37].

Pleurotus citrinopileatus is another potential source of bioactive mixtures and therefore, can be used in anti-obesity treatment [39][40][41]. One study assessed the anti-obesity and hypolipidemic effects of *P. citrinopileatus* water extract (PWE) in high-fat diet-induced obese (DIO) C57BL/6J mice. They were administered with PWE in gradually increasing concentrations (400 to 800 mg/kg of body weight, independently) along with a high-fat diet for 12 weeks [42]. Within 12 weeks, the weight gain, fat build-up, and food utilisation of DIO mice were drastically reduced in mice administered with PWE. PWE also decreased fatty acid, cholesterol, and low-density lipoprotein levels in the blood, simultaneously increasing the activity of aspartate transaminase, non-esterified unsaturated fats, creatinine levels,

and high-density lipoprotein levels. Moreover, PWE also enhanced glucose tolerance in HFD mice and showed a high potential for managing obesity and other metabolic diseases [42].

2. Effect of Mushroom Consumption on Gut Microbiota

The beneficial effects of edible mushrooms and their polysaccharides on the gut microbiota, which are closely linked with the body weight, are currently a major focus in the field. A study in mice reported that administering the concentrates of *G. lucidum* reduced the body weight by modifying the microbiota, suggesting that mushrooms might be used as a potential probiotic for weight reduction [37]. The effect of HFD on gut microflora is more pronounced than the effect on energy balance. HFD-induced changes in the gut microbiota have been shown to reduce Firmicutes to Bacteroides ratio, which is related to high energy accumulation, fat storage, and intestinal homeostasis over time. Through the provocative rundown and platelet markers, obesity negatively affects the immunity. Several studies have examined the anti-obesity effects of polysaccharides from various mushrooms in vitro and in vivo [43][44][45]. Polysaccharides from *Coriolus versicolor* initiated an immunomodulatory effect in mice splenocytes through the MAPK-NF-B pathway [46]. A polysaccharide from *Tremella fuciformis* hindered the differentiation of 3T3-L1 adipocytes by reducing the mRNA expression, suggesting that this polysaccharide could be a potential prebiotic for obesity [47]. Cure of adipocytes with *G. lucidum* diminished adipogenic record factor articulation, which increases glucose and lipid transport and activates AMPK pathway, suggesting its potential as an anti-obesity drug [48].

Being overweight could cause several other illnesses and result in a reduced lifespan. A recent study suggests that changes in the gut microbiota are associated with obesity and other related metabolic syndromes [49][50][51]. The gut microbiota comprises trillions of microorganisms that perform several functions, including nutrient metabolism, maintaining the gastrointestinal cells, modulating the immune system, protecting against the invasion of pathogens, and balancing the endotoxins. The gut microbiota generate energy from food and can cause overweight and type 2 diabetes mellitus (T2DM). It has been observed that in overweight mice, the gut microbiota draws out more energy from food than lean mice [52]. In healthy people, vancomycin treatment for one week modifies the gut microbiota, which results in reduced insulin sensitivity [53]. Additionally, the transfer of gut microbiota of any lean person to an overweight person leads to the development of insulin sensitivity in the recipient. These results suggest that changes in gut microbiota could cause obesity and T2DM.

In HFD animals, the levels of proteins that play a role in maintaining tight junctions of the intestine are lower than those in chow-fed animals. Administration of *G. lucidum* extract could recover the levels of those proteins, which resulted in the maintenance of the integrity of the intestine and prevention of the translocation of pro-inflammatory endotoxins from gut bacteria to blood (for example, lipopolysaccharides) [37]. Using a mouse obese model, it has been observed that feeding of high-fat diet for eight weeks increased the body weight, liver weight, fat accumulation, and lipid deposition in hepatocytes and adipocytes compared to the control group that were fed with chow. Supplementation with the water extract of *G. lucidum* reduced the weight gain and accumulation of fats in HFD mice. *G. lucidum* also improved glucose tolerance and insulin sensitivity. Compounds in *G. lucidum* that reduce obesity are high molecular weight polysaccharides (greater than 300 kDa). Fungal polysaccharides cannot

be digested in the stomach or small intestine. However, the large intestine can digest them and produces short-chain fatty acids, consequently secreting GLP-1. GLP-1 and short-chain fatty acids ultimately enter the blood and affect the brain, muscles, adipose tissues, and liver. Additionally, GLP-1 reduces gastric emptying and thereby, the appetite. It also reduces the deposition of fats, resistance to insulin, and inflammation. It also upregulates the proliferation and downregulates apoptosis in β -cells [37]. This suggests that *Escherichia coli* in the large intestine releases proteins that enhance or aid in the production of GLP-1 and peptide YY, which increases satiety [44]. These results indicate that the water extract of *G. lucidum* could be a potential prebiotic agent that can be used for the treatment of obesity and related complications [37]. Button mushrooms (*A. bisporus*) and *L. edodes* contain several polysaccharides, indicating their potential to stimulate the growth of beneficial bacteria in the gut.

Hirsutella sinensis is the asexual form of *Ophiocordyceps sinensis*. It modifies the composition of the gut microbiota and is beneficial in reducing obesity, inflammation, and diabetes in HFD mice. **Table 1** presents the effects of various mushrooms on gut microbiota.

Table 1. Effect of various mushrooms on gut microbiota.

Name of Mushroom	Effect on Gut Microbiota	References
<i>Pleurotus eryngii</i>	<i>P. eryngii</i> polysaccharides altered the abundance of SCFA producing gut bacteria	[54]
<i>Pleurotus sajor-caju</i>	Growth of SCFA producing bacteria was reduced, and <i>E. Shigella</i> was decreased by <i>Pleurotus sajor-caju</i> .	[48]
<i>Flammulina velutipes</i>		
<i>Hypsizygus marmoreus</i>		
<i>Lentinus edodes</i>	increase in lactic acid-producing bacteria (<i>Lactobacillus</i> , <i>Lactococcus</i> , and <i>Streptococcus</i>) and SCFA-producing bacteria (<i>Allobaculum</i> , <i>Bifidobacterium</i> , and <i>Ruminococcus</i>)	[55]
<i>Grifola frondosa</i>		
<i>Pleurotus eryngii</i>		
<i>Ganoderma lucidum</i>	<i>G. lucidum</i> enhanced SCFAs producing bacteria and abridged sulfate-reducing bacteria in a time-dependent manner	[56]
<i>Lentinula edodes</i>	LESDF-3 was found to stimulate the synthesis of Bacteroides	[57]
<i>Bulgaria inquinans</i>	increase of <i>Faecalibaculum</i> and <i>Parabacteroides</i> abundance and the decrease of <i>Allobaculum</i> , <i>Candidatus_Saccharimonas</i> , and <i>Rikenella</i> abundance at the genus level	[58]
<i>Ganoderma lucidum</i>	There was an increase in <i>Bacteroides/Firmicutes ratio</i> , <i>Clostridium clusters IV, XVIII</i> ,	[37]

Name of Mushroom	Effect on Gut Microbiota	References
	<p>XIVa (<i>Roseburia</i> spp.), <i>Eubacterium</i> spp.) SCFAs production bacteria, reduction in <i>Oscillibacter</i> spp. and <i>E. fergusonii</i>.</p> <p>Increase in <i>Alloprevotella</i>, <i>Barnesiella</i>, <i>Parabacteroides</i>, <i>Bacteroides</i>, <i>Bacteroidales</i> S24-7 and <i>Alistipe</i>. Decrease in <i>Blautia</i>, <i>Roseburia</i>, and <i>Enterorhabdus</i>.</p>	[59]
	<p>Increase in <i>Blautia</i>, <i>Bacteroides Dehalobacterium</i>, and <i>Parabacteroides</i>, Decrease in <i>Proteus</i>, <i>Aerococcus</i>, <i>Ruminococcus</i>, and <i>Corynebacterium</i>.</p>	[60]
	<p>Increase in <i>Alloprevotella</i>, <i>Prevotella</i>, <i>Ruminococcus</i> and, <i>Alistipes</i>, <i>Peptococcaceae</i>, <i>Alloprevotella</i>, and <i>Defluvitalea</i>,; Decrease in <i>Turicibacter</i>, <i>Clostridium XVIII</i> and <i>Phascolarctobacterium</i>.</p>	[61]
<i>Grifola frondosa</i>	<p>Increase in <i>Akkermansia muciniphila</i>, <i>Bacteroidetes/Firmicutes</i>, <i>Porphyromonas gingivalis</i>, <i>Lactobacillus acidophilus</i>, <i>Roseburia intestinalis</i>, <i>Tannerella forsythia</i>, and <i>Bacteroides acidifaciens</i>.</p> <p>Increase in <i>Barnesiella Helicobacter</i>, <i>Intestinimonas</i>, <i>Defluvitalea</i>, <i>Flavonifractor</i> and <i>Paraprevotella</i> and <i>Ruminococcus</i>. Decrease in <i>Butyricicoccus</i>, <i>Clostridium-XVI</i>, and <i>Turicibacter</i>.</p> <p>Increase in <i>Alistipes</i>. Decrease in <i>Streptococcus</i>, <i>Enterococcus</i>, <i>Staphlococcus</i>, and <i>Aerococcus</i>.</p>	[60]
	<p>An increase in <i>Bacteroidetes/Firmicutes</i> ratio increased the abundance of <i>Oscillibacter</i>, <i>Defluvitalea</i>, and <i>Barnesiella</i>.</p>	[64]
	<p>Increase in <i>Intestinimonas</i> and <i>Butyricimonas</i>. Decrease in <i>Turicibacter</i> and <i>Clostridium XVIII</i>.</p>	[65]
<i>Phellinus linteus</i>	<p>Increase in <i>Lachnospiraceae-NK4A136</i>, <i>Roseburia</i>, <i>Prevotella Lachnospiraceae-UCG-006</i>, <i>Anaerotruncus</i>, <i>Blautia</i>, <i>Eubacterium_xylanophilum</i>, <i>Ruminiclostridium-9</i>, and <i>Oscillibacter</i>.</p>	[66]
<i>Coriolus versicolor</i>	Increase in <i>Akkermansia muciniphila</i>	[67]
<i>Hericium erinaceus</i>	<p>Increase in <i>Bifidobacterium</i>, <i>Coprococcus</i>, <i>Desulfovibrio</i>, <i>Lactobacillus</i>, <i>Parabacteroides</i>, <i>Prevotella</i>; Decrease in <i>Corynebacterium</i>, <i>Dorea</i>, <i>Roseburia</i>, <i>Ruminococcus</i>, <i>Staphylococcus</i>, <i>Sutterella</i></p>	[68]

Name of Mushroom	Effect on Gut Microbiota	References
<i>Ganoderma lucidum</i>	Increase in <i>Firmicutes</i> , <i>Proteobacteria</i> (<i>Helicobacter</i>), <i>Rikenella</i> ; Decrease in <i>Acinetobacter</i> , <i>Actinobacteria</i> (<i>Arthrobacter</i> , <i>Corynebacterium</i>), <i>Bacteroidetes</i> (<i>Bacteroides</i> , <i>Parabacteroides</i> , <i>Prevotella</i>), <i>Blautia</i> , <i>Brevundimonas</i> , <i>Clostridium</i> , <i>Coprobacillus</i> , <i>Cyanobacteria</i> , <i>Facklamia</i> , <i>Jeotgalicoccus</i> , <i>Sporosarcina</i> , <i>Staphylococcus</i> , <i>Streptococcus</i>	[69]
<i>Boletus edulis</i> , <i>Boletus pinophilus</i> , <i>Boletus aureus</i> (Porcini), <i>Armillaria mellea</i> (Honey fungus), <i>Lactarius piperatus</i> (blancaccio), <i>Pleurotus eryngii</i> (King oyster)	Increase in <i>Bifidobacterium</i> and <i>Lactobacillus</i> genera	[70]
<i>Cyclocybe cylindracea</i> (poplar mushroom), <i>Hericium erinaceus</i> , <i>Pleurotus eryngii</i> , <i>Pleurotus ostreatus</i> (Oyster mushroom)	Increase in <i>Bifidobacterium</i> spp. <i>Faecalibacterium prausnitzii</i> (Ruminococcaceae), <i>Eubacterium rectale</i> /Roseburia spp.	[71]
<i>Flammulina velutipes</i> (Enoki), <i>Hypsizygus marmoreus</i> , (White beech mushroom), <i>Lentinula edodes</i> (Shiitake), <i>Grifola frondosa</i> , (Maitake) <i>Pleurotus eryngii</i> ^[73]	Increase in <i>Allobaculum</i> , <i>Bifidobacterium</i> , <i>Ruminococcus</i> , <i>Lactobacillus</i> , <i>Lactococcus</i> , <i>Streptococcus</i>	[72] [55]

of mushroom (*G. lucidum*)- 100 mg/kg in the low-fat diet group, (3) high dose of mushroom (*G. lucidum*)- 300 mg/kg in the low-fat diet group, (4) high-fat diet control group, (5) low dose of mushroom (*G. lucidum*)- 100 mg/kg in the high-fat diet group, (6) high dose of mushroom (*G. lucidum*)- 300 mg/kg in the high-fat diet group. Mice in each group were divided into two cages, with three mice in each cage. The temperature was maintained at 25–28 °C. *G. lucidum* was administered once a day to each mouse for 12 weeks, and weight and food intake were monitored regularly. Weight was significantly reduced in the low-fat diet group [74].

4. Recommendations and Implications for the Future

Different clinical trials have been conducted on mushrooms in various forms and their beneficial effects on health have been analysed. They include fresh, cooked, and powdered forms. Herein concluded in vitro and in vivo studies on the anti-obesity effects of edible mushrooms by modulating gut microflora. The findings of the clinical trials suggest that edible mushrooms can be used as alternative to vegetables; they contain several bioactive compounds and could be used as nutraceuticals. They also contain essential nutrients such as vitamins and minerals and have low sodium and cholesterol contents. Therefore, it is an excellent alternative food source for patients with hypertension. They also contain trace elements such as selenium which aids in improving human health. Therefore, edible mushrooms are potential candidates for preventing obesity and several other chronic ailments.

References

1. Sande, D.; de Oliveira, G.P.; Moura, M.A.F.e.; Martins, B.d.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. *Food Res. Int.* 2019, **125**, 108524.
2. Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. *Food Chem. Toxicol.* 2012, **50**, 191–197.
3. Feeney, M.J.; Miller, A.M.; Roupas, P. Mushrooms—Biologically distinct and nutritionally unique: Exploring a “third food kingdom”. *Nutr. Today* 2014, **49**, 301.
4. Zhao, S.; Gao, Q.; Rong, C.; Wang, S.; Zhao, Z.; Liu, Y.; Xu, J. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. *J. Fungi* 2020, **6**, 269.
5. Rincão, V.P.; Yamamoto, K.A.; Silva Ricardo, N.M.P.; Soares, S.A.; Paccolla Meirelles, L.D.; Nozawa, C.; Carvalho Linhares, R.E. Polysaccharide and extracts from *Lentinula edodes*: Structural features and antiviral activity. *Virol. J.* 2012, **9**, 37.
6. Roldan-Deamicis, A.; Alonso, E.; Brie, B.; Braico, D.A.; Balogh, G.A. Maitake Pro4X has anti-cancer activity and prevents oncogenesis in BALBc mice. *Cancer Med.* 2016, **5**, 2427–2441.
7. Asanovic, S. Maitake Mushrooms as an Anti-Cancer Agent. *J. Am. Diet. Assoc.* 1996, **96**, A44.
8. Landi, N.; Pacifico, S.; Ragucci, S.; Di Giuseppe, A.M.A.; Iannuzzi, F.; Zarrelli, A.; Piccolella, S.; Di Maro, A. Pioppino mushroom in southern Italy: An undervalued source of nutrients and bioactive compounds. *J. Sci. Food Agric.* 2017, **97**, 5388–5397.
9. Ragucci, S.; Landi, N.; Russo, R.; Valletta, M.; Pedone, P.V.; Chambery, A.; Di Maro, A. Ageritin from pioppino mushroom: The prototype of ribotoxin-like proteins, a novel family of specific ribonucleases in edible mushrooms. *Toxins* 2021, **13**, 263.
10. Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. *Int. J. Microbiol.* 2015, **2015**, 376387.
11. Mohamed Yahaya, N.F.; Rahman, M.A.; Abdullah, N. Therapeutic potential of mushrooms in preventing and ameliorating hypertension. *Trends Food Sci. Technol.* 2014, **39**, 104–115.
12. Zhang, S.; Sugawara, Y.; Chen, S.; Beelman, R.B.; Tsuduki, T.; Tomata, Y.; Matsuyama, S.; Tsuji, I. Mushroom consumption and incident risk of prostate cancer in Japan: A pooled analysis of the Miyagi Cohort Study and the Ohsaki Cohort Study. *Int. J. Cancer* 2020, **146**, 2712–2720.

13. Ba, D.; Ssentongo, P.; Beelman, R.; Gao, X.; Richie, J. Mushroom Consumption Is Associated with Low Risk of Cancer: A Systematic Review and Meta-Analysis of Observation Studies. *Curr. Dev. Nutr.* 2020, 4, 307.
14. Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. Antioxidants of edible mushrooms. *Molecules* 2015, 20, 19489–19525.
15. Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. *Mediat. Inflamm.* 2014, 2014, 805841.
16. Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. *Food Chem.* 2018, 243, 373–381.
17. Taofiq, O.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Anti-inflammatory potential of mushroom extracts and isolated metabolites. *Trends Food Sci. Technol.* 2016, 50, 193–210.
18. Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. *Food Sci. Hum. Wellness* 2018, 7, 125–133.
19. Preuss, H.G.; Echard, B.; Bagchi, D.; Perricone, N.V. Maitake mushroom extracts ameliorate progressive hypertension and other chronic metabolic perturbations in aging female rats. *Int. J. Med. Sci.* 2010, 7, 169–180.
20. Sun, L.; Niu, Z. A mushroom diet reduced the risk of pregnancy-induced hyper tension and macrosomia: A randomized clinical trial. *Food Nutr. Res.* 2020, 64, 1–9.
21. Ganesan, K.; Xu, B. Anti-obesity effects of medicinal and edible mushrooms. *Molecules* 2018, 23, 2880.
22. Grotto, D.; Camargo, I.F.; Kodaira, K.; Mazzei, L.G.; Castro, J.; Vieira, R.A.L.; Bergamaschi, C.D.C.; Lopes, L.C. Effect of mushrooms on obesity in animal models: Study protocol for a systematic review and meta-analysis. *Syst. Rev.* 2019, 8, 288.
23. Nkadimeng, S.M.; Nabatanzi, A.; Steinmann, C.M.L.; Eloff, J.N. Phytochemical, cytotoxicity, antioxidant and anti-inflammatory effects of psilocybe natalensis magic mushroom. *Plants* 2020, 9, 1127.
24. Du, B.; Zhu, F.; Xu, B. An insight into the anti-inflammatory properties of edible and medicinal mushrooms. *J. Funct. Foods* 2018, 47, 334–342.
25. Hetland, G.; Tangen, J.M.; Mahmood, F.; Mirlashari, M.R.; Nissen-Meyer, L.S.H.; Nentwich, I.; Therkelsen, S.P.; Tjønnfjord, G.E.; Johnson, E. Antitumor, anti-inflammatory and antiallergic effects of agaricus blazei mushroom extract and the related medicinal basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: A review of preclinical and clinical studies. *Nutrients* 2020, 12, 1339.

26. Jayakumar, T.; Sakthivel, M.; Thomas, P.A.; Geraldine, P. *Pleurotus ostreatus*, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. *Chem. Biol. Interact.* 2008, 176, 108–120.

27. Bobek, P.; Ozdín, L.; Galbavý, Š. Dose- and Time-Dependent Hypocholesterolemic Effect of Oyster Mushroom (*Pleurotus ostreatus*) in Rats. *Nutrition* 1998, 14, 282–286.

28. Piskov, S.; Timchenko, L.; Grimm, W.D.; Rzhepakovskiy, I.; Avanesyan, S.; Sizonenko, M.; Kurchenko, V. Effects of various drying methods on some physico-chemical properties and the antioxidant profile and ACE inhibition activity of oyster mushrooms (*Pleurotus ostreatus*). *Foods* 2020, 9, 160.

29. Agunloye, O.M. Effect of aqueous extracts of *Pleurotus ostreatus* and *Lentinus subnudus* on activity of adenosine deaminase, arginase, cholinergic enzyme, and angiotensin-1-converting enzyme. *J. Food Biochem.* 2021, 45, e13490.

30. Choudhury, M.; Rahman, T.; Kakon, A.; Hoque, N.; Akhtaruzzaman, M.; Begum, M.; Choudhuri, M.; Hossain, M. Effects of *Pleurotus ostreatus* on Blood Pressure and Glycemic Status of Hypertensive Diabetic Male Volunteers. *Bangladesh J. Med. Biochem.* 2013, 6, 5–10.

31. Chen, C.H.; Wu, J.Y.; Chen, C.H.; Chang, W.H.; Chung, K.T.; Liu, Y.W.; Lu, F.J. Anti-cancer effects of protein extracts from *Calvatia lilacina*, *Pleurotus ostreatus* and *Volvariella volvacea*. *Evid. Based Complement. Altern. Med.* 2011, 2011, 982368.

32. Sarangi, I.; Ghosh, D.; Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. Anti-tumor and immunomodulating effects of *Pleurotus ostreatus* mycelia-derived proteoglycans. *Int. Immunopharmacol.* 2006, 6, 1287–1297.

33. Martínez-Flores, H.E.; Contreras-Chávez, R.; Garnica-Romo, M.G. Effect of Extraction Processes on Bioactive Compounds from *Pleurotus ostreatus* and *Pleurotus djamor*: Their Applications in the Synthesis of Silver Nanoparticles. *J. Inorg. Organomet. Polym. Mater.* 2021, 31, 1406–1418.

34. Sekan, A.S.; Myronycheva, O.S.; Karlsson, O.; Gryganskyi, A.P.; Blume, Y. Green potential of *Pleurotus* spp. in biotechnology. *PeerJ* 2019, 7, e6664.

35. Jeong, Y.U.; Park, Y.J. Ergosterol peroxide from the medicinal mushroom *Ganoderma lucidum* inhibits differentiation and lipid accumulation of 3T3-L1 adipocytes. *Int. J. Mol. Sci.* 2020, 21, 460.

36. Huang, H.T.; Ho, C.H.; Sung, H.Y.; Lee, L.Y.; Chen, W.P.; Chen, Y.W.; Chen, C.C.; Yang, C.S.; Tzeng, S.F. *Hericium erinaceus* mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. *Sci. Rep.* 2021, 11, 6551.

37. Chang, C.J.; Lin, C.S.; Lu, C.C.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Tseng, S.F.; Wu, T.R.; Chen, Y.Y.M.; Young, J.D.; et al. *Ganoderma lucidum* reduces obesity in mice by modulating the composition of the gut microbiota. *Nat. Commun.* 2015, 6, 7489.

38. Thyagarajan-Sahu, A.; Lane, B.; Sliva, D. ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. *BMC Complement. Altern. Med.* 2011, 11, 74.

39. Hao, Y.L.; Sun, H.Q.; Zhang, X.J.; Wu, L.R.; Zhu, Z.Y. A novel polysaccharide from *Pleurotus citrinopileatus* mycelia: Structural characterization, hypoglycemic activity and mechanism. *Food Biosci.* 2020, 37, 100735.

40. Chen, P.H.; Weng, Y.M.; Yu, Z.R.; Koo, M.; Wang, B.J. Extraction temperature affects the activities of antioxidation, carbohydrate-digestion enzymes, and angiotensin-converting enzyme of *Pleurotus citrinopileatus* extract. *J. Food Drug Anal.* 2016, 24, 548–555.

41. Wang, Q.; Niu, L.L.; Liu, H.P.; Wu, Y.R.; Li, M.Y.; Jia, Q. Structural characterization of a novel polysaccharide from *Pleurotus citrinopileatus* and its antitumor activity on H22 tumor-bearing mice. *Int. J. Biol. Macromol.* 2021, 168, 251–260.

42. Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from *Pleurotus citrinopileatus* in C57BL/6J mice. *Food Sci. Nutr.* 2019, 7, 1295–1301.

43. Huang, H.Y.; Korivi, M.; Yang, H.T.; Huang, C.C.; Chaing, Y.Y.; Tsai, Y.C. Effect of *Pleurotus tuber-regium* polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. *Chin. J. Physiol.* 2014, 57, 198–208.

44. Kanwal, S.; Aliya, S.; Xin, Y. Anti-Obesity Effect of *Dictyophora indusiata* Mushroom Polysaccharide (DIP) in High Fat Diet-Induced Obesity via Regulating Inflammatory Cascades and Intestinal Microbiome. *Front. Endocrinol.* 2020, 11, 862.

45. Pongkunakorn, T.; Watcharachaisoponsiri, T.; Chupeerach, C.; On-Nom, N.; Suttisansanee, U. Inhibitions of key enzymes relevant to obesity and diabetes of thai local mushroom extracts. *Curr. Appl. Sci. Technol.* 2017, 17, 181–190.

46. Yang, S.F.; Zhuang, T.F.; Si, Y.M.; Qi, K.Y.; Zhao, J. *Coriolus versicolor* mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-κB signaling pathways. *Mol. Immunol.* 2015, 64, 144–151.

47. Jeong, H.J.; Yoon, S.J.; Pyun, Y.R. Polysaccharides from edible mushroom *Himoggi* (*Tremella fuciformis*) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPAR γ , C/EBP α , and leptin. *Food Sci. Biotechnol.* 2008, 17, 267–273.

48. Maheshwari, G.; Gessner, D.K.; Neuhaus, K.; Most, E.; Zorn, H.; Eder, K.; Ringseis, R. Influence of a Biotechnologically Produced Oyster Mushroom (*Pleurotus sajor-caju*) on the Gut Microbiota and Microbial Metabolites in Obese Zucker Rats. *J. Agric. Food Chem.* 2021, 69, 1524–1535.

49. Madsen, L.; Myrmel, L.S.; Fjære, E.; Liaset, B.; Kristiansen, K. Links between dietary protein sources, the gut microbiota, and obesity. *Front. Physiol.* 2017, 8, 1047.

50. Cao, S.Y.; Zhao, C.N.; Xu, X.Y.; Tang, G.Y.; Corke, H.; Gan, R.Y.; Li, H. Bin Dietary plants, gut microbiota, and obesity: Effects and mechanisms. *Trends Food Sci. Technol.* 2019, 92, 194–204.

51. Stanislawski, M.A.; Dabelea, D.; Lange, L.A.; Wagner, B.D.; Lozupone, C.A. Gut microbiota phenotypes of obesity. *NPJ Biofilms Microbiomes* 2019, 5, 18.

52. Davis, C.D. The Gut Microbiome and Its Role in Obesity. *Nutr. Today* 2016, 51, 167.

53. Reijnders, D.; Goossens, G.H.; Hermes, G.D.A.; Neis, E.P.J.G.; van der Beek, C.M.; Most, J.; Holst, J.J.; Lenaerts, K.; Kootte, R.S.; Nieuwdorp, M.; et al. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. *Cell Metab.* 2016, 24, 63–74.

54. Nakahara, D.; Nan, C.; Mori, K.; Hanayama, M.; Kikuchi, H.; Hirai, S.; Egashira, Y. Effect of mushroom polysaccharides from *Pleurotus eryngii* on obesity and gut microbiota in mice fed a high-fat diet. *Eur. J. Nutr.* 2020, 59, 3231–3244.

55. Shimizu, T.; Mori, K.; Ouchi, K.; Kushida, M.; Tsuduki, T. Effects of dietary intake of Japanese mushrooms on visceral fat accumulation and gut microbiota in mice. *Nutrients* 2018, 10, 610.

56. Khan, I.; Huang, G.; Li, X.-A.; Liao, W.; Leong, W.K.; Xia, W.; Bian, X.; Wu, J.; Hsiao, W.W. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. *Pharmacol. Res.* 2019, 148, 104448.

57. Xue, Z.; Ma, Q.; Chen, Y.; Lu, Y.; Wang, Y.; Jia, Y.; Zhang, M.; Chen, H. Structure characterization of soluble dietary fiber fractions from mushroom *Lentinula edodes* (Berk.) Pegler and the effects on fermentation and human gut microbiota in vitro. *Food Res. Int.* 2020, 129, 108870.

58. Sang, H.; Xie, Y.; Su, X.; Zhang, M.; Zhang, Y.; Liu, K.; Wang, J. Mushroom *Bulgaria inquinans* Modulates Host Immunological Response and Gut Microbiota in Mice. *Front. Nutr.* 2020, 7, 144.

59. Lv, X.C.; Guo, W.L.; Li, L.; Yu, X.D.; Liu, B. Polysaccharide peptides from *Ganoderma lucidum* ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. *J. Funct. Foods* 2019, 57, 48–58.

60. Chen, Y.; Liu, D.; Wang, D.; Lai, S.; Zhong, R.; Liu, Y.; Yang, C.; Liu, B.; Sarker, M.R.; Zhao, C. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from *Grifola frondosa* in type 2 diabetic mice. *Food Chem. Toxicol.* 2019, 126, 295–302.

61. Hu, R.; Guo, W.; Huang, Z.; Li, L.; Liu, B.; Lv, X. Extracts of *Ganoderma lucidum* attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats. *J. Funct. Foods* 2018, 46, 403–412.

62. Li, L.; Guo, W.-L.; Zhang, W.; Xu, J.-X.; Qian, M.; Bai, W.-D.; Zhang, Y.-Y.; Rao, P.-F.; Ni, L.; Lv, X.-C. *Grifola frondosa* polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. *Food Funct.* 2019, 10, 2560–2572.

63. Guo, W.L.; Deng, J.C.; Pan, Y.Y.; Xu, J.X.; Hong, J.L.; Shi, F.F.; Liu, G.L.; Qian, M.; Bai, W.D.; Zhang, W.; et al. Hypoglycemic and hypolipidemic activities of *Grifola frondosa* polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. *Int. J. Biol. Macromol.* 2020, 153, 1231–1240.

64. Pan, Y.; Wan, X.; Zeng, F.; Zhong, R.; Guo, W.; Lv, X.C.; Zhao, C.; Liu, B. Regulatory effect of *Grifola frondosa* extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. *Int. J. Biol. Macromol.* 2020, 155, 1030–1039.

65. Pan, Y.-Y.; Zeng, F.; Guo, W.-L.; Li, T.-T.; Jia, R.-B.; Huang, Z.-R.; Lv, X.-C.; Zhang, J.; Liu, B. Effect of *Grifola frondosa* 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. *Food Funct.* 2018, 9, 6268–6278.

66. Liu, Y.; Wang, C.; Li, J.; Li, T.; Zhang, Y.; Liang, Y.; Mei, Y. *Phellinus linteus* polysaccharide extract improves insulin resistance by regulating gut microbiota composition. *FASEB J.* 2020, 34, 1065–1078.

67. Li, Q.; Zhang, F.; Chen, G.; Chen, Y.; Zhang, W.; Mao, G.; Zhao, T.; Zhang, M.; Yang, L.; Wu, X. Purification, characterization and immunomodulatory activity of a novel polysaccharide from *Grifola frondosa*. *Int. J. Biol. Macromol.* 2018, 111, 1293–1303.

68. Diling, C.; Xin, Y.; Chaoqun, Z.; Jian, Y.; Xiaocui, T.; Jun, C.; Ou, S.; Yizhen, X. Extracts from *Hericium erinaceus* relieve inflammatory bowel disease by regulating immunity and gut microbiota. *Oncotarget* 2017, 8, 85838–85857.

69. Su, J.; Su, L.; Li, D.; Shuai, O.; Zhang, Y.; Liang, H.; Jiao, C.; Xu, Z.; Lai, Y.; Xie, Y. Antitumor Activity of Extract From the Sporoderm-Breaking Spore of *Ganoderma lucidum*: Restoration on Exhausted Cytotoxic T Cell with Gut Microbiota Remodeling. *Front. Immunol.* 2018, 9, 1765.

70. Vamanu, E.; Pelinescu, D. Effects of mushroom consumption on the microbiota of different target groups—Impact of polyphenolic composition and mitigation on the microbiome fingerprint. *LWT Food Sci. Technol.* 2017, 85, 262–268.

71. Mitsou, E.K.; Saxami, G.; Stamoulou, E.; Kerezoudi, E.; Terzi, E.; Koutrotsios, G.; Bekiaris, G.; Zervakis, G.I.; Mountzouris, K.C.; Pletsas, V.; et al. Effects of rich in B-glucans edible mushrooms on aging gut microbiota characteristics: An in vitro study. *Molecules* 2020, 25, 2806.

72. Poddar, K.H.; Ames, M.; Hsin-Jen, C.; Feeney, M.J.; Wang, Y.; Cheskin, L.J. Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. *Appetite* 2013, 71, 379–387.

73. Harada, E.; Morizono, T.; Kanno, T.; Saito, M.; Kawagishi, H. Medicinal mushroom, grifola gargal (Agaricomycetes), lowers triglyceride in animal models of obesity and diabetes and in adults with prediabetes. *Int. J. Med. Mushrooms* 2020, 22, 79–91.

74. Sang, T.; Guo, C.; Guo, D.; Wu, J.; Wang, Y.; Wang, Y.; Chen, J.; Chen, C.; Wu, K.; Na, K.; et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of *Ganoderma lucidum* via gut microbiota regulation. *Carbohydr. Polym.* 2021, 256, 117594.

Retrieved from <https://encyclopedia.pub/entry/history/show/50589>