

Mutational Signatures in Gastric Cancer

Subjects: **Genetics & Heredity**

Contributor: Pia Pužar Dominkuš, Petra Hudler

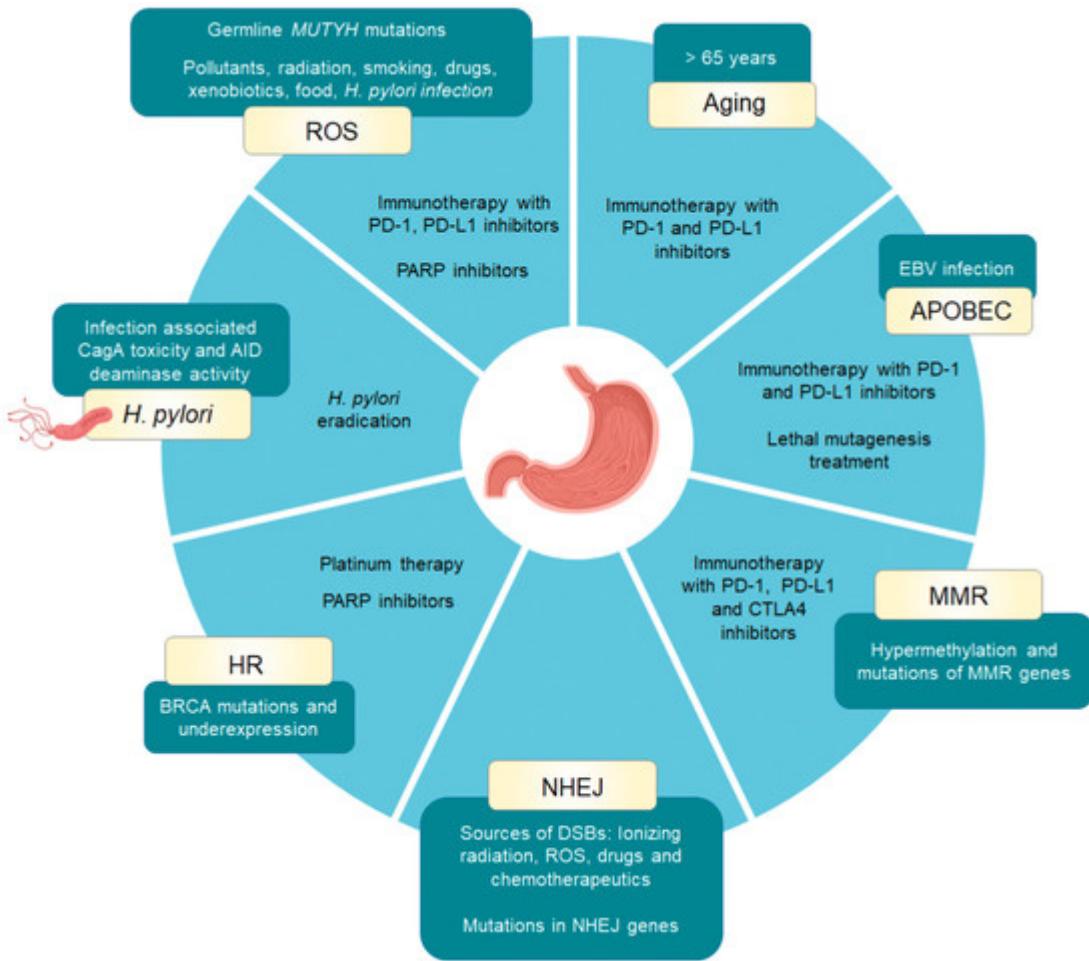
Gastric cancer is characterised by high inter- and intratumour heterogeneity. The majority of patients are older than 65 years and the global burden of this disease is increasing due to the aging of the population. The disease is usually diagnosed at advanced stages, which is a consequence of nonspecific symptoms. A new field of mutational signatures has emerged in the past decade with advances in the genome sequencing technology. These distinct mutational patterns in the genome, caused by exogenous and endogenous mutational processes, can be associated with tumour aetiology and disease progression, and could provide novel perception on the treatment possibilities.

chromosomal instability

gastric cancer

genetic variability

gene expression


immune checkpoint inhibitors

microsatellite instability

mutational signatures

1. Introduction

In non-hereditary cancers the accumulation of somatic mutations in cells leads to clonal expansion and malignant transformation. Mutations occur in the genome due to exogenous and endogenous mutagens in the presence of normally or abnormally functioning DNA maintenance machinery. The ones that occur in critical genes, which maintain cell integrity and result in cell growth advantages, are known as “driver” mutations. At the same time many other mutations accumulate in the genome regions with no result in functional or phenotypic change, so-called “passenger” mutations. Each exo- and endogenous mutational process leaves a distinct mutational pattern of both driver and passenger mutations on the genome - termed “mutational signature” (in some publications the term mutational fingerprint is used) [1]. Mutational signatures are correlated to specific endo- or exogenous mutagenic processes, such as spontaneous deamination of CT due to aging, overactivity of APOBEC cytidine deaminase enzymes, defects in DNA repair machinery, tobacco smoking and so on. Some mutational signatures are rare and specific, whereas other are more common and can be detected in most cancer types, such as mutational signatures resulting from reactive oxygen species (ROS), APOBEC overactivity and defective mismatch repair (MMR) [2]. The underlying mechanisms remain unknown for many mutational signatures and further *in vitro* experiments on cell lines, exposed to mutagenic processes in defined environments, are necessary to decode the causal mutagenic factors. Gastric cancer falls into the category of cancer types with a complex repertoire of mutational processes. This discussion includes WES and WGS mutational signatures found in 75 samples from gastric adenocarcinoma tumours by Alexandrov et al., which are also described in the COSMIC database [2][3] and their possible implications in gastric cancer prevention, diagnosis, and treatment (**Table 1** and **Figure 1**).

Figure 1. Risk factors and current treatment possibilities associated with gastric cancer mutational signatures. Mutational signatures found in gastric cancer are represented in yellow boxes. Corresponding risk factors are represented in green boxes and current treatment possibilities are listed in the circle diagram. For NHEJ inhibition, no treatment options are currently in clinical use. HR, homologous recombination; MMR, mismatch repair; NHEJ, nonhomologous end joining; ROS, reactive oxygen species. Illustrations created with BioRender.com.

Table 1. Summary of mutational signatures in gastric cancer and their potential treatment implications.

Underlying Mechanism	Signature Type: Base Substitution Subtype ¹ [References]	Molecular Consequences	Treatment Implications [References]	Additional Biomarkers [References]
Aging	SBS1: C > T (NCG) [4][2][5][6]	Deamination of 5-methylcytosine	immune checkpoint inhibition (PD-L1 and PD-1 inhibitors) [7][8][9]	senescence score, EBV ⁺ , TMB [10]
APOBEC overactivity	SBS2: C > T (TCN) SBS13: C > A (TCA), C	High mutational load in transcriptionally active genes	APOBEC3B inhibitors, immune	EBV ⁺ , TMB, L1-sequencing, APOBEC3B

Underlying Mechanism	Signature Type: Base Substitution Subtype ¹ [References]	Molecular Consequences	Treatment Implications [References]	Additional Biomarkers [References]
	> G (TCA, TCC, TCT) [4][2][11][12][13][14]		checkpoint inhibition (PD-L1 and PD-1 inhibitors), lethal mutagenesis treatment [15][16][17][18]	expression levels [2][12][17][19]
Homologous recombination repair (BRCA1/2 mutations)	SBS3: C > A, C > G, C > T, T > A, T > C, T > G (NNN) ³ ID6: microhomology—deletion length: 5+ (microhomology length: 1, 2, 3, 4, 5+) [19][4][20]	Higher mutational burden due to alternative error-prone DSBs repair by NHEJ	Pt-based therapy, PARP inhibitors [21][22][23][24]	BRCA1/2 expression levels, ATM loss [25][26][27]
Mismatch repair	SBS20 (<i>POLD1</i> mutations): C > A (CCC, CCT), C > T (ACA, GCA, GCC) SBS6, SBS14 (<i>POLE</i> mutations), SBS15, SBS21, SBS26, SBS44 ² DBS7: AC > NN (CA), CT > NN (TC), GC > NN (AT), TA > NN (AT), TT > NN (AA, AG, CA, GA) DBS10: CG > NN (TA), TT > NN (GG) ID1: 1 bp insertion (T, homopolymer length: 5+) ID2: 1 bp deletion (C, homopolymer length: 5, 6+) [2][28]	Microsatellite instability, middle to high tumour mutational burden	Immune checkpoint inhibition (PD-L1, PD-1 and CTLA4 inhibitors) [29][30][31][32][33] [34]	MMR mutations, MSI status, PD-L1 status, EBV ⁺ , T-cell inflamed score, TMB status, <i>POLD1</i> mutations, <i>ARID1A</i> mutations [35][36][37][38][39][40]
Nonhomologous end joining repair	ID6: microhomology—deletion length: 5+ (microhomology length: 1, 2, 3, 4, 5+) ID8: > 1 bp deletion at repeats—deletion length: 5+ (number of	Chromosomal instability	NHEJ inhibitors [41][42][43]	CIN, KUs, DNA-PKcs, DNA ligase IV, XRCC4 expression levels [35][40]

Underlying Mechanism	Signature Type: Base Substitution Subtype ¹ [References]	Molecular Consequences	Treatment Implications [References]	Additional Biomarkers [References]
	repeat units: 1); microhomology— deletion length: 5+ (microhomology length: 1, 2, 3) [2]			
Reactive oxygen species DNA damage [5][6]	SBS18: C > A (ACA, CCA, GCA, GCT, TCA, TCC, TCT) [2][44]	DNA damage	Immune checkpoint inhibition therapy (PD-L1 and PD-1 inhibitors) PARP inhibitors [45][46][46]	MUTYH mutations and expression levels, CHEK1 mutations [44][47][48][49]
<i>H. pylori</i> infection	SBS3: C > A, C > G, C > T, T > A, T > C, T > G (NNN) ³ ID6: microhomology— deletion length: 5+ (microhomology length: 1, 2, 3, 4, 5+) [2][20][50]	Inflammation, DNA damage	<i>H. pylori</i> eradication [4][52]	AID expression levels [51]

[53]. Uracil is readily repaired in cells with functional uracyl-DNA glycosylase and base excision repair, whereas T:G base pairing is recognised by thymidine-DNA glycosylase. Evidence showed that T:G mismatches, particularly in the context of CpG islands, are often associated with mutational hotspots in certain genes, such as *TP53* [54].
¹ Only base substitutions with more than 5% of percentage of single base substitutions or indels (ID) with more than 5% of percentage or DBS with more than 5% of doublet base substitutions.² These SBS mutational signatures are presented in Table 2.³ All substitutions in all contexts are below 2.5% of percentage of single base substitutions. Treatment options and biomarkers already implemented in clinical use for cancer treatment and diagnosis/prognosis are in bold. GIN: chromosomal instability; EBV: Epstein–Barr virus; L1: retrotransposon element; MMR: mismatch repair; MSI: microsatellite instability; N: any base; TMB: tumour mutational burden.

Treatment options and biomarkers already implemented in clinical use for cancer treatment and diagnosis/prognosis are in bold. GIN: chromosomal instability; EBV: Epstein–Barr virus; L1: retrotransposon element; MMR: mismatch repair; MSI: microsatellite instability; N: any base; TMB: tumour mutational burden.

With other markers of senescence. It could perhaps be included in the senescence scoring models, with potential prognostic values. Zhou et al. constructed a senescence scoring system based on six genes (*ADH1B*, *IL1A*, *SERpine1*, *SPARC*, *EZH2*, and *TNFAIP2*) and showed that patients with high senescence score (senoscore) had longer overall survival (19.6 months vs. 56.2 months; $p < 0.0001$) [10]. Furthermore, when patients were stratified according to TNM (tumour node metastasis) clinical stages, the senoscore successfully separated patients with distinct clinical prognosis at the same disease stage. High senoscore was also related to the MSI-high status, Epstein–Barr virus (EBV) infection, and higher TMB, suggesting that these patients would benefit from immune checkpoint inhibitors, such as PD-1 and PD-L1 [7][8][9]. It has been observed that patients with high senoscore may experience stronger adverse effects after chemotherapy and cancer relapse [56]. Therefore, research results suggested that patients with low senoscore would be better candidates for chemotherapy.

3. APOBEC Activity

SBS2 and SBS13 mutational signatures are found in more than half of all cancer types including gastric cancer and are ranked second in cancer mutagenesis, with aging being the first one [4]. They are associated with the activity of the activation-induced cytidine deaminase/apolipoprotein B editing complex (AID/APOBEC) enzyme family. Signature DBS11 is also found in samples with a large number of SBS2 and SBS13 mutations, although it has been correlated with ROS based on experiments in bacterial models [11]. The AID/APOBEC family comprises eleven members with distinct functions. These enzymes deaminate cytidine to uridine in the DNA and/or RNA, and are implicated in adaptive (antibody gene diversification) and innate immunity (virus restriction) as well as in retrotransposon restriction. Their characteristics and functions have been reviewed in detail by Viera et al. and Conticello et al. [57][58]. A side effect of APOBEC overexpression is off-target genomic mutations, which accumulate in the host DNA, affect the DNA integrity, and lead to neoplastic transformation. APOBEC mutational signature is characterized by C > T transition mutations (SBS2) in DNA motifs TpCpW and C > G transversions in SBS13 in TCW DNA motifs (mutated base underlined; W = A or T), and other mutational outcomes that occur due to DNA repair intermediates such as abasic sites and DNA breaks [59]. The substitutions occur during replication of uracils formed by APOBEC cytidine deamination and by error-prone polymerases following uracil excision and generation of abasic sites by uracil–DNA glycosylase [60][61].

In viral infections, APOBEC mutates viral ssDNA/ssRNA in order to hamper virus replication and function [57]. Viral infections are associated with the development of a number of cancers. Hepatitis B virus (HBV) is one of the leading causes of liver cancer; human papilloma virus (HPV) causes anal, cervical, penile, oropharyngeal, vaginal, and vulvar cancer; human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T-cell leukemia/lymphoma; hepatitis C virus (HCV) with liver cancer and non-Hodgkin's lymphoma; and EBV with the risk of Burkitt lymphoma, some types of Hodgkin's and non-Hodgkin's lymphoma, and, importantly, gastric cancer. According to the TCGA study on 295 primary gastric adenocarcinoma samples, around 8.8% were characterised as EBV positive (EBV⁺) with distinct molecular characteristics—mutations in *PIK3CA* and *ARDN1A*, DNA hypermethylation, overexpression of PD-L1/2, amplification of *ERBB2* and *JAK2*, low rate of *TP53* mutations, and intestinal subtype [35]. In addition, strong IL-12 signalling indicated that EBV⁺ tumours were infiltrated with immune cells. In the ACRG study, using different approaches to molecularly stratify gastric cancer subtypes, the researchers observed that EBV infection occurred more frequently in the MSS/TP53⁺ group ($n = 12/18$ of EBV⁺) [62]. Overall, in their cohort, 6.5% samples were characterised as EBV⁺. They also observed frequent *PIK3CA* and *ARDN1A* mutations and a distinct cytokine signature, indicative of increased infiltration of immune cells in EBV⁺ tumours compared to microsatellite stable (MSS) tumours. The predominant histology of tumours in this group was also intestinal-type carcinoma. They did not observe alterations in *TP53*, which is partly consistent with the finding from the TCGA study, where the majority of EBV⁺ tumours had intact *TP53*. Interestingly, in the ACRG study, *MDM2* was amplified in MSS/TP53⁺ cancers, whereas in the TCGA study it was not.

Bobrovitchaia et al. analysed 240 gastric cancer samples from the TCGA cohort and 112 samples from a different Brazilian validation cohort and showed that the expression of APOBEC genes was significantly higher in EBV⁺ tumours in comparison to EBV⁻ tumour samples [22]. With the exception of *APOBEC3A*, all other members of the

APOBEC3s were upregulated, with *APOBEC3C* being the most abundantly expressed. The authors also showed that *APOBEC* characteristic TpCpW mutation pattern was significantly enriched in EBV^+ group and positively correlated with *APOBEC3* expression, which further correlated with tumour purity, suggesting that *APOBEC* activity derives from tumour cells. *APOBEC* mutational load correlated with highly expressed genes, which were, as expected highly mutated. This is in concordance with the fact that the preferential editing substrate of *APOBEC3s* is ssDNA, which is available at transcriptionally active sites. The authors also observed enrichment of TpCpW mutations in the late-stage EBV^+ tumours, which also carried higher proportion of mutated oncogenes in comparison to EBV^- samples. Furthermore, in 40% of EBV^+ patients with somatic mutations in *PIK3CA*, mutations were present in TpCpW motif, while this was not observed in EBV^- patients.

Higher expression patterns of mRNA and protein levels of *APOBEC3B* were also found in gastric cancer tumour samples compared to paired normal tissue samples in a cohort of 236 patients [56]. *APOBEC3B* mRNA and protein levels were higher in tumour samples from Grade III stage in comparison to Grade I or Grade II stage and correlated to poor prognosis. High *APOBEC3B* expression was also associated with gender (female), tumour size (> 5.0 cm), histological grade (G3), and TNM staging (lower expression in TNM I). *APOBEC3B* down-regulation with shRNA resulted in enhanced cytotoxicity of PDCD2 (Programmed cell death protein 2) in gastric cancer cell line MKN28, probably due to the lower mutational load and non-interfered transcription of this tumour suppressor gene. *APOBEC3B* expression levels were associated with *APOBEC* mutational signatures, whereas *APOBEC3C* expression levels were associated with decreased *APOBEC* mutational signatures in gastric cancer [23].

Interestingly, analysis of cancer cell lines by sequencing single cells showed that at least 75% of investigated cancer cell lines (including gastric cancer) that previously encountered *APOBEC* mutagenesis persistently continued to generate SBS2 and SBS13 mutational signatures [25]. The authors suggested that *APOBEC*-associated mutagenesis *in vivo* appears to be episodic. Additionally, the procurement of *APOBEC*-associated mutational signatures continued in cell culture despite the absence of proposed initiators of *APOBEC* activity, immune system and exogenous viral infections [17][26]. Indeed, the presence of a virus is not necessarily required for initiating *APOBEC* mutagenesis [25]. This may occur also due to retrotransposition activities. There was significant correlation between the rates of the *in vitro*-acquired retrotransposition aberrations and burdens of SBS13 and, interestingly, SBS18 (associated to ROS) shown in cancer cell lines. However, the correlation was not significant when 2,353 primary cancers originating from different tissues were investigated. L1s are autonomous mobile elements, amounting to 17% of the human genome, and retrotranspose via an RNA intermediate through a “copy and paste” mechanism [27]. Somatic mobilization of retroelements can induce and accelerate insertional mutagenesis and genetic instability. Next-generation L1-resequencing (L1-seq) on paired tissue samples from seven patients with primary gastric cancer showed that somatic retrotransposition was present early in cancer development in gastro-intestinal epithelial cells [28]. L1-seq, *APOBEC*-mutational signature, and *APOBEC*-expression status in stomach tissues in combination with circulating biomarkers could therefore be valuable as biomarkers for early detection of gastric cancer.

Tumours characterized by *APOBEC* overactivity might be candidates for treatment by lethal mutagenesis [29]. Drugs, such as nucleoside analogues that increase the mutation load in tumour cells to toxic levels are already

commonly used in addition to platinum-based chemotherapy to destroy tumour cells. On the other hand, inhibition of APOBEC enzymes may prevent cancer evolution. APOBEC3B specific inhibitors are promising, as this enzyme is non-essential in humans, whereas other members of the family are crucial for adaptive (AID) and innate (other APOBEC members) immune response [30]. Drug candidates for such “therapy by hypomutation” are being pursued. In recent years many studies of APOBEC3B crystal structures were published providing better understanding of APOBEC3B active site dynamics and setting the stage for design of selective small molecule inhibitors [31][32][33]. These may in the future in combination with other therapies be effective in preventing tumour recurrence and drug resistance.

Furthermore, a study by Wang and Jia *et al.* suggested that APOBEC3B and APOBEC-mutational signature might be a novel marker for predicting immunotherapy response [34]. They found a correlation between *APOBEC3B* expression and immune gene expression and known immunotherapy response biomarkers in patients with non-small cell lung cancer. APOBEC mutational signature was specifically enriched in patients with lasting clinical benefit after immunotherapy, suggesting that patients with APOBEC signatures might be candidates for checkpoint blockade immunotherapy with PD-1 and PD-L1 (discussed in detail in section 3.3.2). Similarly, Boichard and Pham *et al.* demonstrated that APOBEC related mutagenesis could be correlated with immunotherapy response in patients with various cancer types (gastric cancer excluded) [36].

All the factors, responsible for the expression of AID/APOBEC enzyme family are currently unknown. Nevertheless, altogether this data suggest that it might be worth analysing the presence of APOBEC mutational signature and the expression levels of APOBEC enzymes in gastric cancer biopsies as they can be a source of ongoing mutagenesis at transcriptionally active DNA sites or retrotranspozable elements providing a secondary driving force for subclonal expansions and intratumor heterogeneity propagation. This may manifest clinically as recurrence, metastasis, and drug resistance and could therefore have important prognostic and therapeutic implications. In a cohort analysed by Alexandrov *et al.* APOBEC signatures were present in < 50% of all gastric cancer samples indicating that this feature was not common for all gastric adenocarcinoma tumours and could therefore be useful for patient stratification in combination with other markers, such as PD-L1 positivity, TMB, and EBV infection status [2].

4. DNA Integrity Machinery

Compromised DNA replication and repair mechanisms play a central role in cancer development. Deficient DNA integrity machinery leaves distinct imprints in the genome. Therefore, it is no surprise that several mutational signatures were associated with aberrations of specific DNA repair mechanism or a specific DNA repair gene [2]. Inhibitors of compromised DNA repair pathways are promising drugs for cancer treatment and could be used as monotherapy or in combination with first-line therapeutics to increase tumour mutational burden. However, it is difficult to select the patients who would benefit from a particular combination therapy due to the lack of specific biomarkers. Mutational signatures could be a promising tool for filling the gap in biomarker selection for better patient stratification in gastric cancer.

4.1. Homologous Recombination DNA Repair

SBS3 was associated with germline or somatic mutations in *BRCA1* and *BRCA2*, and *BRCA1* promoter methylation [19][4]. *BRCA1/2* tumour suppressors play an important role in the response to DNA damage, particularly DNA double-strand breaks (DSBs), which are usually repaired by error-free homologous recombination repair (HRR) [63]. Additionally, they maintain genome integrity by chromatin remodelling, and transcriptional and cell cycle regulation. Defects in *BRCA1/2* lead to activation of alternative error-prone DNA repair mechanism by nonhomologous end joining (NHEJ) [64]. Consequently, cells have higher mutational burden, which in time leads to neoplastic transformation. *BRCA1/2*-associated mutational signature is commonly accompanied by small deletions with overlapping microhomology at their boundaries (specified as ID6) and large numbers of rearrangements, such as tandem duplications (short tandem duplications (1–10 kb)) and (longer tandem duplications (>100 kb)) as well as indels (deletions (1–10 kb)) [19][65][66]. SBS3 is very common in breast, ovarian, and pancreatic cancer with mutations in *BRCA1/2* genes; however, it is also present to a smaller extent in other cancer types with no mutations in *BRCA1/2* or other genes involved in double-strand break repair [2].

Alexandrov et al. analysed the data from 372 whole-exome and 100 whole genome sequences from gastric cancer patients and showed that SBS3 is present in 7.3% of the examined whole-exome and in 12.0% of the examined whole-genome gastric samples [20]. Samples with SBS3 had statistically significant elevation in large indels with overlapping microhomologies and structural rearrangements, and were enriched in the intestinal type by Lauren's classification. Interestingly, although some gastric samples harboured *BRCA1* or *BRCA2* somatic mutations, they were not enriched with SBS3, suggesting that these mutations may actually derive from defective MMR.

The researchers suggested that gastric cancer patients with SBS3 might benefit from platinum therapy or PARP inhibitor treatment since this approach was beneficial in breast, ovarian, prostate, primary peritoneal, and pancreatic cancers with defective DSB repair due to *BRCA1/2* mutations, HR mutations, or high genomic instability score [20]. Platinum–DNA adducts are genotoxic and *BRCA1/2*-defective neoplastic cells undergo apoptosis as DNA damage accumulates and cannot be efficiently repaired. PARP inhibitors mediate selective cytotoxicity as they introduce even more DSBs in tumour cells with deficient HRR by inhibiting PARP1, responsible for single-strand break repair. When these remain unrepaired, DSBs are formed during DNA replication. It has been established that breast and ovarian cancers with defective *BRCA1/2* benefit from treatment with a range of PARP inhibitors [21][22]. In addition, a study on WGS data from pancreatic cancer samples revealed that patients with SBS3 responded to platinum therapy [24]. Recently, this approach has also been proven successful for small cell lung cancer [23].

There is an ongoing debate about non-*BRCA*-mutant tumours, which exhibit BRCAness and HRR deficiency, and their sensitivity to PARP inhibitors [22]. Patient stratification based on the presence of SBS3 mutational signature and accompanying indels and rearrangements as a biomarker would perhaps be more effective and would provide additional information to *BRCA1/2* mutational/expression status. Further large studies that would examine the benefit of platinum and PARP inhibitor treatments in gastric cancer patients with SBS3 in addition to other biomarkers are necessary to confirm this association.

4.2. DNA Mismatch Repair Deficiency

SBS6, SBS14, SBS15, SBS20, SBS21, SBS26, and SBS44 were strongly associated with deficient MMR and microsatellite instability [2]. The common characteristics of these mutational signatures are presented in **Table 2**. Interestingly, the majority of patients with gastric cancer were characterised by SBS15 (60/486) and SBS20 (56/486), followed by SBS44 (17/486), SBS26 (11/486), SBS6 (9/486), and SBS21 (5/486). SBS14, which was associated with *POLE* mutations in addition to MMR deficiency, was found in only one gastric cancer sample (1/486). All mutational signatures were strongly associated with ID1 and ID2 [3]. The SBS profiles and the additional data on the transcriptional and replicational strand symmetry could either be the consequence of sequencing artefacts or it could reflect chemotherapy or carcinogen exposure, or could also indicate the underlying biological mechanisms leading to specific mutation profile. Therefore, distinct mechanisms could contribute to the differences in base substitutions. In particular, SBS20 was conjoined with mutations in *POLD1* and was characterised mainly by C > A substitutions in CpCpT and CpCpC and less by C > T substitutions (discussed in more detail in the next section). This is in contrast with SBS15, which is distinguished predominantly by C > T substitutions in the GpCpN context. Next, indications that some substitutions are asymmetrically distributed between leading and lagging strand and between transcribed and untranscribed strand could lead future research to identify aberrations in cell processes, implicated in this specific mutator phenotype [2][3]. Approximately 22% of examined tumours in the TCGA study and ACRG study were classified as microsatellite unstable (MSI) tumours, displaying numerous mutations in receptor tyrosine kinase (RTK) and RAS signalling pathways (*EGFR*, *ERBB2*, *ERBB3*, *JAK2/PD-L1/2*, *FGFR2*, *MET*, *VEGFA*, *KRAS/NRAS*, *RASA1*) and in the PI(3)-kinase pathway (*PIK3CA* and *PIK3R1*) and frequent truncating mutations in *PIK3R1* and *PTEN* [35][62]. Therefore, activation of different cell processes, such as promoting cell division and/or transcription, could in combination with other accumulated aberrations result in the observed asymmetry of mutational signatures on the DNA strands.

Table 2. Characteristics of MMR-associated mutational signatures.

SBS	Base Substitution Subtype ¹	Associated ID	Transcriptional (T) and Replicational (R) Strand Asymmetry in Stomach Cancer
SBS6	C > T (ACA, ACG, CCG, GCN)	ID1, ID2	T:/ R:/
SBS14	C > A (ACT, CCT, GCT, TCT)	ID1, ID2	T:/ R:/
SBS15	C > A (CCA) C > T (ACG, GCN)	ID1, ID2	T:/ R:/
SBS20 ²	C > A (CCC, CCT) C > T (ACA, GCA, GCC)	ID1, ID2	T: no significance R: lagging, C > A
SBS21	T > C (GTN, TTA, TTC, TTT)	ID1, ID2	T: no significance R: lagging strand, T > C
SBS26	T > C (ATA, ATC, CTA, CTG, CTT, GTA,	ID1, ID2	T: untranscribed strand, T > C R: lagging strand, T > C

SBS	Base Substitution Subtype ¹	Associated ID	Transcriptional (T) and Replication (R) Strand Asymmetry in Stomach Cancer
	GTG, GTT, TTT)		
SBS44	C > A (CCT) C > T (ACA, GCN)	ID1, ID2	T: no significance R: lagging strand, C > A; leading strand, C > T and T > A

The main mechanism contributing to MSI phenotype in sporadic gastric cancers is hypermethylation of *MLH1* promoter [35]. MSI phenotype in gastric cancer has favourable prognosis, particularly for women; however, analysis of several clinical trials (MAGIC, CLASSIC, ARTIST, and ITACA-S) indicated that high MSI status (MSI-high) was negatively associated with the efficacy of adjuvant or neoadjuvant chemotherapy in gastric cancer patients [35][40]. Interestingly, some of the MSI tumours also harboured frequent common alterations in major histocompatibility complex class I (*MHC I*) genes, suggesting that alterations in *MHC I* genes, which play a crucial role in antigen presentation, could contribute to tumour evasion from the immune response. It has been postulated that this subset of patients could benefit from immune-based therapies [35][67]. Several studies of different cancer types showed that high tumour mutational burden, MSI, and PD-1/PD-L1 immunohistochemical status in tumour tissues could identify patients who would respond to immune checkpoint inhibitors (ICIs). ICIs have emerged as a promising new treatment option for gastric cancer patients as well, improving the 12-month and 18-month overall survival (RR, 1.79 $p = 0.013$; 2.20 $p = 0.011$) in patients with advanced and metastatic stomach adenocarcinomas [29][30][31].

Immunotherapy, targeting immune checkpoints, has been approved for MMR-deficient and MSI gastric tumours; however, conflicting reports regarding the effectiveness of this therapy have been observed, ranging from only 10–20% or up to 60% of gastric cancer patients responding favourably to ICIs [32][33][34]. In addition, a subset of patients showed worse prognosis after treatment [33][34]. Research efforts, focused on finding additional, more precise biomarkers that would better predict response to ICIs in addition to MSI/PD-1/PD-L1 status, have culminated in several new findings, such as the analysis of mutational burden in plasma-circulating tumour DNA (ctDNA), immune prognostic signatures, evaluation of the composition and ratios of immune cell subtypes, and so on [7][32][38][68][69][70]. Analyses of mutational signatures associated with deficient MMR and/or MSI could provide a deeper level in understanding the mechanisms of heterogeneity found among MSI-positive gastric cancers.

***POLD1/POLE* Mutations and MSI Phenotype**

The SBS20 mutational signature, presented in COSMIC, was correlated with concurrent *POLD1* (DNA polymerase delta 1) mutations and defective DNA mismatch repair [3]. Interestingly, this is in contrast with the S4 signature, which was described previously and is similar to SBS20; however, mutations in *POLD1* were not characteristic for S4 [27]. SBS20 was associated with ID1 and ID2 and often found in the same samples as other microsatellite instability (MSI)-associated signatures SBS6, SBS14, SBS15, SBS21, SBS26, and SBS44 [3]. SBS20 was found using WES and WGS in 11.5% (56/486) samples of patients with gastric cancer [2]. *POLD1* is a catalytic subunit of the DNA polymerase delta and possesses both 3'-5' exonuclease activity and polymerase activity. It has a crucial role in high-fidelity genome replication, acting as major processive polymerase in lagging strand synthesis and probably minor polymerase in leading strand synthesis, assuming this role particularly during replication fork stress,

and in DNA resynthesis during DNA repair mechanisms, such as base excision repair, nucleotide excision repair, and homologous recombination repair [71][72][73][66]. Its damaging mutations affect genome integrity and stability and lead to accumulation of alterations in DNA, and tumour formation. The information on *POLD1*-associated mutational signature (SBS20) could therefore, in addition to other biomarkers such as MSI-high, indel-high, T-cell inflamed score-high, and PD-L1 positivity, prove valuable for identifying gastric cancer responders to ICIs [74][75][76][77][78].

A recent study that analysed mutations in *POLD* and *POLE* from the cancer patient cohort in cBioPortal observed high levels of *POLE/POLD1* mutations in several cancer types, including in 185 out of 2586 (7.2%) esophagogastric cancer samples [36]. They showed that cancer patients with *POLE/POLD1* mutations showed significantly longer overall survival in comparison to the wild-type population (34 vs. 18 months, $p = 0.04$), and that in addition to cancer type and MSI status, *POLE/POLD1* mutations were an independent risk factor for identification of patients who would benefit from ICI treatment. Similar results were observed in other studies for endometrial cancer, nonsmall cell lung cancer, and colorectal cancer, which also showed that patients with *POLD1* and *POLE* mutations might benefit from immunotherapy, more specifically ICIs, including antibodies targeting PD-1, PD-L1, or CTLA4 [79][80][81]. It should be noted that, interestingly, the number of cases with *POLE* mutations in cohorts studied in COSMIC and those in study by Buttura et al., which included 486 and 787 gastric cases, respectively, was low [3][28]. Therefore, further studies are needed to thoroughly evaluate the *POLE* mutational status in gastric cancer patients.

Mutational Status of *ARID1A* and MSI Phenotype

The most unfavourable outcome in patients treated with ICIs is rapid tumour growth (hyperprogressive disease, HPD), which can occur in 10% of gastric cancer patients [34]. A recent large study indicated that *ARID1A* mutational status could be predictive biomarker for indication of favourable response to 5-FU chemotherapy combined with PD-1 inhibitors in patients with high tumour mutational burden and MSI status [37]. *ARID1A* is a tumour suppressor, involved in transcription by remodelling chromatin in an ATP-dependent manner and was mutated in approximately 25% gastric cancer patients. Nonfunctional *ARID1A* was associated with the deficiency in DNA damage response, base excision repair (BER), nucleotide excision repair (NER), MMR, HRR, overexpression of cell cycle genes and PD-L1 pathway genes, *POLE* mutations, and overrepresentation of immune cell subtypes in the tumour microenvironment [37]. Most substitutions in *ARID1A* are C > T, which are also characteristic for MMR-deficient mutational signatures SBS6, SBS15, SBS20, and SBS44, together with HRR-associated SBS3 and BER-associated SBS30 [3]. Furthermore, analysis of immune-signature revealed that tumour environments of *ARID1A*-deficient tumours were infiltrated with specific subtypes of immune cells, such as subsets of CD4+, CD8+ T cells and NK cells, type 17 T-helper cells (Th17), and so on. Abundant Th17 infiltration was positively associated with better overall survival and chemosensitivity [37]. The authors also established that treatment with PD-L1 inhibitors could upregulate the Th17 population in tumours, which could serve as a priming therapy for establishing chemotherapy susceptibility. This strategy, if proved to be effective in further studies, could be beneficial for MSI-inoperable tumours. In addition, since *ARID1A*-mutated tumours exhibited high MSI and tumour mutation burden, the authors speculated that targeted therapy against components of DNA damage response, such as ATR or

PARP, could be used in line with ICIs. It should be noted that other studies have also investigated the immune cell subsets, and particularly in the context of CD4+ and CD8+ T cells and PD-L1 expression status, there were conflicting results [38][39].

Research and clinical trials have shown that there is an unmet need for additional reliable biomarker(s) for the selection of gastric cancer patients who would benefit from ICIs. Currently, three FDA-approved biomarkers, indicative for ICIs treatment in cancers, are PD-L1 positivity by immunohistochemistry, MSI status, and tumour mutational burden, although the efficacy of the latter two has been challenged in several studies, as mentioned above.

4.3. Double Strand Break Repair by Nonhomologous End Joining

ID6 and ID8 were associated with defects in NHEJ, a mechanism responsible for the repair of double-strand breaks (DSBs) [2]. NHEJ directly joins two broken DNA strands by a template-independent mechanism and is active throughout the cell cycle, whereas HRR, which also repairs DSBs through a homology-dependent mechanism, is only active during the S and G2 phases [82]. DSBs are common in physiological cellular processes such as meiosis, class switch recombination, and V(D)J recombination [83]. Exogenous damaging factors, such as ionising radiation, ROS, and certain chemical compounds are also a source of DSBs. Misrepaired DSBs lead to chromosomal translocations and aberrations causing CIN, which may result in oncogenic transformation or cell death [84]. CIN is a hallmark in 49.8% gastric cancer cases, according to the TCGA study [35]. In addition to NHEJ, several other factors, such as impaired chromosome cohesion, spindle assembly, kinetochore–microtubule attachment and cell-cycle regulation contribute to CIN [85]. Nevertheless, defects and overexpression of key NHEJ proteins such as KUs, DNA-PKcs, DNA ligase IV, and XRCC4 have been reported in many cancers, including gastric cancer [40]. More importantly, defective, hyperactivated, or underactivated DNA repair could significantly affect treatment response, particularly resistance to therapy and survival outcomes, as NHEJ has a central role in radio- and chemotherapy resistance through hyperactivation of the involved proteins. Patients who showed therapy resistance or relapse and displayed overactivated NHEJ might benefit from NHEJ inhibitors. Several such inhibitors are being studied and are reviewed in a publication by Sishc and Davis [86]. For example, wortmannin, a DNA-PKcs and PI3K inhibitor, has radio-sensitising effects and was also shown to intensify the ionisation radiation effect in cancer cells [41]. LY294002, a quercetin derivative, has similar properties; however, in some studies it showed significant off-target activity [42]. NU7026 appears to be a promising compound due to its selectivity against DNA-PKcs and potency and the ability to enhance the effect of IR and etoposide [43]. Several DNA ligase IV inhibitors have also been studied, with SCR7 being the most potent one [41]. The clinical efficacy of NHEJ inhibition is under debate as this repair pathway prevents the genomic instability in normal cells through the repair of DSBs; however, NHEJ also drives carcinogenesis in cancerous or perhaps precancerous cells due to mutation accumulation in key protein members or due to the impairment of other DSBs repair pathways. Therefore, targeted cell delivery of NHEJ inhibitors should be considered in the future.

5. Reactive Oxygen Species

SBS18 is associated with damage caused by ROS [2][44]. Exo- or endogenously induced ROS generate nucleotide base damage which, if not repaired properly, can result in mutation. These include pollutants, radiation, smoking, drugs, xenobiotics, and food components. In relation to gastric cancer, a considerable amount of ROS is formed during *H. pylori* infection, mainly by neutrophils to kill the bacteria [87]. Endogenous sources of ROS are metabolic pathways in cellular organelles with high oxygen consumption, such as mitochondria, peroxisomes, and endoplasmic reticulum.

One of the most common ROS-induced base modifications, 8-Oxoguanine (8-oxoG), can mispair with adenine during DNA replication, causing G:C > T:A transversion mutations. It has been estimated that approximately 2400 of 8-oxoG sites per cell can be found in cells without additional exposure to exogenous carcinogens [88]. OGG1 and MUTYH enzymes are DNA glycosylases that remove 8-oxoG from 8-oxoG:C pairs and the mispaired adenine from the daughter strand, respectively [89]. Germline biallelic *MUTYH* mutations can result in *MUTYH*-associated colorectal polyposis and predisposition to colorectal cancer [90]. Carriers of bi- and monoallelic *MUTYH* mutations are also at higher risk for the development of gastric polyps and gastric cancer [44][47][48][49]. WES of *MUTYH*-associated polyposis in colorectal cancer revealed a distinct mutational pattern, SBS36 with frequent 8-oxoG:A mismatches in cancer driver genes (*APC*, *KRAS*, *PIK3CA*, *FAT4*, *TP53*, *FAT1*, *AMER1*, *KDM6A*, *SMAD4*, *SMAD2*) [91]. Although signature SBS36 was not identified in gastric cancer samples in a study published by Alexander et al. in 2020, signature SBS18, present in gastric cancer samples, has a similar profile (Pearson correlation coefficient of 0.77) and possibly indicates a similar underlying mechanism, *MUTYH* mutations and defective base excision repair, which needs further validation [2][91]. In nonsporadic colorectal cancer, defective *MUTYH* results in a relatively modest mutator phenotype; nevertheless, it is an important risk factor for colorectal cancer [92].

Mutations in *MUTYH*-associated polyposis may result in excessive neoepitopes, which are able to trigger an immune response. One such case report has been published, investigating a colorectal cancer patient, who carried two inactive *MUTYH* alleles and did not respond well to chemotherapy. However, this patient responded to the administration of PD-1 inhibitor (nivolumab), which resulted in the reduction in tumour size and metabolic activity [45]. Mouw et al. also suggested that tumours, driven by *MUTYH* mutations, might be responsive to PD-1/PD-L1 inhibitors [93]. *MUTYH* also plays a role in the activation and phosphorylation of *CHEK1* [94]. This tumour suppressor is involved in the homologous recombination repair pathway [95]. Deleterious mutations in *CHEK1* have been associated with responsiveness to PARP-inhibitor olaparib and longer progression-free survival, together with overall survival and a longer period free from pain progression [46]. Therefore, patients with sporadic gastric cancer with SBS18 could be further evaluated for *MUTYH* mutational status or base excision and homologous repair deficiency to assess responsiveness to targeted therapies with inhibitors. It could also be worth considering including SBS18 status in surveillance programs for high-risk patients (who carry *MUTYH* mutations). It is noteworthy to mention that there is an increased risk in the development of stomach polyps and stomach cancer in individuals with hereditary *MUTYH*-associated polyposis [96], who predominantly develop colorectal polyps and colorectal cancer; therefore, SBS18 signature of stomach epithelia could indicate malignant changes in stomach.

6. *Helicobacter Pylori* Infection

Individuals infected with *H. pylori* have significantly increased risk for gastric cancer in comparison with noninfected individuals [97]. *H. pylori* causes chronic gastric epithelial inflammation, which leads to tissue remodelling and neoplasm formation. CagA and VacA bacterial cytotoxins trigger the production of inflammatory cytokines in cells [98]. Sustained expression of CagA in gastric epithelial cells resulted in SBS3 and ID6 mutational signatures, which have been previously associated with BRCAness [50]. Interestingly, they were found in intestinal gastric cancer samples, despite the lack of *BRCA1/2* mutations [2][20]. These results suggested that CagA provokes transient BRCAness in host cells, thus causing genome instability [99]. So even after eradication of *H. pylori* in a patient, malignant transformation continues [100]. PARP inhibitors are not an option for the treatment of these tumours characterised by BRCAness, since the activity of BRCA1 is fully restored [101][102]. Additionally, whole exome sequencing of gastric cancer tissues from five individuals infected with *H. pylori* revealed enrichment in C:G > T:A transition variants, which were notably more prevalent in MSI tumours [103]. Analysis of the sequence context (GpCpNp; N any base) revealed that AID deaminase activity could presumably be involved in this mutational pattern. Additionally, this signature was also present in adjacent infected normal tissue. AID activity is strongly correlated with gastrointestinal chronic infections and tumourigenesis [51]. More experiments on infected gastric cell lines and animal models are necessary to study mutational signatures related to *H. pylori* infection. Perhaps such mutational signatures would prove useful as an early onset signature for screening and surveillance of patients at high risk for gastric cancer.

7. Mutational Signatures of Unknown Origin

The underlying mechanisms causing around half of the catalogued mutational signatures remain unknown. In gastric cancer, these are currently the following: SBS5, SBS40, SBS17a and SBS17b, SBS28, DBS4, ID5, and ID14 [2]. SBS5, SBS40, and ID5 appear to be more or less present in all cancer types. SBS5 has previously been attributed to a continuous mutational process in normal tissues, similar to SBS1, which has been ascribed to aging [6]. SBS5 origin is not well understood, but it was proposed to be associated with continuous exposure to ubiquitous metabolic mutagen as it was more prominent in kidney cancers originating from metabolite-absorbing kidney proximal tubular epithelium in comparison to those originating from cells of the cortical-collecting duct [6][104]. However, it was also identified in cell clones when analysing mutational signatures in cancer cell lines, and it continued to exist in daughter cells, even when no exogenous mutagen was present, implying that an unknown endogenous mechanism could be responsible for this phenomenon [14]. Notably, it is increased in bladder cancer samples with mutations in *ERCC2*, a base excision repair protein. Several *ERCC2* variants have been correlated to gastric cancer risk, and *ERCC2* expression levels may serve as a marker for chemoresistance in colorectal cancer [105][106][107]. Nevertheless, there have been implications that SBS5 may be contaminated with SBS16 with unknown origin [3], so further refinements are necessary to confirm the exact aetiology of SBS5 and to evaluate its potential relation to *ERCC2* in gastric cancer. DBS4 and ID5 (and SBS40 in certain cancer types) also display a clocklike feature and are correlated to age at cancer diagnosis, implying they may be endogenously generated signatures.

Significant correlation was reported between the rate of somatic retrotransposition and SBS17a/b, suggesting a potential association between these signatures and APOBEC activity [14]. Interestingly, these signatures were present in stock cell lines but did not continue to be acquired in vitro even though the parent cells were overwhelmed with these signatures, arguing that a certain exogenous factor could be responsible for the underlying mechanism. SBS28 appears to be found in a limited group of cancer types and is associated with SBS10a and SBS10b, which are likely related to polymerase epsilon exonuclease domain mutations (*POLE*). Interestingly, SBS28 contributes to very high numbers of mutations when found in samples with SBS10a/b, even though the mutation numbers are much lower in samples lacking SBS10a/b [3]. It is worth mentioning that ID14, in addition to gastric cancer, was found only in colorectal and oesophagus cancer, which may point to a molecular mechanism common to all three types of cancer [2]. This signature characteristically generates large numbers of indels with no apparent evidence of defective MMR [3].

8. Conclusion

In the future, it will be important to understand signature penetrance and integrate genomic, epigenomic, transcriptomic and molecular markers for a more accurate cancer subtyping with defined hallmarks. These integrated signature profiles could offer predictive diagnostic and prognostic values in order to develop necessary frameworks to design successful patient-tailored treatment strategies. Understanding the genomic background of gastric cancer would together with molecular and clinical data help with patient stratification and selection of the most appropriate targeted therapy.

References

1. Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Peter J. Campbell; Michael R. Stratton; Deciphering Signatures of Mutational Processes Operative in Human Cancer. *Cell Rep.* **2013**, *3*, 246-259.
2. Ludmil B. Alexandrov; Jaegil Kim; Nicholas J. Haradhvala; Mi Ni Huang; Alvin Wei Tian Ng; Yang Wu; Arnoud Boot; Kyle R. Covington; Dmitry A. Gordenin; Erik N. Bergstrom; et al. S. M. Ashiqul IslamNuria Lopez-BigasLeszek J. KlimczakSandro MorganellaRadhakrishnan SabarinathanDavid A. WheelerVille MustonenKin ChanAkihiro FujimotoGad Getzlñigo MartincorenaHidewaki NakagawaPaz PolakSteven A. RobertsSteven G. RozenNatalie SainiTatsuhiro ShibataYuichi ShiraishiMichael R. StrattonBin Tean TehIgnacio Vázquez-GarcíaFouad YousifWillie YuLauri A. AaltonenFederico AbascalAdam AbeshouseHiroyuki AburataniDavid J. AdamsNishant AgrawalKeun Soo AhnSung-Min AhnHiroshi AikataRehan AkbaniKadir C. AkdemirHikmat Al-AhmadiSultan T. Al-SedairyFatima Al-ShahrourMalik AlawiMonique AlbertKenneth AldapeAdrian AllyKathryn AlsopEva G. AlvarezFernanda AmarySamirkumar B. AminBrice AminouOle AmmerpohlMatthew J. AndersonYeng AngDavide AntonelloPavana AnurSamuel AparicioElizabeth L. AppelbaumYasuhiro AraiAxel AretzKoji ArihiroShun-Ichi AriizumiJoshua ArmeniaLaurent

ArnouldSylvia AsaYassen AssenovGurnit AtwalSietse AukemaJ. Todd AumanMiriam R. R. AurePhilip AwadallaMarta AymerichGary D. BaderAdrian Baez-OrtegaMatthew H. BaileyPeter J. BaileyMiruna BalasundaramSaianand BaluPratiti BandopadhayayRosamonde E. BanksStefano BarbiAndrew P. BarbourJonathan BarenboimJill Barnholtz-SloanHugh BarrElisabet BarreraJohn BartlettJavier BartolomeClaudio BassiOliver F. BatheDaniel BaumhoerPrashant BaviStephen B. BaylinWojciech BazantDuncan BeardsmoreTimothy A. BeckSam BehjatiAndreas BehrenBeifang NiuCindy BellSergi BeltranChristopher BenzAndrew BerchuckAnke K. BergmannBenjamin P. BermanDaniel M. BerneyStephan H. BernhartRameen BeroukhimMario BerriosSamantha BersaniJohanna BertlMiguel BetancourtVinayak BhandariShriram G. BhosleAndrew V. BiankinMatthias BiegDarell BignerHans BinderEwan BirneyMichael BirrerNidhan K. BiswasBodil BjerkehagenTom BodenheimerLori BoiceGiada BonizzatoJohann S. De BonoMoiz S. BootwallaAke BorgArndt BorkhardtKeith A. BoroevichIvan BorozanChristoph BorstMarcus BosenbergMattia BosioJacqueline BoulwoodGuillaume BourquePaul C. BoutrosG. Steven BovaDavid T. BowenReanne BowlbyDavid D. L. BowtellSandrine BoyaultRich BoyceJeffrey BoydAlvis BrazmaPaul BrennanDaniel S. BrewerArie B. BrinkmanRobert G. BristowRussell R. BroaddusJane E. BrockMalcolm BrockAnnegien BroeksAngela N. BrooksDenise BrooksBenedikt BrorsSøren BrunakTimothy J. C. BruxnerAlicia L. BruzosAlex BuchananIvo BuchhalterChristiane BuchholzSusan BullmanHazel BurkeBirgit BurkhardtKathleen H. BurnsJohn BusanovichCarlos D. BustamanteAdam P. ButlerAtul J. ButteNiall J. ByrneAnne-Lise Børresen-DaleSamantha J. Caesar-JohnsonAndy CafferkeyDeclan CahillClaudia CalabreseCarlos CaldasFabien CalvoNiedzica CamachoPeter J. CampbellElias CampoCinzia CantùShaolong CaoThomas E. CareyJoana Carlevaro-FitaRebecca CarlsenIvana CataldoMario CazzolaJonathan CebonRobert CerfolioDianne E. ChadwickDimple ChakravartyDon ChalmersCalvin Wing Yiu ChanMichelle Chan-Seng-YueVishal S. ChandanDavid K. ChangStephen J. ChanockLorraine A. ChantrillAurélien ChateignerNilanjan ChatterjeeKazuaki ChayamaHsiao-Wei ChenJieming ChenKen ChenYiwen ChenZhaohong ChenAndrew D. CherniackJeremy ChienYoke-Eng ChiewSuet-Feung ChinJuok ChoSunghoon ChoJung Kyoong ChoiWan ChoiChristine ChomienneZechen ChongSu Pin ChooAngela ChouAngelika N. ChristElizabeth L. ChristieEric ChuahCarrie CibulskisKristian CibulskisSara CingarliniPeter ClaphamAlexander ClaviezSean ClearyNicole CloonanMarek CmeroColin C. CollinsAshton A. ConnorSusanna L. CookeColin S. CooperLeslie CopeVincenzo CorboMatthew G. CordesStephen M. CordnerIsidro Cortés-CirianoPrue A. CowinBrian CraftDavid CraftChad J. CreightonYupeng CunErin CurleyIoana CutcutacheKarolina CzajkaBogdan CzerniakRebecca A. DaggLudmila DanilovaMaria Vittoria DaviNatalie R. DavidsonHelen DaviesIan J. DavisBrandi N. Davis-DusenberryKevin J. DawsonFrancisco M. De La VegaRicardo De Paoli-IseppiTimothy DefreitasAngelo P. Dei TosOlivier DelaneauJohn A. DemchokJonas DemeulemeesterGerman M. DemidovDeniz DemircioğluNening M. DennisRobert E. DenrocheStefan C. DentroNikita DesaiVikram DeshpandeAmit G. DeshwarChristine DesmedtJordi Deu-PonsNoreen DhallaNeesha C. DhaniPriyanka DhingraRajiv DhirAnthony DiBiaseKlev DiamantiLi DingShuai DingHuy Q. DinhLuc

DirixHarshaVardhan DoddapaneniNilgun DonmezMichelle T. DowRonny DrapkinOliver DrechselRuben M. DrewsSerge Serge Tim DudderidgeAna Dueso-BarrosoAndrew J. DunfordMichael DunnLewis Jonathan DursiFraser R. DuthieKen Dutton-RegesterJenna EaglesDouglas F. EastonStuart EdmondsPaul A. EdwardsSandra E. EdwardsRosalind A. EelesAnna EhingerJuergen EilsRoland EilsAdel El-NaggarMatthew EldridgeKyle EllrottSerap ErkekGeorgia EscaramisShadrielle M. G. EspirituXavier EstivillDariush EtemadmoghadamJorunn E. EyfjordBishoy M. FaltasDaiming FanYu FanWilliam C. FaquinClaudiu FarcasMatteo FassanAquila FatimaFrancesco FaveroNodirjon FayzullaevIna FelauSian FeredayMartin L. FergusonVincent FerrettiLars FeuerbachMatthew A. FieldJ. Lynn FinkGaetano FinocchiaroCyril FisherMatthew W. FittallAnna FitzgeraldRebecca C. FitzgeraldAdrienne M. FlanaganNeil E. FleshnerPaul FlicekJohn A. FoekensKwun M. FongNuno A. FonsecaChristopher S. FosterNatalie S. FoxMichael FraserScott FrazerMilana Frenkel-MorgensternWilliam FriedmanJoan FrigolaCatrina C. FronickMasashi FujitaMasashi FukayamaLucinda A. FultonRobert S. FultonMayuko FurutaP. Andrew FutrealAnja FüllgrabeStacey B. GabrielSteven GallingerCarlo Gambacorti-PasseriniJianjiong GaoShengjie GaoLevi GarrawayØystein GarredErik GarrisonDale W. GarsedNils GehlenborgJosep L. L. GelpiJoshy GeorgeDaniela S. GerhardClarissa GerhauserJeffrey E. GershenwaldMark GersteinMoritz GerstungMohammed GhoriRonald GhosseinNasra H. GiamaRichard A. GibbsBob GibsonAnthony J. GillPevlender GillDilip D. GiriDominik GlodzikVincent J. GnanapragasamMaria Elisabeth GoeblerMary J. GoldmanCarmen GomezSantiago GonzalezAbel Gonzalez-PerezJames GossageKunihito GotohRamaswamy GovindanDorthe GrabauJanet S. GrahamRobert C. GrantAnthony R. GreenEric GreenLiliana GregerNicola GrehanSonia GrimaldiSean M. GrimmondRobert L. GrossmanAdam GrundhoffGunes GundemQianyun GuoManaswi GuptaShailja Guptalvo G. GutMarta GutJonathan GökeGavin HaAndrea HaakeDavid HaanSiegfried HaasKerstin HaaseJames E. HaberNina HabermannFaraz HachSyed HaiderNatsuko HamaFreddie C. HamdyAnne HamiltonMark P. HamiltonLeng HanGeorge B. HannaMartin HansmannOlivier Harismendylvon HarliwongArif O. HarmanciEoghan HarringtonTakanori HasegawaDavid HausslerSteve HawkinsShinya HayamiShuto HayashiD. Neil HayesStephen J. HayesNicholas K. HaywardSteven HazellYao HeAllison P. HeathSimon C. HeathDavid HedleyApurva M. HegdeDavid I. HeimanMichael C. HeinoldZachary HeinsLawrence E. HeislerEva Hellstrom-LindbergMohamed HelmySeong Gu HeoAustin J. HepperlaJosé María Heredia-GenestarCarl HerrmannPeter HerseyJulian M. HessHolmfridur HilmarsdottirJonathan HintonSatoshi HiranoNobuyoshi HiraokaKatherine A. HoadleyAsger HobolthErmin HodzicJessica I. HoellSteve HoffmannOliver HofmannAndrea HolbrookAliaksei Z. HolikMichael A. HollingsworthOliver HolmesRobert A. HoltChen HongEun Pyo HongJongwhi H. HongGerrit K. HooijerHenrik HornshøjFumie HosodaYong HouVolker HovestadtWilliam HowatAlan P. HoyleRalph H. HrubanJianhong HuTaobo HuXing HuaKuan-Lin HuangMei HuangVincent HuangYi HuangWolfgang HuberThomas J. HudsonMichael HummelJillian A. HungDavid HuntsmanTed R. HuppJason HuseMatthew R. HuskaBarbara HutterCarolyn M. HutterDaniel HübschmannChristine

A. Iacobuzio-Donahue Charles David Imbusch Marcin Imielinski Seiya Imoto William B. Isaacs Keren Isaev Shumpei Ishikawa Murat Iskar Michael Ittmann Sinisa Ivkovic Jose M. G. Izarzugaza Jocelyne Jacquemier Valerie Jakrot Nigel B. Jamieson Gun Ho Jang Se Jin Jang Joy C. Jayaseelan Reyka Jayasinghe Stuart R. Jefferys Karine Jegalian Jennifer L. Jennings Seung-Hyup Jeon Lara Jerman Yuan Ji Wei Jiao Peter A. Johansson Amber L. Johns Jeremy Johns Rory Johnson Todd A. Johnson Clemency Jolly Yann Joly Jon G. Jonasson Corbin D. Jones David T. W. Jones Nic Jones Steven J. M. Jones Jos Jonkers Young Seok Ju Hartmut Juhl Jongsun Jung Malene Juul Randi Istrup Juul Sissel Juul Natalie Jäger Rolf Kabbe Andre Kahles Abdullah Kahraman Vera B. Kaiser Hojabr Kakavand Sangeetha Kalimuthu Christof von Kalle Koo Jeong Kang Katalin Karaszi Beth Karlan Rosa Karlić Dennis Karsch Katayoon Kasaian Karin S. Kassahn Hitoshi Katai Mamoru Kato Hiroto Katoh Yoshiiku Kawakami Jonathan D. Kay Stephen H. Kazakoff Marat D. Kazanov Maria Keays Electron Kebebew Richard F. Kefford Manolis Kellis James G. Kench Catherine J. Kennedy Jules N. A. Kerssemakers David Khoo Vincent Khoo Narong Khuntikeo Ekta Khurana Helena Kilpinen Hark Kyun Kim Hyung-Yong Kim Hyunghwan Kim Jihoon Kim Jong K. Kim Youngwook Kim Tari A. King Wolfram Klapper Kortine Kleinheinz Stian Knappskog Michael Kneba Bartha M. Knoppers Youngil Koh Jan Komorowski Daisuke Komura Mitsuhiro Komura Gu Kong Marcel Kool Jan O. Korbel Viktoriya Korchina Andrey Korshunov Michael Koscher Roelof Koster Zofia Kote-Jarai Antonios Koures Milena Kovacevic Barbara Kremeyer Helene Kretzmer Markus Kreuz Savitri Krishnamurthy Dieter Kube Kiran Kumar Pardeep Kumar Sushant Kumar Yogesh Kumar Ritika Kundra Kirsten Kübler Ralf Küppers Jesper Lagergren Phillip H. Lai Peter W. Laird Sunil R. Lakhani Christopher M. Lalansingh Emilie Lalonde Fabien C. Lamaze Adam Lambert Eric Lander Pablo Landgraf Luca Landoni Anita Langerød Andrés Lanzós Denis Larsimont Erik Larsson Mark Lathrop Loretta M. S. Lau Chris Lawerenz Rita T. Lawlor Michael S. Lawrence Alexander J. Lazar Ana Mijalkovic Lazic Xuan Le Darlene Lee Donghoon Lee Eunjung Alice Lee Hee Jin Lee Jake June-Koo Lee Jeong-Yeon Lee Juhee Lee Ming Ta Michael Lee Henry Lee-Six Kjong-Van Lehmann Hans Lehrach Dido Lenze Conrad R. Leonard Daniel A. Leongamornlert Ignaty Leshchiner Louis Letourneau Lvica Letunic Douglas A. Levine Lora Lewis Tim Ley Chang Li Constance H. Li Haiyan Irene Li Jun Li Lin Li Shantao Li Siliang Li Xiaobo Li Xiaotong Li Xinyue Li Yilong Li Han Liang Sheng-Ben Liang Peter Licher Pei Lin Ziao Lin W. M. Linehan Ole Christian Lingjærde Dongbing Liu Eric Minwei Liu Fei-Fei Fei Liu Fenglin Liu Jia Liu Xingmin Liu Julie Livingstone Dimitri Livitz Naomi Livni Lucas Lochovsky Markus Loeffler Georgina V. Long Armando Lopez-Guillermo Shaoke Lou David N. Louis Laurence B. Lovat Yiling Lu Yong-Jie Lu Youyong Lu Claudio Luchinillanca Lungu Xuemei Luo Hayley J. Luxton Andy G. Lynch Lisa Lype Cristina López Carlos López-Otín Eric Z. Ma Yussanne Ma Gaetan MacGrogan Shona MacRae Geoff Macintyre Tobias Madsen Kazuhiro Maejima Andrea Mafficini Dennis T. Maglione Arindam Maitra Partha P. Majumder Luca Malcovati Salem Malikic Giuseppe Malleo Graham J. Mann Luisa Mantovani-Löffler Kathleen Marchal Giovanni Marchegiani Elaine R. Mardis Adam A. Margolin Maximilian G. Marin Florian Markowitz Julia Markowski Jeffrey Marks Tomas Marques-Bonet Marco A. Marra Luke Marsden John W. M.

MartensSancha MartinJose I. Martin-SuberoAlexander Martinez-FundichelyYosef E. MaruvkaR. Jay MashlCharlie E. MassieThomas J. MatthewLucy MatthewsErik MayerSimon MayesMichael MayoFaridah MbabaaliKaren McCuneUltan McDermottPatrick D. McGillivrayMichael D. McLellanJohn D. McPhersonTreasa A. McPhersonSamuel R. MeierAlice MengShaowu MengAndrew MenziesNeil D. MerrettSue MersonMatthew MeyersonWilliam MeyersonPiotr A. MieczkowskiGeorge L. MihaiescuSanja MijalkovicTom MikkelsenMichele MilellaLinda MileshkinChristopher A. MillerDavid K. MillerJessica K. MillerGordon B. MillsAna MilovanovicSarah MinnerMarco MiottoGisela Mir ArnauLisa MirabelloChris MitchellThomas J. MitchellSatoru MiyanoNaoki MiyoshiShinichi MizunoFruzsina Molnár-GáborMalcolm J. MooreRichard A. MooreQuaid D. MorrisCarl MorrisonLisle E. MoseCatherine D. MoserFerran MuiñosLoris MularoniAndrew J. MungallKaren MungallElizabeth A. MusgroveDavid MutchFrancesc MuyasDonna M. MuznyAlfonso MuñozJerome MyersOla MyklebostPeter MöllerGenta NagaeAdnan M. NagrialHardeep K. Nahal-BoseHitoshi NakagamaHiromi NakamuraToru NakamuraKaoru NakanoTannistha NandiJyoti NangaliaMia NasticArcadi NavarroFabio C. P. NavarroDavid E. NealGerd NettekovenFelicity NewellSteven J. NewhouseYulia NewtonAnthony NgJonathan NicholsonDavid NicolYongzhan NieG. Petur NielsenMorten Muhlig NielsenSerena Nik-ZainalMichael S. NobleKatia NonesPaul A. NorthcottFaiyaz NottaBrian D. O'connorPeter O'donnellMaria O'donovanSarah O'mearaBrian Patrick O'neillJ. Robert O'neillDavid OcanaAngelica OchoaLayla OesperChristopher OgdenHideki OhdanKazuhiro OhiLucila Ohno-MachadoKarin A. OienAkinyemi I. OjesinaHidenori OjimaTakuji OkusakaLarsson OmbergChoon Kiat OngStephan OssowskiGerman OttB. F. Francis OuelletteChristine P'ngMarta PaczkowskaSalvatore PaiellaChawalit PairojkulMarina PajicQiang Pan-HammarströmElli PapaemmanuillIrene PapatheodorouNagarajan ParamasivamJi Wan ParkJoong-Won ParkKeunchil ParkKiejung ParkPeter J. ParkJoel S. ParkerSimon L. ParsonsHarvey PassDanielle PasternackAlessandro PastoreAnn-Marie PatchIris PauportéAntonio PeaJohn V. PearsonChandra Sekhar PedamalluJakob Skou PedersenPaolo PederzoliMartin PeiferNathan A. PennellCharles M. PerouMarc D. PerryGloria M. PetersenMyron PetoNicholas PetrelliRobert PetryszakStefan M. PfisterMark PhillipsOriol PichHilda A. PickettTodd D. PihlNischalan PillaySarah PinderMark PineseAndreia V. PinhoEsa PitkänenXavier PivotElena Piñeiro-YáñezLaura PlankoChristoph PlassTirso PonsIrinel PopescuOlga PotapovaAparna PrasadShaun R. PrestonManuel PrinzAntonia L. PritchardStephenie D. ProkopecElena ProvenzanoXose S. PuenteSonia PuigMontserrat PuiggròsSergio Pulido-TamayoGulietta M. PupoColin A. PurdieMichael C. QuinnRaquel RabionetJanet S. RaderBernhard RadlwimmerPetar RadovicBenjamin RaederKeiran M. RaineManasa RamakrishnaKamna RamakrishnanSuresh RamalingamBenjamin J. RaphaelW. Kimryn RathmellTobias RauschGuido ReifenbergerJüri ReimandJorge Reis-FilhoVictor ReuterIker Reyes-SalazarMatthew A. ReynaSheila M. ReynoldsEsther RheinbayYasser RiazalhosseiniAndrea L. RichardsonJulia RichterMatthew RingelMarkus RingnérYasushi RinoKarsten RippeJeffrey RoachLewis R. RobertsNicola D. RobertsA. Gordon RobertsonJavier Bartolomé RodriguezBernardo Rodriguez-MartinF. Germán

Rodríguez-González Michael H. A. Roehrl Marius Rohde Hirofumi Rokutan Gilles Romieu llse
Rooiman Tom Roques Daniel Rosebrock Mara Rosenberg Philip C. Rosenstiel Andreas
Rosenwald Edward W. Rowe Romina Royo Yulia Rubanova Mark A. Rubin Carlota Rubio-
Perez Vasilisa A. Rudneva Borislav C. Rusev Andrea Ruzzenente Gunnar Rätsch Veronica Y.
Sabelnykova Sara Sadeghi S. Cenk Sahinalp Mihoko Saito-Adachi Gordon Saksena Adriana
Salcedo Roberto Salgado Leonidas Salichos Richard Sallari Charles Saller Roberto Salvia Michelle
Sam Jaswinder S. Samra Francisco Sanchez-Vega Chris Sander Grant Sanders Rajiv Sarin Iman
Sarrafi Aya Sasaki-Oku Torill Sauer Guido Sauter Robyn P. M. Saw Maria Scardoni Christopher J.
Scarlett Aldo Scarpa Ghislaine Scelo Dirk Schadendorf Jacqueline E. Schein Markus B.
Schilhabel Matthias Schlesner Thorsten Schlomm Heather K. Schmidt Sarah-Jane Schramm Stefan
Schreiber Nikolaus Schultz Steven E. Schumacher Roland F. Schwarz Richard A. Scolyer David
Scott Ralph Scully Raja Seethala Ayellet V. Segre Iris Selander Colin A. Semple Yasin
Senbabaoglu Subhajit Sengupta Elisabetta Sereni Stefano Serra Dennis C. Sgroi Mark
Shackleton Nimish C. Shah Sagedeh Shahabi Catherine A. Shang Ping Shang Ofer Shapira Troy
Shelton Ciyue Shen Hui Shen Rebecca Shepherd Ruian Shi Yan Shi Yu-Jia Shah Julian Shih Eigo
Shimizu Kiyo Shimizu Seung Jun Shin Tal Shmayallya Shmulevich Solomon I. Shorser Charles
Short Raunak Shrestha Suyash S. Shringarpure Craig Shriver Shimin Shuai Nikos
Sidiropoulos Reiner Siebert Anieta M. Sieuwerts Lina Sieverling Sabina Signoretti Katarzyna O.
Sikora Michele Simbolo Ronald Simon Janae V. Simons Jared T. Simpson Peter T. Simpson Samuel
Singer Nasa Sinnott-Armstrong Payal Sipahimalani Tara J. Skelly Marcel Smid Jaclyn Smith Karen
Smith-McCune Nicholas D. Soccia Heidi J. Sofia Matthew G. Soloway Lei Song Anil K. Sood Sharmila
Sothi Christos Sotiriou Cameron M. Soulette Paul N. Span Paul T. Spellman Nicola
Sperandio Andrew J. Spillane Oliver Spiro Jonathan Spring Johan Staaf Peter F. Stadler Peter
Staib Stefan G. Stark Lucy Stebbings Ólafur Andri Stefánsson Oliver Stegle Lincoln D. Stein Alasdair
Stenhouse Chip Stewart Stephan Stilgenbauer Miranda D. Stobbe Jonathan R. Stretch Adam J.
Struck Joshua M. Stuart Henk G. Stunnenberg Hong Su Xiaoping Su Ren X. Sun Stephanie
Sungalee Hana Susak Akihiro Suzuki Fred Sweep Monika Szczepanowski Holger Sültmann Takashi
Yugawa Angela Tam David Tamborero Benita Kiat Tee Tan Donghui Tan Patrick Tan Hiroko
Tanaka Hirokazu Taniguchi Tomas J. Tanskanen Maxime Tarabichi Roy Tarnuzzer Patrick
Tarpey Morgan L. Taschuk Kenji Tatsuno Simon Tavaré Darrin F. Taylor Amaro Taylor-Weiner Jon W.
Teague Varsha Tembe Javier Temes Kevin Thai Sarah P. Thayer Nina Thiessen Gilles Thomas Sarah
Thomas Alan Thompson Alastair M. Thompson John F. F. Thompson R. Houston Thompson Heather
Thorne Leigh B. Thorne Adrian Thorogood Grace Tiao Nebojsa Tijanic Lee E. Timms Roberto
Tirabosco Marta Tojo Stefania Tommasi Christopher W. Toon Umut H. Toprak David
Torrents Giampaolo Tortora Jörg Tost Yasushi Totoki David Townend Nadia Traficantel Isabelle
Treilleux Jean-Rémi Trotta Lorenz H. P. Trümper Ming Tsao Tatsuhiko Tsunoda Jose M. C. Tubio Olga
Tucker Richard Turkington Daniel J. Turner Andrew Tutt Masaki Ueno Naoto T. Ueno Christopher
Umbricht Husen M. Umer Timothy J. Underwood Lara Urban Tomoko Urushidate Tetsuo Ushiku Liis
Uusküla-Reimand Alfonso Valencia David J. Van Den Berg Steven Van Laere Peter Van Loo Erwin

G. Van MeirGert G. Van Den EyndenTheodorus Van der KwastNaveen VasudevMiguel VazquezRavikiran VedururuUmadevi VeluvoluShankar VembuLieven P. C. VerbekePeter VermeulenClare VerrillAlain ViariDavid VicenteCaterina VicentiniK. VijayRaghavanJuris ViksnaRicardo E. VilainIzar VillasanteAnne Vincent-SalomonTapio VisakorpiDouglas VoetParesh VyasNick M. WaddellNicola WaddellClaes WadeliusLina WadiRabea WagenerJeremiah A. WalaJiayin WangLinghua WangQi WangWenyi WangYumeng WangZhining WangPaul M. WaringHans-Jörg WarnatzJonathan WarrellAnne Y. WarrenSebastian M. WaszakDavid C. WedgeDieter WeichenhanPaul WeinbergerJohn N. WeinsteinJoachim WeischenfeldtDaniel J. WeisenbergerIan WelchMichael C. WendlJohannes WernerJustin P. WhalleyHayley C. WhitakerDennis WigleMatthew D. WilkersonAshley WilliamsJames S. WilmottGavin W. WilsonJulie M. WilsonRichard K. WilsonBoris WinterhoffJeffrey A. WintersingerMaciej WiznerowiczStephan WolfBernice H. WongTina WongWinghing WongYoungchoon WooScott WoodBradly G. WoutersAdam J. WrightDerek W. WrightMark H. WrightChin-Lee WuDai-Ying WuGuanming WuJianmin WuKui WuZhenggang WuLiu XiTian XiaQian XiangXiao XiaoRui XingHeng XiongQinying XuYanxun XuHong XueShinichi YachidaSergei YakneenRui YamaguchiTakafumi N. YamaguchiMasakazu YamamotoShogo YamamotoHiroki YamaueFan YangHuanming YangJean Y. YangLixing YangShanlin YangTsun-Po YangYang Yang Xiaotong YaoMarie-Laure YasoLucy YatesChristina YauChen YeKai YeVenkata D. YellapantulaChristopher J. YoonSung-Soo YoonJun YuKaixian YuYingyan YuKe YuanYuan YuanDenis YuenChristina K. YungOlga ZaikovaJorge ZamoraMarc ZapatkaJean C. ZenklusenThorsten ZenzNikolajs ZepsCheng-Zhong ZhangFan ZhangHailei ZhangHongwei ZhangHongxin ZhangJiashan ZhangJing ZhangJunjun ZhangXuanping ZhangYan ZhangZemin ZhangZhongming ZhaoLiangtao ZhengXiuqing ZhengWanding ZhouYong ZhouBin ZhuHongtu ZhuJingchun ZhuShida ZhuLihua ZouXueqing ZouAnna DefazioNicholas van AsCarolien H. M. van DeurzenMarc J. van de VijverL. Van't VeerChristian von MeringPCAWG Mutational Signatures Working GroupPCAWG Consortium The repertoire of mutational signatures in human cancer. *Nat.* **2020**, 578, 94-101.

3. John G Tate; Sally Bamford; Harry C Jubb; Zbyslaw Sondka; David M Beare; Nidhi Bindal; Harry Boutselakis; Charlotte G Cole; Celestino Creatore; Elisabeth Dawson; et al. Peter FishBhavana HarshaCharlie HathawaySteve C JupeChai Yin KokKate NobleLaura PontingChristopher C RamshawClaire E RyeHelen E SpeedyRay StefancsikSam L ThompsonShicai WangSari WardPeter J CampbellSimon A Forbes COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res.* **2018**, 47, D941-D947.
4. Ludmil B. Alexandrov; Australian Pancreatic Cancer Genome Initiative; Serena Nik-Zainal; David C. Wedge; Samuel A. J. R. Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolò Bolli; Ake Borg; et al. Anne-Lise Børresen-DaleSandrine BoyaultBirgit BurkhardtAdam P. ButlerCarlos CaldasHelen R. DaviesChristine DesmedtRoland EilsJórunn Erla EyfjördJohn A. FoekensMel GreavesFumie HosodaBarbara HutterTomislav IlicicSandrine ImbeaudMarcin

Imielinski Natalie Jäger David T. W. Jones Stian Knappskog Marcel Kool Sunil R. Lakhani Carlos López-Otín Sancha Martin Nikhil C. Munshi Hiromi Nakamura Paul A. Northcott Marina Pajic Elli Papaemmanuil Angelo Paradiso John V. Pearson Xose S. Puente Keiran Raine Manasa Ramakrishna Andrea L. Richardson Julia Richter Philip Rosenstiel Matthias Schlesner Ton N. Schumacher Paul N. Span Jon W. Teague Yasushi Totoki Andrew N. J. Tutt Rafael Valdés-Mas Marit M. van Buuren Laura van 'T Veer Anne Vincent-Salomon Nicola Waddell Lucy R. Yates Jessica Zucman-Rossi P. Andrew Futreal Ultan McDermott Peter Lichtenberg Matthew Meyerson Sean M. Grimmond Reiner Siebert Elías Campo Tatsuhiro Shibata Stefan M. Pfister Peter J. Campbell Michael R. Stratton ICGC Breast Cancer Consortium ICGC MMML-Seq Consortium ICGC PedBrain Signatures of mutational processes in human cancer. *Nat.* **2013**, *500*, 415-421.

5. Francis Blokzijl; Joep de Ligt; Myrthe Jager; Valentina Sasselli; Sophie Roerink; Nobuo Sasaki; Meritxell Huch; Sander Boymans; Ewart Kuijk; Pjotr Prins; et al. Isaac J. Nijman; Iñigo Martíncorena; Michal Mokry; Caroline L. Wiegerinck; Sabine Middendorp; Toshiro Sato; Gerald Schwank; Edward E. S. Nieuwenhuis; Monique M. A. Verstegen; Luc J. W. van der Laan; Jeroen de Jonge; Jan N. M. Ijzermans; Robert G. Vries; Marc van de Wetering; Michael R. Stratton; Hans Clevers; Edwin Cuppen; Ruben van Boxtel. Tissue-specific mutation accumulation in human adult stem cells during life. *Nat.* **2016**, *538*, 260-264.

6. Ludmil B Alexandrov; Philip H Jones; David C Wedge; Julian E Sale; Peter J Campbell; Serena Nik-Zainal; Michael R Stratton; Clock-like mutational processes in human somatic cells. *Nat. Genet.* **2015**, *47*, 1402-1407.

7. Seung Tae Kim; Razvan Cristescu; Adam J. Bass; Kyoung-Mee Kim; Justin I. Odegaard; Kyung Kim; Xiao Qiao Liu; Xinwei Sher; Hun Jung; Mijin Lee; et al. Sujin Lee; Se Hoon Park; Joon Oh Park; Young Suk Park; Ho Yeong Lim; Hyuk Lee; Mingew Choi; Amir Ali Talasaz; Peter Soonmo Kang; Jonathan Cheng; Andrey Loboda; Jeeyun Lee; Won Ki Kang. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. *Nat. Med.* **2018**, *24*, 1449-1458.

8. Anshuman Panda; Janice M Mehnert; Kim M Hirshfield; Greg Riedlinger; Sherri Damare; Tracie Saunders; Michael Kane; Levi Sokol; Mark N Stein; Elizabeth Poplin; et al. Lorna Rodriguez-Rodriguez; Ann W Silk; Joseph Aisner; Nancy Chan; Jyoti Malhotra; Melissa Frankel; Howard L Kaufman; Siraj Ali; Jeffrey S Ross; Eileen P White; Gyan Bhanot; Shridar Ganeshan. Immune Activation and Benefit From Avelumab in EBV-Positive Gastric Cancer. *JNCI J. Natl. Cancer Inst.* **2017**, *110*, 316-320.

9. Dung T. Le; Jennifer N. Durham; Kellie N. Smith; Hao Wang; Bjarne R. Bartlett; Laveet K. Aulakh; Steve Lu; Holly Kemberling; Cara Wilt; Brandon S. Luber; et al. Fay Wong; Nilofer S. Azad; Agnieszka A. Rucki; Dan Laher; Ross Donehower; Atif Zaheer; George A. Fisher; Todd S. Crocenzi; James J. Lee; Tim F. Greten; Austin G. Duffy; Kristen K. Ciombor; Aleksandra D. Eyring; Bao H. Lam; Andrew Joe; S. Peter Kang; Matthias Holdhoff; Ludmila Danilova; Leslie Cope; Christian

MeyerShibin ZhouRichard M. GoldbergDeborah K. ArmstrongKatherine M. BeverAmanda N. FaderJanis TaubeFranck HousseauDavid SpetzlerNianqing XiaoDrew M. PardollNickolas PapadopoulosKenneth W. KinzlerJames R. EshlemanBert VogelsteinRobert A. AndersLuis A. Diaz Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Sci.* **2017**, *357*, 409-413.

10. Lulin Zhou; Zubiao Niu; Yuqi Wang; You Zheng; Yichao Zhu; Chenxi Wang; Xiaoyan Gao; Lihua Gao; Wen Zhang; Kaitai Zhang; et al. Gerry MelinoHongyan HuangXiaoning WangQiang Sun Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. *Cell Death Discov.* **2022**, *8*, 1-14.

11. Thomas M. Reid; Lawrence A. Loeb; Effect of DNA-repair enzymes on mutagenesis by oxygen free radicals. *Mutat. Res. Mol. Mech. Mutagen.* **1993**, *289*, 181-186.

12. Irina Bobrovitchaia; Renan Valieris; Rodrigo D. Drummond; Joao P. Lima; Helano C. Freitas; Thais F. Bartelli; Maria G. de Amorim; Diana N. Nunes; Emmanuel Dias-Neto; Israel T. da Silva; et al. APOBEC-mediated DNA alterations: A possible new mechanism of carcinogenesis in EBV-positive gastric cancer. *Int. J. Cancer* **2019**, *146*, 181-191.

13. Zhishan Chen; Wanqing Wen; Jiandong Bao; Krystle L. Kuhs; Qiuyin Cai; Jirong Long; Xiao-Ou Shu; Wei Zheng; Xingyi Guo; Integrative genomic analyses of APOBEC-mutational signature, expression and germline deletion of APOBEC3 genes, and immunogenicity in multiple cancer types. *BMC Med Genom.* **2019**, *12*, 1-13.

14. Mia Petljak; Ludmil B. Alexandrov; Jonathan S. Brammell; Stacey Price; David C. Wedge; Sebastian Grossmann; Kevin J. Dawson; Young Seok Ju; Francesco Iorio; Jose M.C. Tubio; et al. Ching Chiek Kohllias Georgakopoulos-SoaresBernardo Rodríguez-MartínBurçak OtluSarah O'mearaAdam P. ButlerAndrew MenziesShriram G. BhosleKeiran RaineDavid R. JonesJon W. TeagueKathryn BealCalli LatimerLaura O'neillJorge ZamoraElizabeth AndersonNikita PatelMark MaddisonBee Ling NgJennifer GrahamMathew J. GarnettUltan McDermottSerena Nik-ZainalPeter J. CampbellMichael R. Stratton Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. *Cell* **2019**, *176*, 1282-1294.e20.

15. Edward J. Fox; Lawrence A. Loeb; Lethal Mutagenesis: Targeting the Mutator Phenotype in Cancer. *Semin. Cancer Biol.* **2010**, *20*, 353-359.

16. Jeffrey M Kidd; Tera L Newman; Eray Tuzun; Rajinder Kaul; Evan E Eichler; Population Stratification of a Common APOBEC Gene Deletion Polymorphism. *PLOS Genet.* **2007**, *3*, e63.

17. Shixiang Wang; Mingming Jia; Zaoke He; Xue-Song Liu; APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. *Oncogene* **2018**, *37*, 3924-3936.

18. Amélie Boichard; Timothy V. Pham; Huwate Yeerna; Aaron Goodman; Pablo Tamayo; Scott Lippman; Garrett M. Frampton; Igor F. Tsigelny; Razelle Kurzrock; APOBEC-related mutagenesis

and neo-peptide hydrophobicity: implications for response to immunotherapy. *Oncol Immunology* **2018**, *8*, 1550341.

19. Serena Nik-Zainal; Ludmil B. Alexandrov; David C. Wedge; Peter Van Loo; Christopher D. Greenman; Keiran Raine; David Jones; Jonathan Hinton; John Marshall; Lucy A. Stebbings; et al. Andrew MenziesSancha MartinKenric LeungLina ChenCatherine LeroyManasa RamakrishnaRichard RanceKing Wai LauLaura J. Mudielgnacio VarelaDavid J. McBrideGraham R. BignellSusanna L. CookeAdam ShlienJohn Gamblelan WhitmoreMark MaddisonPatrick S. TarpeyHelen R. DaviesElli PapaemmanuilPhilip J. StephensStuart McLarenAdam P. ButlerJon W. TeagueGöran JönssonJudy E. GarberDaniel SilverPenelope MironAquila FatimaSandrine BoyaultAnita LangerødAndrew TuttJohn W.M. MartensSamuel A.J.R. AparicioÅke BorgAnne Vincent SalomonGilles ThomasAnne-Lise Børresen-DaleAndrea L. RichardsonMichael S. NeubergerP. Andrew FutrealPeter J. CampbellMichael R. Stratton Mutational Processes Molding the Genomes of 21 Breast Cancers. *Cell* **2012**, *149*, 979-993.

20. Ludmil B. Alexandrov; Serena Nik-Zainal; Hoi Cheong Siu; Suet Yi Leung; Michael R Stratton; A mutational signature in gastric cancer suggests therapeutic strategies. *Nat. Commun.* **2015**, *6*, 8683.

21. J. A. Ledermann; PARP inhibitors in ovarian cancer. *Ann. Oncol.* **2016**, *27*, i40-i44.

22. Man Yee T. Keung; Yanyuan Wu; Jaydutt V. Vadgama; PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in Breast Cancers. *J. Clin. Med.* **2019**, *8*, 435.

23. M. Catherine Pietanza; Saiama N. Waqar; Lee M. Krug; Afshin Dowlati; Christine L. Hann; Alberto Chiappori; Taofeek K. Owonikoko; Kaitlin M. Woo; Robert J. Cardnell; Junya Fujimoto; et al. Lihong LongLixia DiaoJing WangYevgeniva BensmanBrenda HurtadoPatricia de GrootErik P. SulmanIgnacio I. WistubaAlice ChenMartin FleisherJohn V. HeymachMark G. KrisCharles M. RudinLauren Averett Byers Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. *J. Clin. Oncol.* **2018**, *36*, 2386-2394.

24. Waddell N., Pajic M., Patch A.M., Chang D.K., Kassahn K.S., Bailey P., Johns A.L., Miller D., Nones K., Quek K., et al. Whole genomes redefine the mutational landscape of pancreatic cancer. *Nature* **2015**, *518*, 495–501.

25. Yung-Jue Bang; Rui-Hua Xu; Keisho Chin; Keun-Wook Lee; Se Hoon Park; Sun Young Rha; Lin Shen; Shukui Qin; Nong Xu; Seock-Ah Im; et al. Gershon LockerPhil RoweXiaojin ShiDarren HodgsonYu-Zhen LiuNarikazu Boku Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Oncol.* **2017**, *18*, 1637-1651.

26. Wenjiao Chen; Jian Wang; Xiao Li; Jingying Li; Li Zhou; Tianzhu Qiu; Meiling Zhang; Ping Liu; Prognostic significance of BRCA1 expression in gastric cancer. *Med Oncol.* **2013**, *30*, 423.

27. Jin Won Kim; Hyun Jin Cho; Miso Kim; Kyung-Hun Lee; Min A. Kim; Sae-Won Han; Do-Youn Oh; Hyuk-Joon Lee; Seock-Ah Im; Tae-You Kim; et al. Han-Kwang YangWoo Ho KimYung-Jue Bang. Differing effects of adjuvant chemotherapy according to BRCA1 nuclear expression in gastric cancer. *Cancer Chemother. Pharmacol.* **2013**, *71*, 1435-1443.

28. Jaqueline Ramalho Buttura; Monize Nakamoto Provisor Santos; Renan Valieris; Rodrigo Duarte Drummond; Alexandre Defelibus; João Paulo Lima; Vinicius Fernando Calsavara; Helano Carioca Freitas; Vladmir C. Cordeiro de Lima; Thais Fernanda Bartelli; et al. Marc WiednerRafael RosalesKenneth John GollobJoanna LoizouEmmanuel Dias-NetoDiana Noronha NunesIsrael Tojal da Silva. Mutational Signatures Driven by Epigenetic Determinants Enable the Stratification of Patients with Gastric Cancer for Therapeutic Intervention. *Cancers* **2021**, *13*, 490.

29. Kazuhiro Togasaki; Yasutaka Sukawa; Takanori Kanai; Hiromasa Takaishi; Clinical efficacy of immune checkpoint inhibitors in the treatment of unresectable advanced or recurrent gastric cancer: an evidence-based review of therapies. *OncoTargets Ther.* **2018**, *ume 11*, 8239-8250.

30. Cong Chen; Fan Zhang; Ning Zhou; Yan-Mei Gu; Ya-Ting Zhang; Yi-Di He; Ling Wang; Lu-Xi Yang; Yang Zhao; Yu-Min Li; et al. Efficacy and safety of immune checkpoint inhibitors in advanced gastric or gastroesophageal junction cancer: a systematic review and meta-analysis. *OncolImmunology* **2019**, *8*, e1581547.

31. Mingyu Zhu; Haiyan Cui; Lu Zhang; Kuo Zhao; Xiaochen Jia; Hao Jin; Assessment of POLE and POLD1 mutations as prognosis and immunotherapy biomarkers for stomach adenocarcinoma. *Transl. Cancer Res.* **2022**, *11*, 193-205.

32. Xi Jiao; Xin Wei; Shuang Li; Chang Liu; Huan Chen; Jifang Gong; Jian Li; Xiaotian Zhang; Xicheng Wang; Zhi Peng; et al. Changsong QiZhenghang WangYujiao WangYanni WangNa ZhuoHenghui ZhangZhihao LuLin Shen. A genomic mutation signature predicts the clinical outcomes of immunotherapy and characterizes immunophenotypes in gastrointestinal cancer. *npj Precis. Oncol.* **2021**, *5*, 1-9.

33. Keigo Chida; Akihito Kawazoe; Masahito Kawazu; Toshihiro Suzuki; Yoshiaki Nakamura; Tetsuya Nakatsura; Takeshi Kuwata; Toshihide Ueno; Yasutoshi Kuboki; Daisuke Kotani; et al. Takashi KojimaHiroya TaniguchiHiroyuki ManoMasafumi IkedaKohei Shitaraltaru EndoTakayuki Yoshino A. Low Tumor Mutational Burden and PTEN Mutations Are Predictors of a Negative Response to PD-1 Blockade in MSI-H/dMMR Gastrointestinal Tumors. *Clin. Cancer Res.* **2021**, *27*, 3714-3724.

34. Chang Gon Kim; Moonki Hong; Hei-Cheul Jeung; Garden Lee; Hyun Cheol Chung; Sun Young Rha; Hyo Song Kim; Choong-Kun Lee; Ji Hyun Lee; Yejeong Han; et al. Jee Hung KimSeo Young LeeHyunki KimSu-Jin ShinSong-Ee BaekMinkyu Jung. Hyperprogressive disease during PD-1 blockade in patients with advanced gastric cancer. *Eur. J. Cancer* **2022**, *172*, 387-399.

35. The Cancer Genome Atlas Research Network; Comprehensive molecular characterization of gastric adenocarcinoma. *Nat.* **2014**, *513*, 202-209.

36. Feng Wang; Qi Zhao; Ying-Nan Wang; Ying Jin; Ming-Ming He; Ze-Xian Liu; Rui-Hua Xu; Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. *JAMA Oncol.* **2019**, *5*, 1504-1506.

37. Yun Gu; Puran Zhang; Jieti Wang; Chao Lin; Hao Liu; He Li; Hongyong He; Ruochen Li; Heng Zhang; Weijuan Zhang; et al. Somatic ARID1A mutation stratifies patients with gastric cancer to PD-1 blockade and adjuvant chemotherapy. *Cancer Immunol. Immunother.* **2022**, *72*, 1199-1208.

38. Minyu Wang; Yu-Kuan Huang; Joseph Ch Kong; Yu Sun; Daniela G Tantalo; Han Xian Aw Yeang; Le Ying; Feng Yan; Dakang Xu; Heloise Halse; et al. Natasha Di Costanzolo R GordonCatherine MitchellLaura K MackayRita A BusuttilPaul J NeesonAlex Boussioutas High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. *Clin. Transl. Immunol.* **2020**, *9*, e1127.

39. Elisabetta Puliga; Simona Corso; Filippo Pietrantonio; Silvia Giordano; Microsatellite instability in Gastric Cancer: Between lights and shadows. *Cancer Treat. Rev.* **2021**, *95*, 102175.

40. Wei Li; Chuan Xie; Zhen Yang; Jiang Chen; Nong-Hua Lu; Abnormal DNA-PKcs and Ku 70/80 expression may promote malignant pathological processes in gastric carcinoma. *World J. Gastroenterol.* **2013**, *19*, 6894-6901.

41. Meghana Manjunath; Bibha Choudhary; Sathees C. Raghavan; SCR7, a potent cancer therapeutic agent and a biochemical inhibitor of nonhomologous DNA end-joining. *Cancer Rep.* **2021**, *4*, e1341.

42. Yufeng Wang; Yasuhiro Kuramitsu; Byron Baron; Takao Kitagawa; Kazuhiro Tokuda; Junko Akada; Shin-Ichiro Maehara; Yoshihiko Maehara; Kazuyuki Nakamura; PI3K inhibitor LY294002, as opposed to wortmannin, enhances AKT phosphorylation in gemcitabine-resistant pancreatic cancer cells. *Int. J. Oncol.* **2016**, *50*, 606-612.

43. M.T. Niazi; G. Mok; M. Heravi; L. Lee; T. Vuong; R. Aloyz; L. Panasci; T. Muanza; Effects of dna-Dependent Protein Kinase Inhibition by NU7026 on dna Repair and Cell Survival in Irradiated Gastric Cancer Cell Line N87. *Curr. Oncol.* **2014**, *21*, 91-96.

44. Seung-Gi Jin; Yingying Meng; Jennifer Johnson; Piroska E. Szabó; Gerd P. Pfeifer; Concordance of hydrogen peroxide-induced 8-oxo-guanine patterns with two cancer mutation signatures of upper GI tract tumors. *Sci. Adv.* **2022**, *8*, eabn3815.

45. Nikita M. Volkov; Grigoriy A. Yanus; Alexandr O. Ivantsov; Fedor V. Moiseenko; Olga G. Matorina; Ilya V. Bizin; Vladimir M. Moiseenko; Evgeny N. Imyanitov; Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. *Investig. New Drugs* **2019**, *38*, 894-898.

46. Zachary R McCaw; Michael A Liu; Lee-Jen Wei; Olaparib in Metastatic Castration-Resistant Prostate Cancer. *New Engl. J. Med.* **2021**, *384*, 1174-1176.

47. G Kantersmoler; Jan Björk; Kaisa Fritzell; Yvonne Engwall; Birgitta Hallberg; Göran Karlsson; Henrik Grönberg; Per Karlsson; Arne Wallgren; Jan Wahlström; et al. Gunilla Kanter-Smoler Rolf Hultcrantz Margareta Nordling Novel Findings in Swedish Patients With MYH-Associated Polyposis: Mutation Detection and Clinical Characterization. *Clin. Gastroenterol. Hepatol.* **2006**, *4*, 499-506.

48. Stefanie Vogt; Natalie Jones; Daria Christian; Christoph Engel; Maartje Nielsen; Astrid Kaufmann; Verena Steinke; Hans F. Vasen; Peter Proppling; Julian R. Sampson; et al. Frederik J. Hes Stefan Aretz Expanded Extracolonic Tumor Spectrum in MUTYH-Associated Polyposis. *Gastroenterology* **2009**, *137*, 1976-1985.e10.

49. Yuanying Zhang; Xiaorong Liu; Yimei Fan; Jianhua Ding; Ailing Xu; Xuefu Zhou; Xu Hu; Ming Zhu; Xiaomei Zhang; Suping Li; et al. Jianzhong Wu Haixia Cao Jintian Li Yaping Wang Germline mutations and polymorphic variants in MMR, E-cadherin and MYH genes associated with familial gastric cancer in Jiangsu of China. *Int. J. Cancer* **2006**, *119*, 2592-2596.

50. Satoshi Imai; Takuya Ooki; Naoko Murata-Kamiya; Daisuke Komura; Kamrunnesa Tahmina; Weida Wu; Atsushi Takahashi-Kanemitsu; Christopher Takaya Knight; Akiko Kunita; Nobumi Suzuki; et al. Adriana A. Del Valle Mayo Tsuboi Masahiro Hata Yoku Hayakawa Naomi Ohnishi Koji Ueda Masashi Fukayama Tetsuo Ushiku Shumpei Ishikawa Masanori Hatakeyama Helicobacter pylori CagA elicits BRCA-ness to induce genome instability that may underlie bacterial gastric carcinogenesis. *Cell Host Microbe* **2021**, *29*, 941-958.e10.

51. Takahiro Shimizu; Hiroyuki Marusawa; Yoko Endo; Tsutomu Chiba; Inflammation-mediated genomic instability: roles of activation-induced cytidine deaminase in carcinogenesis. *Cancer Sci.* **2012**, *103*, 1201-1206.

52. G. P. Pfeifer. Mutagenesis at Methylated CpG Sequences; Springer Science and Business Media LLC: Dordrecht, GX, Netherlands, 2006; pp. 259-281.

53. David N Cooper; Matthew Mort; Peter D Stenson; Edward V Ball; Nadia A Chuzhanova; Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. *Hum. Genom.* **2010**, *4*, 406-410.

54. Akira Sassa; Yuki Kanemaru; Nagisa Kamoshita; Masamitsu Honma; Manabu Yasui; Mutagenic consequences of cytosine alterations site-specifically embedded in the human genome. *Genes Environ.* **2016**, *38*, 1-6.

55. Brittan M., Wright N.A. Stem cell in gastrointestinal structure and neoplastic development. *Gut* **2004**, *53*, 899-910.

56. Demaria M., O'Leary M.N., Chang J., Shao L., Liu S., Alimirah F., Koenig K., Le C., Mitin N., Deal A.M., et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. *Cancer Discov.* **2017**, *7*, 165-176.

57. Valdimara C. Vieira; Marcelo A. Soares; The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections. *BioMed Res. Int.* **2013**, 2013, 1-18.

58. Silvestro G Conticello; The AID/APOBEC family of nucleic acid mutators. *Genome Biol.* **2008**, 9, 229-229.

59. Steven A. Roberts; Joan Sterling; Cole Thompson; Shawn Harris; Deepak Mav; Ruchir Shah; Leszek J. Klimczak; Gregory V. Kryukov; Ewa Malc; Piotr A. Mieczkowski; et al. Michael A. Resnick; Dmitry A. Gordenin. Clustered Mutations in Yeast and in Human Cancers Can Arise from Damaged Long Single-Strand DNA Regions. *Mol. Cell* **2012**, 46, 424-435.

60. Thomas Helleday; Saeed Eshtad; Serena Nik-Zainal; Mechanisms underlying mutational signatures in human cancers. *Nat. Rev. Genet.* **2014**, 15, 585-598.

61. Steven A. Roberts; Dmitry A. Gordenin; Hypermutation in human cancer genomes: footprints and mechanisms. *Nat. Rev. Cancer* **2014**, 14, 786-800.

62. Razvan Cristescu; Jeeyun Lee; Michael Nebozhyn; Kyoung-Mee Kim; Jason C Ting; Swee Seong Wong; Jiangang Liu; Yong Gang Yue; Jian Wang; Kun Yu; et al. Xiang S Yeln-Gu Do; Shawn Liu; Lara Gong; Jake Fu; Jason Gang; JinMin Gew; ChoiTae Sung; Sohn; Joon Ho; Lee; Jae Moon; Bae; Seung Tae; Kim; Se Hoon; Park; Insuk; Sohn; Sin-Ho; Jung; Patrick Tan; Ronghua; Chen; James Hardwick; Won Ki; Kang; Mark; Ayers; Dai; Hongyue; Christoph Reinhard; Andrey Loboda; Sung Kim; Amit Aggarwal. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. *Nat. Med.* **2015**, 21, 449-456.

63. Rohini Roy; Jarin Chun; Simon N. Powell; BRCA1 and BRCA2: different roles in a common pathway of genome protection. *Nat. Rev. Cancer* **2011**, 12, 68-78.

64. Jackson S.P. Sensing and repairing DNA double-strand breaks. *Carcinogenesis* **2002**, 23, 687–696.

65. Tom Walsh; Silvia Casadei; Kathryn Hale Coats; Elizabeth Swisher; Sunday M. Stray; Jake Higgins; Kevin C. Roach; Jessica Mandell; Ming K. Lee; Sona Ciernikova; et al. Lenka Foretova; Pavel Soucek; Mary-Claire King. Spectrum of Mutations in BRCA1, BRCA2, CHEK2, and TP53 in Families at High Risk of Breast Cancer. *JAMA* **2006**, 295, 1379-1388.

66. Nik-Zainal S., Davies H., Staaf J., Ramakrishna M., Glodzik D., Zou X., Martincorena I., Alexandrov L.B., Martin S., Wedge D.C. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* **2016**, 534, 47–54.

67. Philip Gotwals; Scott Cameron; Daniela Cipolletta; Viviana Cremasco; Adam Crystal; Becker Hewes; Britta Mueller; Sonia Quarantino; Catherine Sabatos-Peyton; Lilli Petruzzelli; et al. Jeffrey A. Engelman; Glenn Dranoff. Prospects for combining targeted and conventional cancer therapy with immunotherapy. *Nat. Rev. Cancer* **2017**, 17, 286-301.

68. Hanxiao Li; P. Anton van der Merwe; Shivan Sivakumar; Biomarkers of response to PD-1 pathway blockade. *Br. J. Cancer* **2022**, *126*, 1663-1675.

69. Yanan Cheng; Dechao Bu; Qiaoling Zhang; Rebecca Sun; Stephen Lyle; Gang Zhao; Li Dong; Hui Li; Yi Zhao; Jinpu Yu; et al. Xishan Hao Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. *J. Adv. Res.* **2023**, *51*, 121-134.

70. Elizabeth D Thompson; Marianna Zahurak; Adrian Murphy; Toby Cornish; Nathan Cuka; Ehab Abdelfatah; Stephen Yang; Mark Duncan; Nita Ahuja; Janis M Taube; et al. Robert A AndersRonan J Kelly Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. *Gut* **2016**, *66*, 794-801.

71. Emmanuelle Nicolas; Erica A. Golemis; Sanjeevani Arora; POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. *Gene* **2016**, *590*, 128-141.

72. Scott A. Lujan; Jessica S. Williams; Thomas A. Kunkel; DNA Polymerases Divide the Labor of Genome Replication. *Trends Cell Biol.* **2016**, *26*, 640-654.

73. William Douglass Wright; Shanaya Shital Shah; Wolf-Dietrich Heyer; Homologous recombination and the repair of DNA double-strand breaks. *J. Biol. Chem.* **2018**, *293*, 10524-10535.

74. Charles S. Fuchs; Toshihiko Doi; Raymond W. Jang; Kei Muro; Taroh Satoh; Manuela Machado; Weijing Sun; Shadia I. Jalal; Manish A. Shah; Jean-Phillipe Metges; et al. Marcelo GarridoTalia GolanMario MandalaZev A. WainbergDaniel V. CatenacciAtsushi OhtsuKohei ShitaraRavit GevaJonathan BleekerAndrew H. KoGeoffrey KuPhilip PhilipPeter C. EnzingerYung-Jue BangDiane LevitanJiangdian WangMinori RosalesRita P. DalalHarry H. Yoon Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer. *JAMA Oncol.* **2018**, *4*, e180013-e180013.

75. Yelena Y. Janjigian; Francisco Sanchez-Vega; Philip Jonsson; Walid K. Chatila; Jaclyn F. Hechtman; Geoffrey Y. Ku; Jamie C. Riches; Yaelle Tuvy; Ritika Kundra; Nancy Bouvier; et al. Efsevia VakianiJianjiong GaoZachary J. HeinsBenjamin E. GrossDavid P. KelsenLiying ZhangVivian E. StrongMark SchattnerHans GerdesDaniel G. CoitManjit BainsZsophia K. StadlerValerie W. RuschDavid R. JonesDaniela MolenaJinru ShiaMark E. RobsonMarinela CapanuSumit MiddhaAhmet ZehirDavid M. HymanMaurizio ScaltritiMarc LadanyiNeal RosenDavid H. IlsonMichael F. BergerLaura TangBarry S. TaylorDavid B. SolitNikolaus Schultz Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. *Cancer Discov.* **2018**, *8*, 49-58.

76. Secrier M., Li X., de Silva N., Eldridge M.D., Contino G., Bornschein J., MacRae S., Grehan N., O'Donovan M., Miremadi A., et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance.. *Nat. Genet.* **2016**, *48*, 1131–1141.

77. Aaron M. Goodman; Shumei Kato; Lyudmila Bazhenova; Sandip P. Patel; Garrett M. Frampton; Vincent Miller; Philip J. Stephens; Gregory A. Daniels; Razelle Kurzrock; Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. *Mol. Cancer Ther.* **2017**, *16*, 2598-2608.

78. Robert M. Samstein; Chung-Han Lee; Alexander N. Shoushtari; Matthew D. Hellmann; Ronglai Shen; Yelena Y. Janjigian; David A. Barron; Ahmet Zehir; Emmet J. Jordan; Antonio Omuro; et al. Thomas J. Kaley; Sviatoslav M. Kendall; Robert J. Motzer; A. Ari Hakimi; Martin H. Voss; Paul Russo; Jonathan Rosenberg; Gopa Iyer; Bernard H. Bochner; Dean F. Bajorin; Hikmat A. Al-Ahmadie; Jamie E. Chaft; Charles M. Rudin; Gregory J. Riely; Shrujan Baxi; Alan L. Ho; Richard J. Wong; David G. Pfister; Jedd D. Wolchok; Christopher A. Barker; Philip H. Gutin; Cameron W. Brennan; Viviane Tabar; Ingo K. Mellinghoff; Lisa M. DeAngelis; Charlotte E. Ariyan; Nancy Lee; William D. Tap; Mrinal M. Gounder; Sandra P. D'angelo; Leonard Saltz; Zsofia K. Stadler; Howard I. Scher; Jose Baselga; Pedram Razavi; Christopher A. Klebanoff; Rona Yaeger; Neil H. Segal; Geoffrey Y. Ku; Ronald P. DeMatteo; Marc Ladanyi; Naiyer A. Rizvi; Michael F. Berger; Nadeem Riaz; David B. Solit; Timothy A. Chan; Luc G. T. Morris. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. *Nat. Genet.* **2019**, *51*, 202-206.

79. Janice M. Mehnert; Anshuman Panda; Hua Zhong; Kim Hirshfield; Sherri Damare; Katherine Lane; Levi Sokol; Mark N. Stein; Lorna Rodriguez-Rodriquez; Howard L. Kaufman; et al. Siraj Ali; Jeffrey S. Ross; Dean C. Pavlick; Gyan Bhanot; Eileen P. White; Robert S. DiPaola; Ann Lovell; Jonathan Cheng; Shridar Ganeshan. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. *J. Clin. Investig.* **2016**, *126*, 2334-2340.

80. Naiyer A. Rizvi; Matthew D. Hellmann; Alexandra Snyder; Pia Kvistborg; Vladimir Makarov; Jonathan J. Havel; William Lee; Jianda Yuan; Phillip Wong; Teresa S. Ho; et al. Martin L. Miller; Natasha Rekhtman; Andre L. Moreira; Fawzia Ibrahim; Cameron Bruggeman; Billel Gasmi; Roberta Zappasodi; Yuka Maeda; Chris Sander; Edward B. Garon; Taha Merghoub; Jedd D. Wolchok; Ton N. Schumacher; Timothy A. Chan. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. *Sci.* **2015**, *348*, 124-128.

81. Michael J. Overman; Sara Lonardi; Ka Yeung Mark Wong; Heinz-Josef Lenz; Fabio Gelsomino; Massimo Aglietta; Michael A. Morse; Eric Van Cutsem; Ray McDermott; Andrew Hill; et al. Michael B. Sawyer; Alain Hendlisz; Bart Neyns; Magali Svrcek; Rebecca A. Moss; Jean-Marie Ledeine; Z. Alexander Cao; Shital Kamble; Scott Kopetz; Thierry André. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability–High Metastatic Colorectal Cancer. *J. Clin. Oncol.* **2018**, *36*, 773-779.

82. Zhiyong Mao; Michael Bozzella; Andrei Seluanov; Vera Gorbunova; DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. *Cell Cycle* **2008**, *7*, 2902-2906.

83. Michael R. Lieber; The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. *Annu. Rev. Biochem.* **2010**, *79*, 181-211.

84. Jan H. J. Hoeijmakers; Genome maintenance mechanisms for preventing cancer. *Nat.* **2001**, *411*, 366-374.

85. Sarah L. Thompson; Samuel F. Bakhour; Duane A. Compton; Mechanisms of Chromosomal Instability. *Curr. Biol.* **2010**, *20*, R285-R295.

86. Brock J. Sishc; Anthony J. Davis; The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. *Cancers* **2017**, *9*, 81.

87. Utkarsh Jain; Kirti Saxena; Nidhi Chauhan; Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. *Helicobacter* **2021**, *26*, e12796.

88. James A. Swenberg; Kun Lu; Benjamin C. Moeller; Lina Gao; Patricia B. Upton; Jun Nakamura; Thomas B. Starr; Endogenous versus Exogenous DNA Adducts: Their Role in Carcinogenesis, Epidemiology, and Risk Assessment. *Toxicol. Sci.* **2010**, *120*, S130-S145.

89. Filomena Mazzei; Alessandra Viel; Margherita Bignami; Role of MUTYH in human cancer. *Mutat. Res. Mol. Mech. Mutagen.* **2013**, *743-744*, 33-43.

90. Nada Al-Tassan; Nikolas H. Chmiel; Julie Maynard; Nick Fleming; Alison L. Livingston; Geraint T. Williams; Angela K. Hodges; D. Rhodri Davies; Sheila S. David; Julian R. Sampson; et al. Jeremy P. Cheadle Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. *Nat. Genet.* **2002**, *30*, 227-232.

91. Alessandra Viel; Alessandro Bruselles; Ettore Meccia; Mara Fornasarig; Michele Quaia; Vincenzo Canzonieri; Eleonora Policicchio; Emanuele Damiano Urso; Marco Agostini; Maurizio Genuardi; et al. Emanuela Lucci-Cordisco; Tiziana Venesio; Aline Martayan; Maria Grazia Diodoro; Lupe Sanchez-Mete; Vittoria Stigliano; Filomena Mazzei; Francesca Grasso; Alessandro Giuliani; Marta Baiocchi; Roberta Maestro; Giuseppe Giannini; Marco Tartaglia; Ludmil B. Alexandrov; Margherita Bignami. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. *EBioMedicine* **2017**, *20*, 39-49.

92. Maartje Nielsen; Liza N. van Steenbergen; Natalie Jones; Stefanie Vogt; Hans F. A. Vasen; Hans Morreau; Stefan Aretz; Julian R. Sampson; Olaf M. Dekkers; Maryska L. G. Janssen-Heijnen; et al. Frederik J. Hes. Survival of MUTYH-Associated Polyposis Patients With Colorectal Cancer and Matched Control Colorectal Cancer Patients. *JNCI J. Natl. Cancer Inst.* **2010**, *102*, 1724-1730.

93. Mouw K.W., Goldberg M.S., Konstantinopoulos P.A., D'Andrea A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response.. *Cancer Discov.* **2017**, *7*, 675–693.

94. Soo-Hyun Hahn; Jong-Hwa Park; Sung-Il Ko; You-Ri Lee; In-Sik Chung; Ji-Hyung Chung; Lin-Woo Kang; Ye-Sun Han; Knock-down of human MutY homolog (hMYH) decreases

phosphorylation of checkpoint kinase 1 (Chk1) induced by hydroxyurea and UV treatment. *BMB Rep.* **2011**, *44*, 352-357.

95. Huang M., Miao Z.H., Zhu H., Cai Y.J., Lu W., Ding J. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. *Mol. Cancer Ther.* **2008**, *7*, 1440–1449.

96. Carla Oliveira; Hugo Pinheiro; Joana Figueiredo; Raquel Seruca; Fátima Carneiro; Familial gastric cancer: genetic susceptibility, pathology, and implications for management. *Lancet Oncol.* **2015**, *16*, e60-e70.

97. Peek R.M., Jr., Crabtree J.E. Helicobacter infection and gastric neoplasia. *J. Pathol.* **2006**, *208*, 233–248.

98. Masanori Hatakeyama; Oncogenic mechanisms of the Helicobacter pylori CagA protein. *Nat. Rev. Cancer* **2004**, *4*, 688-694.

99. Naoko Murata-Kamiya; Masanori Hatakeyama; Helicobacter pylori -induced DNA double-stranded break in the development of gastric cancer. *Cancer Sci.* **2022**, *113*, 1909-1918.

100. Masanori Hatakeyama; Helicobacter pylori CagA and Gastric Cancer: A Paradigm for Hit-and-Run Carcinogenesis. *Cell Host Microbe* **2014**, *15*, 306-316.

101. Andrea K. Byrum; Alessandro Vindigni; Nima Mosammaparast; Defining and Modulating 'BRCAnezz'. *Trends Cell Biol.* **2019**, *29*, 740-751.

102. Yunlong Hu; Mingzhou Guo; Synthetic lethality strategies: Beyond BRCA1/2 mutations in pancreatic cancer. *Cancer Sci.* **2020**, *111*, 3111-3121.

103. Takahiro Shimizu; Hiroyuki Marusawa; Yuko Matsumoto; Tadashi Inuzuka; Atsuyuki Ikeda; Yosuke Fujii; Sachiko Minamiguchi; Shin'ichi Miyamoto; Tadayuki Kou; Yoshiharu Sakai; et al. Jean E. CrabtreeTsutomu Chiba Accumulation of Somatic Mutations in TP53 in Gastric Epithelium With Helicobacter pylori Infection. *Gastroenterology* **2014**, *147*, 407-417.e3.

104. Caleb F. Davis; Christopher J. Ricketts; Min Wang; Andrew D. Cherniack; Hui Shen; Christian Buhay; Hyojin Kang; Sang Cheol Kim; Catherine C. Fahey; Kathryn E. Hacker; et al. Gyan BhanotDmitry A. GordeninAndy ChuPreethi H. GunaratneMichael BiehlSahil SethBenny A. KaipparettuChristopher A. BristowLawrence A. DonehowerEric M. WallenAngela B. SmithSatish K. TickooPheroze TamboliVictor ReuterLaura S. SchmidtJames J. HsiehToni K. ChoueiriA. Ari HakimiLynda ChinMatthew MeyersonRaju KucherlapatiWoong-Yang ParkA. Gordon RobertsonPeter W. LairdElizabeth P. HenskeDavid J. KwiatkowskiPeter J. ParkMargaret MorganBrian ShuchDonna MuznyDavid A. WheelerW. Marston LinehanRichard A. GibbsW. Kimryn RathmellChad J. CreightonSabina SignorettiMichael SeilerHsu ChaoMike DahdouliLiu XiNipun KakkarJeffrey G. ReidBrittany DownsJennifer DrummondDonna MortonHarsha DoddapaneniLora LewisAdam EnglishQingchang MengChristie KovarQiaoyan WangWalker

HaleAlicia HawesDivya KalraKimberly WalkerBradley A. MurrayCarrie SougnezGordon SaksenaScott L. CarterSteven E. SchumacherBarbara TabakTravis I. ZackGad GetzRameen BeroukhimStacey B. GabrielAdrian AllyMiruna BalasundaramInanc BirolDenise BrooksYaron S.N. ButterfieldEric ChuahAmanda ClarkeNoreen DhallaRanabir GuinRobert A. HoltKatayoon KasaianDarlene LeeHaiyan I. LiEmilia LimYussanne MaMichael MayoRichard A. MooreAndrew J. MungallJacqueline E. ScheinPayal SipahimalaniAngela TamNina ThiessenTina WongSteven J.M. JonesMarco A. MarraJ. Todd AumanDonghui TanShaowu MengCorbin D. JonesKatherine A. HoadleyPiotr A. MieczkowskiLisle E. MoseStuart R. JefferysJeffrey RoachUmadevi VeluvoluMatthew D. WilkersonScot WaringElizabeth BudaJunyuan WuTom BodenheimerAlan P. HoyleJanae V. SimonsMathew G. SolowaySaianand BaluJoel S. ParkerD. Neil HayesCharles M. PerouDaniel J. WeisenbergerMoiz S. BootwallaTimothy TrichePhillip H. LaiDavid J. Van Den BergStephen B. BaylinFengju ChenCristian CoarfaMichael S. NobleDaniel DiCaraHailei ZhangJuok ChoDavid I. HeimanNils GehlenborgDoug VoetPei LinScott FrazerPetar StojanovYingchun LiuLihua ZouJaegil KimMichael S. LawrenceAlexei ProtopopovXingzhi SongJianhua ZhangAngeliki PantaziAngela HadjipanayisEunjung LeeLovelace J. LuquetteSemin LeeMichael ParfenovNetty SantosoJonathan SeidmanAndrew W. XuJunehawk LeeSteven A. RobertsLeszek J. KlimczakDavid FargoMartin LangYoon-La ChoiJune-Koo LeeWenyi WangYu FanJaeil AhnRehan AkbaniJohn N. WeinsteinDavid HausslerSinger MaAmie RadenbaughJingchun ZhulTara M. LichtenbergErik ZmudaAaron D. BlackBenjamin HanfNilsa C. RamirezLisa WiseJay BowenKristen M. LeraasTracy M. HallJulie M. Gastier-FosterWilliam G. KaelinLeigh ThorneLori BoiceMei HuangCathy VockeJames PetersonRobert WorrellMaria MerinoBogdan A. CzerniakKenneth D. AldapeChristopher G. WoodPaul T. SpellmanMichael B. AtkinsJohn ChevilleR. Houston ThompsonMark A. JensenTodd PihlYunhu WanBrenda AyalaJulien BaboudSudhakar VelagaJessica WaltonJia LiuSudha ChudamaniYe WuMargi ShethKenna R. Mills ShawJohn A. DemchokTanja DavidsenLiming YangZhining WangRoy W. TarnuzzerJiashan ZhangGreg EleyIna FelauJean Claude ZenklusenCarolyn M. HutterMark S. GuyerBradley A. OzenbergerHeidi J. Sofia The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. *Cancer Cell* **2014**, *26*, 319-330.

105. Haiyan Chu; Dongying Gu; Ming Xu; Zhi Xu; Yonglin Gong; Weida Gong; Yongfei Tang; Jianwei Zhou; N. Tong; Zhengdong Zhang; et al. Jinfei ChenMeilin Wang A genetic variant in ERCC2 is associated with gastric cancer prognosis in a Chinese population. *Mutagen.* **2013**, *28*, 441-446.

106. Xue H., Lu Y., Lin B., Chen J., Tang F., Huang G. The effect of XPD/ERCC2 polymorphisms on gastric cancer risk among different ethnicities: A systematic review and meta-analysis.. *PLoS ONE* **2012**, *7*, e43431.

107. Jackson S.P. Sensing and repairing DNA double-strand breaks. *Carcinogenesis* **2002**, *23*, 687–696.

108. Helleday T., Eshtad S., Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. *Nat. Rev. Genet.* **2014**, *15*, 585–598.

109. Jackson S.P. Sensing and repairing DNA double-strand breaks. *Carcinogenesis* **2002**, *23*, 687–696.
110. Helleday T., Eshtad S., Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. *Nat. Rev. Genet.* **2014**, *15*, 585–598.
111. Jackson S.P. Sensing and repairing DNA double-strand breaks. *Carcinogenesis* **2002**, *23*, 687–696.
112. Xue H., Lu Y., Lin B., Chen J., Tang F., Huang G. The effect of XPD/ERCC2 polymorphisms on gastric cancer risk among different ethnicities: A systematic review and meta-analysis.. *PLoS ONE* **2012**, *7*, e43431.

Retrieved from <https://encyclopedia.pub/entry/history/show/115640>