

Dietary Supplements on Inflammatory Markers and SARS-CoV-2 Infection

Subjects: **Nutrition & Dietetics**

Contributor: Armin Ezzati , Sara K. Rosenkranz , Benjamin D. Horne

A key characteristic of severe presentations of acute SARS-CoV-2 infection involves overactive host inflammatory responses, with a substantial proportion of severe outcomes such as hospitalizations and deaths from COVID-19 linked to hyper-inflammation. Inflammation and oxidative stress play pivotal roles in the progression of infectious diseases including COVID-19. Evidence suggests that high sensitivity (hs) C-reactive protein (CRP), interleukin (IL)-6, and matrix metalloproteinases (MMPs) are among the most important biomarkers of COVID-19 severity, similar to the chronic conditions involved in vascular aging. Lactate dehydrogenase (LDH) and hsCRP are also biomarkers of respiratory failure in patients with COVID-19. Furthermore, it is well established that elevated levels of other inflammatory markers are common in COVID-19 patients. These markers include IL-1 β , IL-7, IL-8, IL-18, interferon (IFN)- γ , tumor necrosis factor (TNF)- α , procalcitonin (PCT), serum ferritin, and erythrocyte sedimentation rate (ESR).

SARS-CoV-2

dietary supplements

COVID-19

inflammation

vitamin D

probiotics

quercetin

1. Vitamins and Minerals

Supplementation with vitamins such as A, B, C, D, and E is thought to play a significant role in the severity of COVID-19 infection by reducing inflammation, time to recovery, and preventing lung fibrosis [1][2]. To authors' knowledge, no RCTs have tested the effects of supplementation with vitamin A, B, or C alone, on COVID-19 severity; however, in a 7-day randomized placebo-controlled trial of 60 COVID-19 patients admitted to intensive care unit (ICU), those who received a combination of vitamins A (25,000 IU daily), D (600,000 IU; one dose), E (300 IU twice daily), C (500 mg four times daily), and a B-complex ampule (daily), demonstrated significant reductions in the duration of hospitalization, TNF- α , IL-6, erythrocyte sedimentation and hs-CRP, but not IFN- γ , as compared to a placebo [3]. In contrast, 10-days of standard treatment plus high doses of vitamin C (2 g), Melatonin (6 mg), and Zinc (50 mg), was not effective for lowering inflammatory markers or length of hospitalization in 20 patients with severe COVID-19 [4].

Accumulating data highlight the immunomodulatory role of vitamin D, and link hypovitaminosis D (25 OHD \leq 20 ng/mL) with hyperinflammation (i.e., the so-called "cytokine storm") and elevated risk of mortality in patients with COVID-19 [5][6][7][8]. Therefore, supplementation with vitamin D is suggested to attenuate the risk of the cytokine storm, and the severity of COVID-19 [5][9]. The impact of vitamin D on inflammatory markers and in response to

SARS-CoV-2 infection has been explored in several RCTs (see **Table 1**). The current state of evidence from RCTs indicates that higher doses of daily intake of vitamin D can reduce the levels of inflammatory markers like IL-6, hsCRP, and time to recovery in COVID-19 patients [10][11]. Ten days of supplementation with 60,000 IU/day of vitamin D in combination with standard treatment significantly reduced IL-6, hsCRP, LDH, ferritin, and Neutrophil/Lymphocyte ratio, in 87 hospitalized COVID-19 patients with vitamin D deficiency ($D < 30 \text{ ng/m}$) as compared with the controls, who received standard treatment for 8 to 10 days [11]. Similarly, in a 2-week trial, oral intakes of two different doses of vitamin D3 (5000 IU vs. 1000 IU) resulted in significant decreases in plasma IL-6 versus baseline, with no between group differences, while hsCRP levels remained unchanged in both groups [10]. Furthermore, time required for resolving cough symptoms with D3 supplementation (5000 IU) was significantly shorter compared to the comparison group [10]. Rastogi et al. investigated the effects of high-dose vitamin D supplementation (60,000 IU) as compared with control in 40 SARS-CoV-2 RNA positive individuals. Patients with vitamin D deficiency ($25(\text{OH})\text{D} < 20 \text{ ng/mL}$) who were positive for SARS-CoV-2 RNA, with mild or no symptoms, significantly improved with regard to viral SARS-CoV-2 RNA clearance (62.5% vs. 20.8%) and fibrinogen levels [12]. In contrast, a single dose of vitamin D was ineffective for lowering inflammatory markers and for the treatment of patients with severe COVID-19 [13][14][15].

Evidence for the potential role of zinc supplementation for COVID-19 infection is inconclusive [16][17][18]; with only one 28-day RCT of 191 patients with COVID-19 having investigated the effects of zinc supplementation (50 mg of zinc twice daily) combined with chloroquine/hydroxychloroquine (CQ/HCQ) on inflammatory markers. The study results indicated no significant changes in hs-CRP levels or clinical recovery time [19].

Table 1. Summary of Randomized controlled trials (RCTs) on the impact of dietary supplements on inflammatory markers and in response to SARS-CoV-2.

Authors/Year/Country	Duration	Participants	Study Design	TNF- α	IL-1 β	IL-4	IL-6	IL-10	CRP	IFN- γ	Other Outcomes
Rastogi et al., 2020 [12] India	7-d	40 SARS-CoV-2 RNA positive individuals	RCT: 1. Daily oral cholecalciferol (60,000 IU) with therapeutic target $25(\text{OH})\text{D} > 50 \text{ ng/mL}$ 2. Control	-	-	-	-	-	∅	-	↓ Fibrinogen ↑ Negative conversion of SARS-CoV-2 RNA (62.5% vs. 20.8%)
Murai et al., 2021 [15] Brazil	-	237 patients hospitalized for moderate to severe COVID-19	RCT: 1. A single oral dose of 200,000 IU of vit. D3 2. Placebo	-	-	-	-	-	∅	-	∅ Same LOS (median of 7.0 vs. 7.0 days)
Lakkireddy et al., 2021 [11]	8–10-d	87 Patients hospitalized	RCT: 1. 60,000 IU/day of	-	-	-	1. ↓	1. ↓	-	*†	↓ *† LDH, ferritin, N/L

Authors/Year/Country	Duration	Participants	Study Design	TNF- α	IL-1 β	IL-4	IL-6	IL-10	CRP	IFN- γ	Other Outcomes
India		for COVID-19 Vit. D < 30 ng/m	oral vitamin D +standard treatment 2. Only standard treatment					† 2. Ø	2. ↓ * 1.		ratio
Beigmohammadi et al., 2021 [3] Iran	7-d	60 ICU-admitted COVID-19 patients	RCT: 1. Oral Vit. A (25,000 IU) daily, vit.D (600,000 IU; one dose), vit. E (300 IU twice daily), vit. C (500 mg four times daily), and one amp daily of B complex 2. Placebo	1. ↓ *† 2. ↓ *	1. ↓ *† 2. ↓ *	- - - - -	1. 2. - -	1. ↓ *† 2. ↓ * 2.	1. ↓ * 2. ↓ *	↓ † Hospitalization rate and ESR in treatment group	
Sabico et al., 2021 [10] Saudi Arabia	14-d	69 patients COVID-19 and sub-optimal vit. D status	RCT: 1.Oral vit. D3 (5000 IU) 2.Oral vit. D3 (1000 IU)					1. ↓ * 2. ↓ *	1. Ø 2. Ø		↓ † Time to recovery in resolving cough with D3 (5000 IU) vs. D3 (1000 IU)
Abd-Elsalam et al., 2021 [19] Egypt	4 weeks	191 patients with COVID-19	RCT: 1.CQ/HCQ + 220 mg of zinc sulfate twice daily 2. HCQ only					- - - - -	Ø		Ø Clinical efficacy of HCQ
Di Pierro et al., 2021 [20] Italy	2 weeks	42 COVID-19 outpatients	RCT: 1. Quercetin (500 mg/day (first week) and of 1000 mg/day (second week) 2. Standard of care					- - - - -	Ø		↓ † LOS, virus clearance, symptoms frequency, LDH, ferritin
Doae et al., 2021 [21] Iran	2 weeks	128 critically ill COVID-19 patients	RCT: 1. 1000 mg omega-3 daily (400 mg EPAs and 200 mg DHAs) 2. Control					- - - - -			↑ † 1-month survival rate, pH, HCO ₃ , and Be ↓ † Levels of BUN, Cr, and K in the treatment group

Authors/Year/Country	Duration	Participants	Study Design	TNF- α	IL-1 β	IL-4	IL-6	IL-10	CRP	IFN- γ	Other Outcomes
Darban et al., 2021 [4] Iran	10-d	20 patients with severe COVID-19	Pilot RCT: 1. Standard care + oral zinc sulfate (220 mg containing 50 mg zinc), oral melatonin (6 mg, q6hr), and intravenous vit. C (2 g) 2. Standard care alone	-	-	-	-	-	1. ↓ * 2. ↓ *	-	Ø LOS
Sedighian et al., 2021 [22] Iran	2 weeks	30 patients with COVID-19	Single blind RCT: 1. Hydroxychloroquine + 2 g DHAs and EPAs 2. Hydroxychloroquine	-	-	-	-	-	1. ↓ †	-	† Body pain and fatigue in the treatment group Ø Olfactory
Cannata-Andía et al., 2022 [14] Spain	-	543 patients with moderate to severe COVID-19	RCT: 1. A single-oral bolus of 100,000 IU of cholecalciferol 2. Control	-	-	-	Ø	-	Ø	-	Ø Hospitalization rate and death
Shohan et al., 2022 [23] Iran	7-d	60 patients with severe COVID-19	RCT: 1. Quercetin (1000 mg daily) + antiviral drugs 2. Antiviral drugs	↓ *	↓ *	-	↓ †	-	↓ †	-	↓ † ALP, LDH Ø Mortality, duration of ICU-admission
Pimentel et al., 2022 [24] Brazil	7-d	43 adult patients with COVID-19	RCT: 1. Two 200 mL units of high-protein nutritional supplement (arginine, omega-3 fatty acids and nucleotides) over 24 h 2. Two 200 mL units of high-protein nutritional supplement alone	-	-	-	-	-	1. ↓ † 2. Ø	-	↑ Lymphocytes in the treatment group ↓ Lymphocytes in the control group
Fernandes et al., 2022 [13]	-	200 patients	RCT: 1. Single oral dose	Ø	Ø	Ø	Ø	Ø	-	Ø	-

γαμμα, ΣΩ/ΗΣΩ. Οι πιο σημαντικές παραμέτρους που αναφέρονται στην ιατρική επεξεργασία, ΗΣΩ. Ηγεινοχρυσούρουπη, ALP. Αικανή πρωτεΐνη λαζαρέ, Lactate dehydrogenase; Be: Base excess; BUN: Blood urea nitrogen; Cr: creatinine; LOS: Length of hospital stay; LDH: Lactate dehydrogenase; N/L ratio: Neutrophil/Lymphocyte ratio; ESR: Erythrocyte sedimentation rate; DHA: Docosahexaenoic acid; EPA: eicosapentaenoic acid.

2. n-3 Polyunsaturated Fatty Acids (PUFAs)

Authors/Year/Country	Duration	Participants	Study Design	TNF- α	IL-1 β	IL-4	IL-6	IL-10	CRP	IFN- γ	Other Outcomes	ave anti-
Brazil	[26][27][28]	with moderate to severe COVID-19	of vit. D ₃ (200 000 IU) 2. Placebo									with n-3
Gutiérrez-Castrellón et al., 2022 [25] Spain	[21]	293 COVID-19 outpatients	RCT: 1. Probiotic (Lactiplantibacillus plantarum stains KABP022, KABP023 and KABP033 = Pediococcus acidilactici strain KABP021) 2. Placebo	-	-	-	-	-	1. ↓ † hs- CRP Only on day 15	-	↓ † Complete remission (53.1% in probiotic group vs. 28.1% in placebo; $p < 0.001$)	ents with OVID-19 (HAs) for compared function DHA and fatigue a 7-day arginine,

omega-3 fatty acids, and nucleotides (Two 200 mL units over 24 h), indicated meaningful reductions in hs-CRP when compared with the patients who were given only high-protein nutritional supplements (Two 200 mL units) [24].

3. Quercetin

Quercetin—a polyphenol with antioxidant and anti-inflammatory properties—is widely known to have favorable effects on inflammation and infection [29][30][31]. Di Pierro et al. reported that in 42 outpatients with COVID-19, two weeks of quercetin therapy (500–1000 mg daily) significantly diminished the rate (−68.2%) and length (−76.8%) of hospitalization, the need for non-invasive oxygen therapy (−93.3%), and the mortality rate (although events were very limited: none vs. 3 people) compared to the control (standard of care) [20]. Furthermore, significant reductions in LDH and ferritin levels were reported in the treatment group vs. control, while hs-CRP remained unchanged [20]. Unlike the 2-week trial by Di Pierro et al., a shorter 7-day RCT including 60 patients with severe COVID-19, treated with daily quercetin (1000 mg) along with antiviral drugs, compared with control (only antiviral drugs), did not alter mortality or ICU-admission duration significantly. Notably, significant reductions in inflammatory markers such as TNF- α , IL-1 β , IL-6, hs-CRP, ALP, and LDH were shown in the treatment group as compared to the control or baseline [23].

4. Probiotics

High quality evidence from systematic reviews and meta-analyses of RCTs, indicates that probiotics may have a favorable role for responses to infections [32]. In a recent one-month RCT of 293 outpatients with COVID-19, supplementation with four-strain probiotics consisting of *Lactiplantibacillus plantarum* KABP033 (CECT30292), *L. plantarum* KABP022 (CECT7484), *L. plantarum* KABP023 (CECT7485), and *Pediococcus acidilactici* KABP021 (CECT7483), produced significant reductions in remission rates vs. placebo (53.1% in probiotic group vs. 28.1% in placebo [25].

References

1. Wu, R.; Wang, L.; Kuo, H.-C.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; et al. An Update on Current Therapeutic Drugs Treating COVID-19. *Curr. Pharmacol. Rep.* 2020, 6, 56–70.
2. Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. *BMJ* 2017, 356, i6583.
3. Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The Effect of Supplementation with Vitamins A, B, C, D, and E on Disease Severity and Inflammatory Responses in Patients with COVID-19: A Randomized Clinical Trial. *Trials* 2021, 22, 802.
4. Darban, M.; Malek, F.; Memarian, M.; Gohari, A.; Kiani, A.; Emadi, A.; Lavvaf, S.; Bagheri, B. Efficacy of High Dose Vitamin C, Melatonin and Zinc in Iranian Patients with Acute Respiratory Syndrome Due to Coronavirus Infection: A Pilot Randomized Trial. *J. Cell Mol. Anesth.* 2021, 6, 164–167.
5. Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. *Nutrients* 2020, 12, 988.
6. Dror, A.A.; Morozov, N.; Daoud, A.; Namir, Y.; Yakir, O.; Shachar, Y.; Lifshitz, M.; Segal, E.; Fisher, L.; Mizrahi, M.; et al. Pre-Infection 25-Hydroxyvitamin D3 Levels and Association with Severity of COVID-19 Illness. *PLoS ONE* 2022, 17, e0263069.
7. Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. *Crit. Rev. Food Sci. Nutr.* 2022, 62, 1308–1316.
8. Katz, J.; Yue, S.; Xue, W. Increased Risk for COVID-19 in Patients with Vitamin D Deficiency. *Nutrition* 2021, 84, 111106.
9. Annweiler, C.; Beaudenon, M.; Simon, R.; Guenet, M.; Otekpo, M.; Célarier, T.; Gautier, J. GERIA-COVID study group Vitamin D Supplementation Prior to or during COVID-19 Associated with Better 3-Month Survival in Geriatric Patients: Extension Phase of the GERIA-COVID Study. *J. Steroid. Biochem. Mol. Biol.* 2021, 213, 105958.
10. Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. *Nutrients* 2021, 13, 2170.

11. Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.S.S.V.P.M.; Ragini; Chinapaka, S.; Baba, K.S.S.S.; Kandakatla, M. Impact of Daily High Dose Oral Vitamin D Therapy on the Inflammatory Markers in Patients with COVID-19 Disease. *Sci. Rep.* 2021, 11, 10641.
12. Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short Term, High-Dose Vitamin D Supplementation for COVID-19 Disease: A Randomised, Placebo-Controlled, Study (SHADE Study). *Postgrad. Med. J.* 2022, 98, 87–90.
13. Fernandes, A.L.; Murai, I.H.; Reis, B.Z.; Sales, L.P.; Santos, M.D.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; et al. Effect of a Single High Dose of Vitamin D3 on Cytokines, Chemokines, and Growth Factor in Patients with Moderate to Severe COVID-19. *Am. J. Clin. Nutr.* 2022, 115, 790–798.
14. Cannata-Andía, J.B.; Díaz-Sotolano, A.; Fernández, P.; Palomo-Antequera, C.; Herrero-Puente, P.; Mouzo, R.; Carrillo-López, N.; Panizo, S.; Ibañez, G.H.; Cusumano, C.A.; et al. A Single-Oral Bolus of 100,000 IU of Cholecalciferol at Hospital Admission Did Not Improve Outcomes in the COVID-19 Disease: The COVID-VIT-D-a Randomised Multicentre International Clinical Trial. *BMC Med.* 2022, 20, 83.
15. Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. *JAMA* 2021, 325, 1053–1060.
16. Thomas, E.A.; Zaman, A.; Sloggett, K.J.; Steinke, S.; Grau, L.; Catenacci, V.A.; Cornier, M.-A.; Rynders, C.A. Early Time-Restricted Eating Compared with Daily Caloric Restriction: A Randomized Trial in Adults with Obesity. *Obesity (Silver Spring)* 2022, 30, 1027–1038.
17. Patel, O.; Chinni, V.; El-Khoury, J.; Perera, M.; Neto, A.S.; McDonald, C.; See, E.; Jones, D.; Bolton, D.; Bellomo, R.; et al. A Pilot Double-blind Safety and Feasibility Randomized Controlled Trial of High-dose Intravenous Zinc in Hospitalized COVID-19 Patients. *J. Med. Virol.* 2021, 93, 3261–3267.
18. Balboni, E.; Zagnoli, F.; Filippini, T.; Fairweather-Tait, S.J.; Vinceti, M. Zinc and Selenium Supplementation in COVID-19 Prevention and Treatment: A Systematic Review of the Experimental Studies. *J. Trace Elem. Med. Biol.* 2022, 71, 126956.
19. Abd-Elsalam, S.; Soliman, S.; Esmail, E.S.; Khalaf, M.; Mostafa, E.F.; Medhat, M.A.; Ahmed, O.A.; El Ghafar, M.S.A.; Alboraei, M.; Hassany, S.M. Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: A Randomized, Multicenter Trial. *Biol. Trace Elem. Res.* 2021, 199, 3642–3646.
20. Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation

Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. *Int. J. Gen. Med.* 2021, 14, 2359–2366.

21. Doaei, S.; Gholami, S.; Rastgoo, S.; Gholamalizadeh, M.; Bourbour, F.; Bagheri, S.E.; Samipoor, F.; Akbari, M.E.; Shadnoush, M.; Ghorat, F.; et al. The Effect of Omega-3 Fatty Acid Supplementation on Clinical and Biochemical Parameters of Critically Ill Patients with COVID-19: A Randomized Clinical Trial. *J. Transl. Med.* 2021, 19, 128.

22. Sedighiyan, M.; Abdollahi, H.; Karimi, E.; Badeli, M.; Erfanian, R.; Raeesi, S.; Hashemi, R.; Vahabi, Z.; Asanjarani, B.; Mansouri, F.; et al. Omega-3 Polyunsaturated Fatty Acids Supplementation Improve Clinical Symptoms in Patients with COVID-19: A Randomised Clinical Trial. *Int. J. Clin. Pr.* 2021, 75, e14854.

23. Shohan, M.; Nashibi, R.; Mahmoudian-Sani, M.-R.; Abolnezhadian, F.; Ghafourian, M.; Alavi, S.M.; Sharhani, A.; Khodadadi, A. The Therapeutic Efficacy of Quercetin in Combination with Antiviral Drugs in Hospitalized COVID-19 Patients: A Randomized Controlled Trial. *Eur. J. Pharmacol.* 2022, 914, 174615.

24. Pimentel, R.F.W.; Silva, A.P.; Santana, A.I.C.; Silva, D.D.S.E.; Ramos, M.D.S.; de Souza, M.C.; Suen, V.M.M.; Maduro, I.P.D.N.N.; Filho, D.R.; Júnior, A.D.; et al. Effect of Immunonutrition on Serum Levels of C-Reactive Protein and Lymphocytes in Patients with COVID-19: A Randomized, Controlled, Double-Blind Clinical Trial. *Nutr. Hosp.* 2022, 39, 20–26.

25. Gutiérrez-Castrellón, P.; Gandara-Martí, T.; Abreu Y Abreu, A.T.; Nieto-Rufino, C.D.; López-Orduña, E.; Jiménez-Escobar, I.; Jiménez-Gutiérrez, C.; López-Velazquez, G.; Espadaler-Mazo, J. Probiotic Improves Symptomatic and Viral Clearance in Covid19 Outpatients: A Randomized, Quadruple-Blinded, Placebo-Controlled Trial. *Gut Microbes* 2022, 14, 2018899.

26. Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of N-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. *Adv. Food Nutr. Res.* 2012, 65, 211–222.

27. Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition or Pharmacology? *Br. J. Clin. Pharm.* 2013, 75, 645–662.

28. Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. *Biochim. Biophys. Acta* 2015, 1851, 469–484.

29. Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. *Viruses* 2015, 8, 6.

30. Liu, Y.; Yu, C.; Ji, K.; Wang, X.; Li, X.; Xie, H.; Wang, Y.; Huang, Y.; Qi, D.; Fan, H. Quercetin Reduces TNF- α -Induced Mesangial Cell Proliferation and Inhibits PTX3 Production: Involvement of NF-KB Signaling Pathway. *Phytother. Res.* 2019, 33, 2401–2408.

31. Margolin, L.; Luchins, J.; Margolin, D.; Margolin, M.; Lefkowitz, S. 20-Week Study of Clinical Outcomes of Over-the-Counter COVID-19 Prophylaxis and Treatment. *J. Evid.-Based Integr. Med.* 2021, 26, 2515690X211026193.
32. King, S.; Glanville, J.; Sanders, M.E.; Fitzgerald, A.; Varley, D. Effectiveness of Probiotics on the Duration of Illness in Healthy Children and Adults Who Develop Common Acute Respiratory Infectious Conditions: A Systematic Review and Meta-Analysis. *Br. J. Nutr.* 2014, 112, 41–54.

Retrieved from <https://encyclopedia.pub/entry/history/show/74621>