

Ultrastructure in Transthyretin Amyloidosis

Subjects: **Medicine, General & Internal**

Contributor: Haruki Koike

Transthyretin (TTR) amyloidosis is caused by systemic deposition of wild-type or variant amyloidogenic TTR (ATTRwt and ATTRv, respectively). ATTRwt amyloidosis has traditionally been termed senile systemic amyloidosis, while ATTRv amyloidosis has been called familial amyloid polyneuropathy. Although ATTRwt amyloidosis has classically been regarded as one of the causes of cardiomyopathy occurring in the elderly population, recent developments in diagnostic techniques have significantly expanded the concept of this disease. For example, this disease is now considered an important cause of carpal tunnel syndrome in the elderly population. The phenotypes of ATTRv amyloidosis also vary depending on the mutation and age of onset. Peripheral neuropathy usually predominates in patients from the conventional endemic foci, while cardiomyopathy or oculoleptomeningeal involvement may also become major problems in other patients. Electron microscopic studies indicate that the direct impact of amyloid fibrils on surrounding tissues leads to organ damage, whereas accumulating evidence suggests that nonfibrillar TTR, such as oligomeric TTR, is toxic, inducing neurodegeneration. Microangiopathy has been suggested to act as an initial lesion, increasing the leakage of circulating TTR. Regarding treatments, the efficacy of liver transplantation has been established for ATTRv amyloidosis patients, particularly patients with early-onset amyloidosis. Recent phase III clinical trials have shown the efficacy of TTR stabilizers, such as tafamidis and diflunisal, for both ATTRwt and ATTRv amyloidosis patients.

angiopathy

diflunisal

electron microscopy

oligomers

pathogenesis

pathology

protein misfolding disease

Schwann cell

tafamidis

therapy

1. Introduction

Transthyretin (TTR) amyloidosis is caused by systemic deposition of wild-type or variant amyloidogenic TTR (ATTRwt and ATTRv, respectively). ATTRwt amyloidosis has been traditionally named senile systemic amyloidosis because postmortem studies revealed that its prevalence becomes higher as age at examination increases ^[1]. On the other hand, ATTRv amyloidosis has been called familial amyloid polyneuropathy ^{[2][3][4][5]}. Although this disease was originally reported in geographically restricted areas (i.e., endemic foci) of Portugal, Japan, and Sweden ^{[6][7]} ^[8], its global prevalence has been demonstrated ^{[2][9]}. The Val30Met mutation, alternatively called p.Val50Met according to the Human Genome Variation Society nomenclature, has been considered the most common mutation because patients from endemic foci and many of the late-onset (more than 50 years of age) patients from nonendemic areas have this mutation ^{[2][10]}. However, recent progress in diagnostic techniques has increased the number of newly diagnosed patients with non-Val30Met mutations ^[11]. Over 130 mutations have been reported so

far [12], and certain types of non-Val30Met patients are more frequent than Val30Met patients in some countries [13] [14][15].

Regarding the treatment for ATTR amyloidosis, the efficacy of liver transplantation, which is usually indicated for early-onset ATTRv amyloidosis patients, has been established since the 1990s [16][17]. Recent phase III clinical trials have shown the efficacy of TTR stabilizers for both ATTRwt and ATTRv amyloidosis patients [18][19][20]. In addition, gene-silencing drugs that significantly reduce the amount of TTR produced in the liver have also become available for ATTRv amyloidosis [21][22]. Eliminating causative proteins is more reasonable than merely stabilizing the protein because nonfibrillar TTR may also exert harmful effects, as described later.

2. Diversity of Clinical Features

As ATTR amyloidosis is a systemic disease, patients exhibit variable clinical features depending on the site of amyloid deposition [23]. ATTRwt amyloidosis has classically been regarded as one of the causes of cardiomyopathy in the elderly population. Studies of autopsy specimens revealed that a significant proportion of the elderly population have wild-type TTR deposition, particularly in the heart (12 to 25% of subjects aged >80 years), despite a lack of relevant symptoms [24][25][26]. However, the recent development of diagnostic techniques for amyloidosis has significantly expanded the concept of this disease [27]. For example, this disease is now considered an important cause of carpal tunnel syndrome in the elderly population [27][28]. Some studies have also suggested an association between wild-type TTR deposition in ligaments and spinal canal stenosis [27][29][30].

The phenotypes of ATTRv amyloidosis are also variable, depending on the mutation and age at onset [2][12]. As the classical name “familial amyloid polyneuropathy” indicates, peripheral neuropathy usually predominates in patients with conventional endemic foci [31][32]. Cardiomyopathy or oculoleptomeningeal involvement may also become major problems in others, particularly in patients with non-Val30Met mutations [12][33]. For example, Val112Ile and Thr60Ala mutations are usually associated with cardiac amyloidosis, while Tyr114Cys mutation causes oculoleptomeningeal amyloidosis [12]. Regarding the most common mutation, Val30Met (i.e., ATTR Val30Met amyloidosis), patients from the conventional endemic foci of Portugal and Japan exhibit textbook features of amyloid neuropathy, such as the following: early disease onset ranging in age from the late 20s to early 40s; a high penetrance rate; a nearly 1-to-1 male-to-female ratio; marked autonomic dysfunction; loss of superficial sensation, including nociception and thermal sensation (i.e., sensory dissociation); atrioventricular conduction block requiring pacemaker implantation; and the presence of anticipation of age at onset (Table 1) [2][34][35][36]. By contrast, patients with Val30Met mutations from nonendemic areas exhibit an older age at disease onset of over 50 years, a low penetrance rate, extreme male preponderance, relatively mild autonomic dysfunction, loss of all sensory modalities rather than sensory dissociation, the frequent presence of cardiomegaly, and the absence of anticipation of age at onset [2][10][37][38][39]. Despite the presence of the same mutation in the *TTR* gene, the reason for the differential clinical features between early- and late-onset cases has not been clarified.

Table 1. Comparison of the two major forms of hereditary transthyretin Val30Met amyloidosis *.

Features	Early-Onset Patients from Endemic Foci	Late-Onset Patients from Nonendemic Areas
Age of onset	Late 20s to early 40s	≥50 years
Sex	Male = female	Male > female
Family history	Common	Frequently absent
Penetrance rate	High	Low
Cardiac involvement	Conduction defects	Heart failure
Sensory dissociation	Common	Rare
Autonomic dysfunction	Severe	Mild
in early disease stage		
Modality of nerve fiber loss	Small > large	Small = large
Amount of amyloid deposits	Large	Small
in the peripheral nervous system		
Length of amyloid fibrils	Long	Short

References

* Based on previous reports [\[2\]](#)[\[23\]](#)[\[40\]](#).

1. Pitkänen, P.; Westermark, P.; Cornwell, G.G., 3rd. Senile systemic amyloidosis. *Am. J. Pathol.* 1984, **117**, 201–209.
2. **3. Characteristics of Amyloid Fibrils Determining the Clinicopathological Features**
2. Kondo, H.; Misu, K.; Ikeda, S.; Ando, Y.; Nakazato, M.; Ando, E.; Yamamoto, M.; Hattori, N.; Sobue, G.; Study Group for Hereditary Neuropathy in Japan. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: Early- vs. late-onset form. *Arch. Neurol.* 2002, **59**, 1771–1776.
3. Benson, M.D.; Kincaid, J.C. The molecular pathology and clinical features of amyloid neuropathy. *Muscle Nerve* 2007, **36**, 411–423.
4. Plante-Bordeneuve, V.; Said, G. Familial amyloid polyneuropathy. *Lancet Neurol.* 2011, **10**, 1086–1097.
5. Adams, D.; Caquelin, G.; Labeyrie, C. Familial amyloid polyneuropathy. *Curr. Opin. Neurol.* 2017, **30**, 481–489.
6. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
7. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
8. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
9. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
10. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
11. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
12. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
13. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
14. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
15. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
16. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
17. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
18. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
19. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
20. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
21. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
22. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
23. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
24. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
25. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
26. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
27. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
28. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
29. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
30. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
31. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
32. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
33. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
34. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
35. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
36. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
37. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
38. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
39. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
40. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
41. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
42. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
43. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
44. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
45. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
46. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.
47. Adams, D.; Caquelin, G.; Labeyrie, C. Amyloid deposits in patients with ATTRwt amyloidosis. *Neurology* 2017, **90**, 1770–1777.

The Arakido-Mayatain, ¹ the Hatachi-Nakajima, ² a deposit in the Polymerase chain reaction-inset ATTRwt amyloidosis, ³ Japanese ⁴ and ATTR Val30Met ⁵ amyloidosis. ⁶ Interestingly, ATTRwt amyloidosis mainly affects males, who account for approximately 90% of patients. ^{27,28} This male preponderance is in accordance with late-onset ATTR Val30Met amyloidosis cases, ¹⁰ but not with early-onset Val30Met cases, which show a nearly 1-to-1 male-to-female ratio. ¹⁰ Nakamura, M.; Araki, S. Transthyretin-related familial amyloidotic polyneuropathy. *Arch. Neurol.* 1998, 55, 602.

10. Koike, H.; Tanaka, F.; Hashimoto, R.; Tomita, M.; Kawagashira, Y.; Iijima, M.; Fujitake, J.; Kawanami, T.; Kato, T.; Yamamoto, M.; et al. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: Analysis of late-onset cases from non-endemic areas. *J. Neurol. Neurosurg. Psychiatry* 2012, 83, 152–158.

11. Parman, Y.; Adams, D.; Obici, L.; Galán, L.; Guergueltcheva, V.; Suhr, O.B.; Coelho, T. European Network for TTR-FAP (ATTReuNET). Sixty years of transthyretin familial amyloid polyneuropathy (TTR-FAP) in Europe: Where are we now? A European network approach to defining the epidemiology and management patterns for TTR-FAP. *Curr. Opin. Neurol.* 2016, 29 (Suppl. 1), S3–S13.

12. Sekijima, Y.; Ueda, M.; Koike, H.; Misawa, S.; Ishii, T.; Ando, Y. Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: Red-flag symptom clusters and treatment algorithm. *Orphanet J. Rare Dis.* 2018, 13, 6.

13. Chao, C.C.; Huang, C.M.; Chiang, H.H.; Luo, K.R.; Kan, H.W.; Yang, N.C.; Chiang, H.; Lin, W.M.; Lai, S.M.; Lee, M.J.; et al. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates. *Am. J. Neuropathol. Exp. Neuropatol.* 2013, 180, 272–285.

Figure 1. Representative photographs of cardiac amyloid deposits in early-onset ATTR Val30Met amyloidosis patients from endemic foci (**A,B**) and late-onset ATTR Val30Met amyloidosis patients from nonendemic areas (**C,D**).

14. Carr, A.S.; Pelayo-Negro, A.L.; Evans, M.R.; Laurà, M.; Blake, J.; Stancanelli, C.; Iodice, V.; Wechalekar, A.D.; Whelan, C.J.; Gillmore, J.D.; et al. A study of the neuropathy associated with transthyretin amyloidosis (ATTR) in the UK. *J. Neurol. Neurosurg. Psychiatry* 2016, 87, 620–627.

15. Durmus, T.; Uz, H.; Matungs, Z.; Merdivenci, M.; late-onset patients from nonendemic areas, late-onset amyloid deposits generally mean early-onset. *Parman, Y.G. Genotypic and phenotypic presentation of transthyretin-related familial amyloid polyneuropathy (TTR-FAP) in Turkey: Neuropathic disorders to early-onset patients from nonendemic foci. Scale bars = 20 μ m.*

16. Holmgren, G.; Steen, L.; Ekstedt, J.; Groth, C.G.; Ericzon, B.G.; Eriksson, S.; Andersen, O.; Karlberg, I.; Nordén, G.; Nakazato, M.; et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). *Clin. Genet.* 1991, 40, 242–246.

17. Yamashita, T.; Ando, Y.; Okamoto, S.; Misumi, Y.; Hirahara, T.; Ueda, M.; Obayashi, K.; Nakamura, M.; Jono, H.; Shono, M.; et al. Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. *Neurology* 2012, 78, 637–643.

Figure 1 *Urinary amyloid fibrils in early-onset ATTR Val30Met amyloidosis*

patients from endemic foci (**A,B**) and late-onset ATTR Val30Met amyloidosis patients from nonendemic areas (**C,D**).
 14. Carr, A.S.; Pelayo-Negro, A.L.; Evans, M.R.; Laurà, M.; Blake, J.; Stancanelli, C.; Iodice, V.; obtained at autopsy. Alkaline Congo red staining. In early-onset patients from endemic foci, the amyloid deposits Wechalekar, A.D.; Whelan, C.J.; Gillmore, J.D.; et al. A study of the neuropathy associated with tend to be highly congophilic (**A**) and show strong apple-green birefringence (**B**). In addition, amyloid deposits tend transthyretin amyloidosis (ATTR) in the UK. *J. Neurol. Neurosurg. Psychiatry* 2016, **87**, 620–627. to induce atrophy and degeneration of myocardial cells, particularly in the subendocardial layer, producing a
 15. Duman, T.; Telci, H.; Maturing, Z.; Metin, A.; Asarcı, M.; late-onset peripheral neuropathy from high endemic areas. Ünal, G.; Glazier, amyloid deposits in peripheral nerves. *Congophilic* (**A**) and *apple-green birefringence* (**B**). Atrophy or degeneration in peripheral nerves. *Neurology* 2006, **67**, 103–108. Sengül, G.; Duman, T.; Telci, H.; Maturing, Z.; Metin, A.; Asarcı, M.; Genotypic and phenotypic presentation of transthyretin-related familial amyloid polyneuropathy (TTR-FAP) in Turkey. *Neurology* 2013, **80**, 133–139. Duman, T.; early 2016, **26**, 141–146. endemic foci. Scale bars = 20 μ m.

16. Holmgren, G.; Steen, L.; Ekstedt, J.; Groth, C.G.; Ericzon, B.G.; Eriksson, S.; Andersen, O.; Karlberg, I.; Nordén, G.; Nakazato, M.; et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). *Clin. Genet.* 1991, **40**, 242–246.
17. Yamashita, T.; Ando, Y.; Okamoto, S.; Misumi, Y.; Harihara, T.; Ueda, M.; Obayashi, K.; Nakamura, M.; Jono, H.; Shono, M.; et al. Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. *Neurology* 2012, **78**, 637–643.

18. Coelho, T.; Mata, L.F.; Martins da Silva, J.; ...; Waddington Cruz, M.; Planté-Bordeneuve, V.; Lozeron, P.; Suh, Q.B.; Obici, L.; Sakuma, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Lichy, W.J.; Westerman, J.F.; et al. Tafamidis for transthyretin familial amyloid polyneuropathy: A randomized, controlled trial. *Neurology* 2012, **79**, 785–792.

19. Berk, J.L.; Suh, Q.B.; Obici, L.; Sakuma, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Lichy, W.J.; Westerman, J.F.; et al. Reimposing tafamidis for familial amyloid polyneuropathy: A randomized clinical trial. *JAMA* 2013, **310**, 2053–2067.

20. Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, L.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Maleszewski, R.; Darry, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. *N. Engl. J. Med.* 2018, **379**, 1007–1015.

21. Adams, D.; Gonzalez-Duarte, A.; O'Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. *N. Engl. J. Med.* 2018, **379**, 15–21.

22. Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, L.; Obici, L.; et al. Nilotensin treatment for patients with hereditary transthyretin amyloidosis. *N. Engl. J. Med.* 2018, **379**, 22–31.

23. Koike, H.; Misu, K.; Suguri, M.; Iijima, M.; Mori, K.; Yamamoto, M.; Hattori, N.; Mukai, E.; Ando, Y.; Ikeda, S.; et al. Pathology of early- vs. late-onset ATTR Met30 familial amyloid polyneuropathy. *Neurology* 2004, **63**, 129–138.

24. Cornwell, G.G.; Tard, Murdoch, W.L.; Kyle, R.A.; Westerman, P.; Pitkänen, P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. *Am. J. Med.* 1983, **75**, 618–623.

Figure 2. Representative electron microscopic photographs of amyloid fibrils in early-onset ATTR Val30Met amyloidosis patients from endemic foci (A, C) and late-onset ATTR Val30Met amyloidosis patients from nonendemic areas (B). Cross sections of peripheral nerve biopsy specimens. Uranyl acetate and lead citrate staining. Amyloid fibrils tend to be long and thick in early-onset patients from endemic foci (A) whereas those in late-onset patients from nonendemic areas are generally short and thin (B). Dotty structures (arrows) are frequently observed among amorphous electron-dense extracellular materials (black arrowheads) (C). Elongated, mature amyloid fibrils are also observed (white arrowheads). Circular structures with a diameter of 50 to 70 nm are collagen fibers. Scale bars = 0.2 μ m.

ante- and post-mortem study. *Mod. Pathol.* 2011, **24**, 1533–1544.

25. Tanskanen, M.; Peuralinna, T.; Pölkkiö, T.; Notkola, I.L.; Sulkava, R.; Hardy, J.; Singleton, A.; Jantunen, S.; Tasaki, A.; Hukkanen, P.J.; et al. Senile systemic amyloidosis and lead to the very aged brain associates with genetic variation in α 2 macroglobulin and tau: A population-based autopsy study. *Ann. Med.* 2008, **40**, 232–239.

26. Ueda, M.; Horibata, Y.; Shono, M.; Misumi, Y.; Oshima, T.; Su, Y.; Tasaki, M.; Shinriki, S.; Kawahara, S.; Jono, H.; et al. Clinicopathological features of senile systemic amyloidosis: An autopsy study. *Mod. Pathol.* 2011, **24**, 1533–1544.

An important issue tightly related to the contribution of wild-type TTR to the mechanisms of amyloid fibril formation is the truncation of TTR by proteases, such as trypsin and plasmin [48,49]. A large amount of C-terminal fragments of TTR, starting at positions around amino acid 50, have been found in the amyloid deposits of late-onset ATTR [50].

27. Sekijima, T.; Yada, M.; Ueda, M.; Koike, H.; Yamada, M.; Ando, T. First nationwide survey on systemic wild-type ATTR amyloidosis in Japan. *Amyloid* 2018, **25**, 8–10.

28. Grogan, M.; Scott, C.G.; Kyle, R.A.; Zeldenrust, S.R.; Gertz, M.A.; Lin, G.; Klarich, K.W.; Miller, W.L.; Maleszewski, J.J.; Dispizio, A. Natural history of wild-type transthyretin cardiac fragments are present in only small amounts [41,42,50]. C-terminal fragments are also present in the amyloid deposits of ATTRwt amyloidosis cases [45,50]. By contrast, amyloid deposits consist mainly of full-length TTR in early-onset Val30Met patients [41,50]. Importantly, truncated TTR resulting from proteolytic cleavage was shown in

4. Impact of Amyloid Fibril Formation on Neighboring Tissues

Tissues
Y.; Ikeda, S.; Sobue, G. Electrophysiological features of late-onset transthyretin Met30 familial amyloid polyneuropathy unrelated to endemic foci. *J. Neurol.* 2008, **255**, 1526–1533.
Electron microscopic studies of nerve biopsy specimens from patients with ATTR amyloidosis have shown that amyloid fibrils were formed among amorphous electron-dense materials located in extracellular spaces of the endoneurium.⁴⁴ Amorphous electron-dense materials tend to be observed around microvessels and the subperineurial space. Among these amorphous materials, dotty or fine fibrillar structures are frequently observed (Figure 2C). The dotty structures seem to be the core of amyloid fibrils because slightly elongated fibrillar structures with a thickness similar to the diameter of these dots are frequently found.⁴⁴ The mature long fibers usually occupy the central part of the large aggregations of amyloid fibrils, while the amorphous materials, dotty amyloidosis in endemic and non-endemic areas: Experience from a single-referral center in structures, and short amyloid fibrils tend to be present at the periphery of the aggregates of amyloid fibrils. During Japan. *J. Neurol.* 2018, **265**, 134–140.
the process of amyloid fibril maturation, amyloid fibrils seem to pull surrounding tissues.⁴⁴ This traction of 34. Koike, H.; Sobue, G. Diagnosis of familial amyloid polyneuropathy: Widening of the clinical spectrum such as early-onset Val30Met pathological features. *Expert Opin. Med. Diagn.* 2010, **4**, 323–331.
influence on neighboring tissues in cases with short and fine amyloid fibrils, such as late-onset Val30Met cases in 35. Koike, H.; Sobue, G. Late-onset familial amyloid polyneuropathy in Japan. *Amyloid* 2012, **19** nonendemic areas (Figure 3B).^{40,44}
(Suppl. 1), 55–57.

36. Lemos, C.; Coelho, T.; Alves-Ferreira, M.; Martins-da-Silva, A.; Sequeiros, J.; Mendonça, D.; Sousa, A. Overcoming artefact: Anticipation in 284 Portuguese kindreds with familial amyloid polyneuropathy (FAP) ATTRV30M. *J. Neurol. Neurosurg. Psychiatry* 2014, 85, 326–330.
37. Koike, H.; Hashimoto, R.; Tomita, M.; Kawagashira, Y.; Iijima, M.; Tanaka, F.; Sobue, G. Diagnosis of sporadic transthyretin Val30Met familial amyloid polyneuropathy: A practical analysis. *Amyloid* 2011, 18, 53–62.
38. Misu, K.; Hattori, N.; Nagamatsu, M.; Ikeda, S.; Ando, Y.; Nakazato, M.; Takei, Y.; Hanyu, N.; Usui, Y.; Tanaka, F.; et al. Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan. Clinicopathological and genetic features. *Brain* 1999, 122, 1951–1962.
39. Misu, K.; Hattori, N.; Ando, Y.; Ikeda, S.; Sobue, G. Anticipation in early- but not late-onset familial amyloid polyneuropathy (TTR met 30) in Japan. *Neurology* 2000, 55, 451–452.
40. Koike, H.; Ikeda, S.; Takahashi, M.; Kawagashira, Y.; Iijima, M.; Misumi, Y.; Ando, Y.; Ikeda, S.I.; Katsuno, M.; Sobue, G. Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy. *Neurology* 2016, 87, 2220–2229.

41. Ihse, E.; Ybo, A.; Suhr, O.; Lindqvist, P.; Backman, C.; Westermark, P. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. *J. Pathol.* 2008, **216**, 253–261.

42. Ihse, E.; Rapezzi, C.; Merlini, G.; Benson, M.D.; Ando, Y.; Suhr, O.B.; Ikeda, S.; Lavatelli, F.; Obici, L.; Quarta, C.C.; et al. Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. *Am J Pathol* 2015, **189**, 142–150.

43. Koike, H.; Ando, Y.; Ueda, M.; Kawagashira, Y.; Iijima, M.; Fujitake, J.; Hayashi, M.; Yamamoto, M.; Mukai, E.; Nakamura, T.; et al. Distinct characteristics of amyloid deposits in early- and late-onset transthyretin Val30Met familial amyloid polyneuropathy. *J. Neurop. Sci.* 2009, **287**, 178–184.

44. Koike, H.; Nishi, R.; Ikeda, S.; Kawagashira, Y.; Iijima, M.; Sakurai, T.; Shimohata, T.; Katsuno, M.; Sobue, G. The morphology of amyloid fibrils and their impact on tissue damage in hereditary transthyretin amyloidosis: An ultrastructural study. *J. Neurop. Sci.* 2018, **394**, 99–106.

45. Bergström, J.; Gustavsson, A.; Hellman, U.; Sletten, K.; Murphy, C.L.; Weiss, D.T.; Solomon, A.; Olofsson, B.O.; Westermark, P. Amyloid deposits in transthyretin-derived amyloidosis: Cleaved transthyretin is associated with distinct amyloid morphology. *J. Pathol.* 2005, **206**, 224–232.

46. Yazaki, M.; Mitsuhashi, S.; Tokuda, T.; Kabashita, F.; Takei, Y.; Koyama, J.; Kawamorita, A.; Kanno, H.; Ikeda, S.I. Progressive wild-type transthyretin deposition after liver transplantation preferentially occurs onto myosinium in FAP patients. *Am. J. Transplant.* 2007, **7**, 235–242.

47. Okamoto, S.; Wixner, J.; Obayashi, K.; Ando, Y.; Ericzon, B.G.; Friman, S.; Uchino, M.; Suhr, O.B. Liver transplantation for familial amyloidotic polyneuropathy: Impact on Swedish patients' survival. *Liver Transplant.* 2009, **15**, 1229–1235.

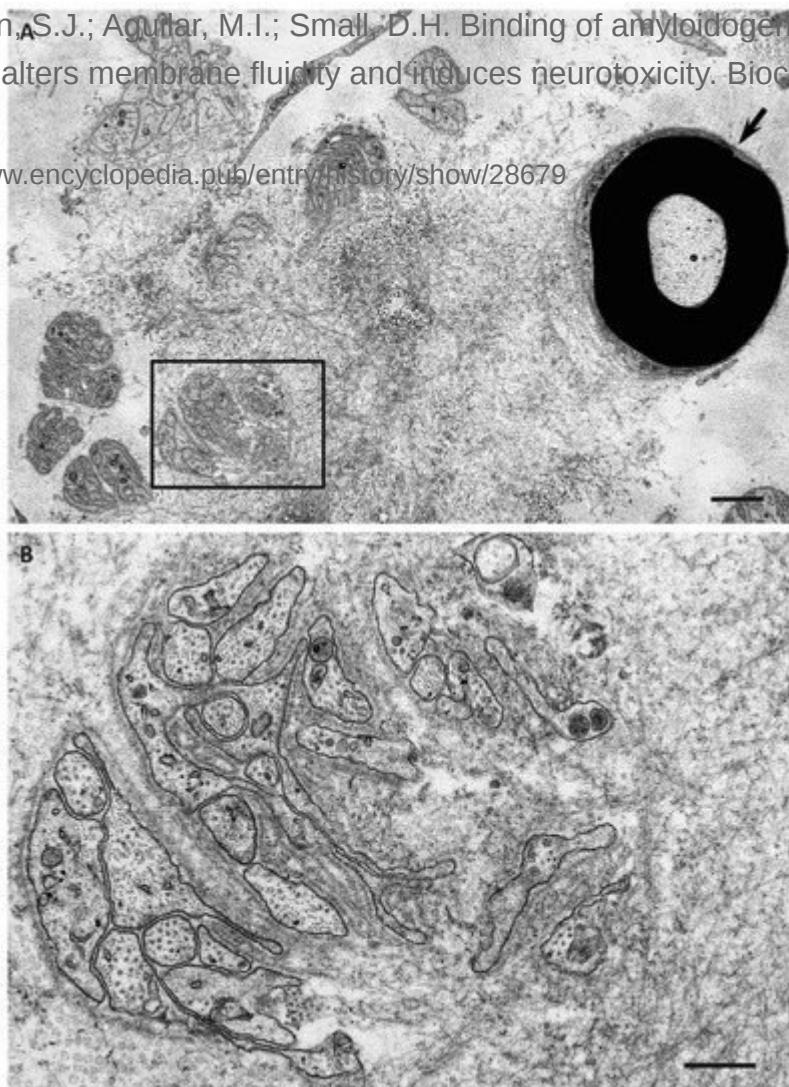
Figure 3. Impact of amyloid fibril formation on neighboring tissues in early-onset ATTR Val30Met amyloidosis patients from endemic foci (A) and late-onset ATTR Val30Met amyloidosis patients from non-endemic areas (B).

Cross sections of sural nerve biopsy specimens. Uranyl acetate and lead citrate staining. During the process of amyloid fibril maturation, amyloid fibrils seem to pull surrounding tissues. This traction of neighboring tissues seems to be conspicuous in patients with long and thick amyloid fibrils, such as early-onset Val30Met patients from amyloidogenesis in vitro. *J. Biol. Chem.* 2018, **293**, 14192–14199.

50. Mangione, P.P.; Verona, G.; Corazza, A.; Marcoux, J.; Canetti, D.; Giorgetti, S.; Raimondi, S.; Stoppini, M.; Esposito, M.; Relini, A.; et al. Plasminogen activation triggers transthyretin

51. As a result, Schwann cells adjacent to amyloid fibril masses become atrophic and distorted, particularly in early-onset patients with long and thick amyloid fibrils (Figure 4) [40,44](#). Small-diameter nerve fibers, particularly

52. Marcoux, J.; Mangione, P.P.; Porcari, R.; Degiacomi, M.T.; Verona, G.; Taylor, G.W.; Giorgetti, S.; Raimondi, S.; Sanglier-Cianfréani, S.; Benesch, J.L.; et al. A novel mechano-enzymatic cleavage


53. mechanism underlies transthyretin amyloidogenesis. *EMBO Mol. Med.* 2015, **7**, 1337–1349. myelinated fibers, particularly large myelinated fibers, seem to be resistant to such stress because the contact

54. Sueyoshi, T.; Ieda, M.; Yamada, Y.; Ito, H.; Sei, A.; Ueda, J.; Ando, Y.; Mizuta, T. Wild-type fibrils occur. In addition, transthyretin-derived amyloidosis mainly ligates peripheral and terminal Schwann cells. *Pathol.* 2011, **42**,

part 1259+1264 fibrils, tend to become indistinct, suggesting the direct damage of Schwann cells by amyloid fibril invasion [40][44]. An affinity of amyloid fibrils for Schwann cell membranes mediated by their common constituents 53. Misumi, Y.; Ando, Y.; Ueda, M.; Obayashi, K.; Jono, H.; Su, Y.; Yamashita, T.; Uchino, M. Chain may participate in this process [53]. A previous study suggested that TTR binds to the plasma membrane and exerts reaction of amyloid fibril formation with induction of basement membrane in familial amyloidotic toxic effects by altering membrane fluidity [54]. *J. Pathol.* 2009, **219**, 481–490.

54. Hou, X.; Richardson, S.J.; Aguilar, M.I.; Small, D.H. Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. *Biochemistry* 2005, **44**, 11618–11627.

Retrieved from <https://www.encyclopedia.pub/entry/history/show/28679>

Figure 4. Aggregation of amyloid fibrils and Schwann cells in ATTRv amyloidosis. A cross section of sural nerve biopsy specimen from an early-onset Val30Met patient from an endemic focus. Uranyl acetate and lead citrate staining. Schwann cells associated with unmyelinated fibers that are apposed to amyloid fibrils become atrophic and distorted, whereas myelinated fibers, particularly large myelinated fibers (arrow), tend to be preserved because the apposition of these fibers to amyloid fibril aggregates is usually partial. A high-powered view of representative Schwann cells associated with unmyelinated fibers in the box in (A) is shown in (B). Scale bars = 2 μ m (A) and 0.5 μ m (B).