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Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast

reserves of brackish groundwater are found (e.g., the United States, North Africa).

brackish water reverse osmosis (BWRO) desalination  capital cost of BWRO  operating cost of BWRO

impacts of feedwater quality on cost  impacts of capacity on cost

1. Introduction

Many regions of the world have limited freshwater supplies to meet the combined demands of human consumption,

agriculture, and industry . Limitations on the development and use of fresh groundwater resources have led to assessments

on the use potential of saline groundwater. Saline groundwater occurs in abundance in many global locations . Brackish

water, with total dissolved solids (TDS) less than about 8000 mg/L, is used as a water supply source in many regions, such as

North Africa, central Saudi Arabia, Jordan, and others, in combination with desalination using the brackish water reverse

osmosis process .

In the United States, there are extensive saline groundwater sources that contain total dissolved solid (TDS) concentrations

between 1000 and 10,000 mg/L . The volume of brackish groundwater that is available for use is quite

large and geographically extensive. Saline (brackish) water use by county, in the United States in 2010, is shown in Figure 1.

Brackish groundwater is used for irrigation in some regions, when the TDS is under 1500 mg/L, and the vegetation is tolerant

to that salinity and the resulting soil salt buildup .

Brackish groundwater is also a source of feedwater for many brackish water reverse osmosis (BWRO) desalination plants that

produce potable water . In 2010, nearly 250 municipal membrane treatment facilities operated in the United States,

and this grew to 406 in 2018  (Figure 2). Of this number, 295 are BWRO facilities with capacities over 95 m /d .

The largest concentration of BWRO desalination plants in the United States occurs in Florida . Other states, such as

Texas, are planning to add many additional BWRO facilities to those that are currently operating . In Southern Florida, in

2019, 40 BWRO and 3 seawater reverse osmosis desalination plants operated, with a total capacity of 1.09 million m /d 

(Figure 3).

Because of the global growth rate in the use of brackish water desalination, there is great interest in the capital and operating

costs of these facilities, but few data compilations have been published using actual data. One of the purposes of this

research is to provide factual data associated with specific facilities and the methods of operation that contribute to the OPEX

costs. The costs associated with a total of seven BWRO desalination water treatment facilities, based on cost per cubic meter

(m³) in the Southwest Florida region of the United States of America, have been compiled, to allow detailed examination. In

Southwest Florida, fresh source water supplies are becoming increasingly hard to develop because of the explosive

population growth, impacts on the environment, pumping-induced saltwater intrusion, competition with the use of public or

private wells, limited surface-water resources, and climate change issues. The combined results of these factors reduce the

available freshwater resources for use and increase the demand for potable water.
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Figure 1. Total saline groundwater use in the United States by county in 2014 .

Figure 2. Number of desalination plants operating in the United States in 2010 .

Figure 3. Locations and capacities of operating BWRO desalination plants in Southern Florida .

In addition to assessing the capital (CAPEX) and operating costs (OPEX) for the Southwest Florida facilities, an evaluation of

BWRO costs was made, by comparing these detailed costs with the global data, to construct some basic graphs. These

graphs can estimate the unit costs for various capacity plants and the impact of groundwater TDS on these costs. Where

possible, the electrical cost was factored into the analysis. Most cost data for BWRO facilities have been estimated, rather
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than developed from the compilation of actual plant data. The inflation associated with the CAPEX and OPEX of the facilities,

has been provided for the US facilities.

Most CAPEX and OPEX cost information on BWRO facilities operating costs is currently estimated using curves, models, or a

set of assumptions . It is a goal of this research to obtain real cost

information for the existing BWRO plans, for comparison to the past estimates. Little consideration has been given to

innovations in real plant operations, which reduce electrical usage and the overall cost of treatment. Some examples of

innovative cost control measures include the blending of raw water with treated water, to raise the pH and to reduce the cost

to the consumer; the use of energy recovery devices in BWRO; the blending of the raw water with some limited freshwater, to

reduce the salinity of the feedwater (where available); and the implementation of specialized maintenance techniques that

extend the lifetime of the membranes, from 5 up to 15 years (e.g., City of Cape Coral).

2. CAPEX Cost Variation

The CAPEX costs for BWRO facilities vary in the extreme, based on what is included in the project and land costs. The

highest cost documented value of over USD 2947/m  is the North City of Cape Coral, Florida facility. Based on the consumer

price index over the years, since the construction of the project, the 2020 cost would be about USD 4067. The detailed

breakdown of this cost shows that a large urban land purchase was required to build the BWRO facility, and to accommodate

other utility infrastructure at the same location. The building was sized to meet the buildout capacity for the service area of the

plant. Also, spare pumps were purchased in addition to other equipment that was needed to provide operational security. The

raw water contained hydrogen sulfide, which had to be removed before the treated water could be discharged into the

distribution system, so a degassing system had to be designed and constructed. The concentrate disposal for the plant was a

deep-well injection, so that the cost was also included in the CAPEX. The Cape Coral North facility is an excellent example of

why using cost curves to estimate CAPEX, for new BWRO facilities, can produce inaccurate estimates. Many projects

involving BWRO design and construction also include multiple components that cannot be easily separated from the primary

project goal. Commonly, distribution system improvements are also contained with these project budgets (e.g., storage tanks,

pumping stations, and pipeline improvements). The use of cost curves for the estimation of strictly the BWRO component of a

project is reasonable, if it can be separated from the other components of the project.

Perhaps the most consistent data set on BWRO CAPEX is that from Texas. These projects had a rather narrow set of goals

and objectives that follow the general trend of reducing CAPEX/m  with increasing plant capacity. The one possible exception

is the largest capacity plant in El Paso (Figure 4). This facility uses a high-pressure deep injection well system for concentrate

disposal.

Figure 4. Comparison of the CAPEX costs for nine BWRO plants in Texas to the cost curves developed by Unified Costing

Model  and the Desalting Handbook for Planners . This cost model has not been corrected for the consumer cost

increase from when the model was created to the current cost.

3. OPEX Cost Variation

Some important general observations can be made in analyzing the complied OPEX data from various BWRO facilities. First,

the local electrical cost is one of the key factors that controls BWRO treatment costs in facilities that treat raw water, within a

TDS range of 2000 to 8000 mg/L, and do not have major pretreatment and concentrate disposal challenges. The OPEX costs

for BWRO facilities in Florida are generally higher than in Texas, because the average electrical cost is about USD 0.6/kWh in

Texas versus USD 0.125/kWh in Florida. The Florida rate is primarily for residential electric use, and industrial or utility rates

are lower based on the negotiated rates, considering factors such as interruptible power (on-site generators) and peak load

reduction. Most BWRO facilities in Florida must also post-treat the potable water to remove hydrogen sulfide. The
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international facility costs are lower, which could result from various types of subsidies, or other unknown reasons. At

locations where the pretreatment costs only include an antiscalant and acid to reduce the pH, the costs are generally lower.

Where any additional control of the substances in the raw water is required, such as silica, iron, or manganese, the costs can

be quite high compared to the pretreatment that is used to solely control calcium carbonate scaling.

In general, the cost for BWRO plants capacities, ranging from 10,000 to 70,000 m /d, is 0.39 to 0.66 USD/m  based on the

time when the data were collected. These data are not corrected for inflation, because the individual utilities do not raise the

consumer rates annually and may lag behind real cost recovery. A graph showing all of the compiled OPEX data based on

plant capacity (m /d) versus cost in USD/m  is given in Figure 5. Note that there is extreme scatter when plotting all of the

data that were collected. The variations are caused primarily by the differences in energy costs, pretreatment of the feedwater,

and post-treatment of the finished water. There is no distinct pattern of reducing unit costs with increasing plant capacity for all

of the data combined. Still, the trend line shows a negative slope, indicating a reduction in OPEX as the capacity increases.

The Texas data show a tighter fit to the capacity versus cost scaling line. A second plot of the plant capacity in m /d versus the

cost per day in USD produces less scatter, and a trend line can be drawn with a better correlation (Figure 6). Since the slope

of the line is less than one-to-one, as shown in the regression equation, the scaling factor that indicates a lower unit cost as

the capacity increase is again confirmed.

Figure 5. U.S. and global OPEX cost for various plant capacities. Note the extreme scatter of data based on the arithmetic

plot. The R  value of the trend line is poor, with the data having a standard deviation of 0.13 m /d, but shows a reducing unit

cost as capacity increases. Note that these costs are not corrected for local inflation, which may not directly correlate with

increased costs to consumers (e.g., foreign water subsidies).

Figure 6. Plot of capacity versus total OPEX cost/day. Note that this plot shows a better fit to the trend line with a high R

value. The equation for the trend line has a slope of less than one-to-one, which is indicative of a lower unit cost with a larger
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capacity. Therefore, scaling of capacity is an important economic factor. Note that these costs are not corrected for local

inflation, which may not directly correlate with increased costs to consumers (e.g., foreign water subsidies).

4. Impacts of Energy Recovery Systems in BWRO

In the past, energy recovery systems were not considered to be effective in cost savings in BWRO plants, because of the low

operating pressure, high recovery, and the use of blending with raw water. However, many BWRO plants are now being

designed with energy recovery systems or retrofitted with these systems.

An evaluation of two types of energy recovery systems for a BWRO plant showed that both turbocharger and isobaric

systems might save electric energy costs, especially when the conversion rate is <84% ; as the conversion rate

declines, the electrical energy saving increases . The key method in deciding on the use of energy recovery systems on

BWRO plants is to conduct a complete life cycle analysis (LCA) .

A large number of BWRO facilities exhibit long-term increases in feed water salinity . The use of energy

recovery systems to mitigate electric energy costs increases as the feedwater salinity increases, which should be considered.

This would potentially mitigate higher energy consumption, to treat higher TDS feedwater. Some recent research on the use

of energy recovery in BWRO has suggested integrating a supercapacitor with capacitive deionization into the process .

5. Impacts of Feedwater Chemistry Issues That Can Potentially
Affect the Economics of Brackish-Water Desalination

Feedwater chemistry can significantly impact BWRO costs if additional pretreatment is required to prevent membrane scaling

and fouling . In BWRO, the most common problem is scaling and not fouling, although some fouling has been reported at

the City of Cape Coral North BWRO facility. There are four common types of scaling in BWRO plants, which are impacted by

the feedwater chemistry. This includes scaling with calcium carbonate, calcium sulfate, iron, and silica .

Calcium carbonate scaling is commonly controlled using standard pretreatment methods, as described in this paper at the

City of Cape Coral facilities. The pH of the inflow water is lowered using acid, and a polyphosphate or polyacrylate is added.

Some recent research has been conducted on the use of polyaspartic acid as a pretreatment additive . Unless the

hardness of the feedwater is exceptionally high, the standard pretreatment process that is used to control calcium carbonate

scaling does not add a higher cost to BWRO desalination. In feedwater with a very high hardness, the additional

concentration of acid required could increase OPEX cost.

The control of calcium sulfate scaling (gypsum) can be considerably more complex . The closer to saturation that occurs

in the feedwater, the greater the difficulty of the pretreatment. A zwitterionic coating on the thin-film composite membranes has

been suggested as a means for slowing gypsum scaling . The addition of carboxymethyl cellulose in the feed may also

reduce the rate of scaling . The use of sulfuric acid to lower the pH is not recommended, but hydrochloric acid is more

effective and does not add additional sulfate to the feedwater. However, hydrochloric acid is more expensive and tends to

increase the treatment costs. When the feedwater chemistry contains a high relative concentration of sulfate-to-chloride ratio,

the potential for scaling rises and increases the potential for gypsum scaling, the recovery using the RO process must be

reduced, thereby significantly increasing the treatment cost . In certain cases, it is more effective to treat this type of

feedwater using electrodialysis or electrodialysis reversal if the overall TDS concentration is not too high . In Florida,

this issue occurs in Sarasota County.

The control of iron scaling in BWRO is commonly mitigated by the reduction in the feedwater pH, similar to calcium carbonate.

However, if the dissolved iron concentration is too high or the feedwater varies between anoxic and oxic, the iron must be

removed at considerable expense. In this case, it may be necessary to add a tray aerator, add a coagulant polymer, and then

use a plate settler to remove the iron . An alternative would be to use chlorine dioxide, a plate settler, micro-sand filtration,

and then an oxidant remove stage to remove the iron . Therefore, if the dissolved iron must be removed, the BWRO

desalination process rises in cost.

Perhaps the most difficult potential scaling issue is that with silica. Most natural groundwater sources do not have high silica

concentrations, but in aquifers with elevated temperatures (geothermal), silica concentrations can approach saturation or they

can contain silica colloids. Because the scaling of silica on BWRO membranes may not be able to be removed, it is quite

important that it be prevented from occurring. Two factors seem to dictate the scaling of silica on the membrane, which

include the initial concentration in the feedwater (combined dissolved and colloids) and the surface condition of the

membranes . The surface electrostatic charge and the occurrence of certain organic materials can either accelerate or

inhibit silica deposition. The typical pretreatment methods to prevent scaling are pH adjustment or to add an antiscalant

solution . These methods are common and do not generally add significant costs to the pretreatment. However, if

[43][44][45]

[46]

[47]

[48][49][50][51][52]

[53]

[54]

[55]

[56]

[57][58]

[59]

[60]

[61]

[62][63][64]

[65]

[65]

[66][67]

[68][69]



Brackish Water Reverse Osmosis Desalination | Encyclopedia.pub

https://encyclopedia.pub/entry/13506 6/10

pretreatment of the feedwater is required, then the costs can become quite high. Expensive pretreatment techniques, such as

electrocoagulation, can be used to remove the silica from the brackish water before primary membrane treatment .

6. Impacts of Zero Liquid Discharge on the Economics of BWRO

Disposal of the concentrate after the BWRO process has also become a potentially large cost factor within the interior facility

locations, where surface disposal into the ocean or the use of deep injection wells is not possible. In some locations, the use

of zero liquid discharge (ZLD) is the only means of concentrate disposal. Within the realm of seawater desalination, the use of

ZDL for large-capacity plants is likely a myth . In small- to medium-capacity BWRO systems, ZLD is feasible, but requires a

means of salt disposal, which causes increased costs for both the additional energy for treatment and the solid waste disposal

. A number of methods have been proposed to lower the energy consumption and costs for ZLD, by combining

various membrane and thermal processes . All of the methods, either used or designed to date, cause a

major increase in power consumption, resulting in higher water production costs . Perhaps mitigation methods could be

used to co-locate inland BWRO plants, where a number of industries require very-high-quality water for makeup water to

produce steam or where valuable metals could be extracted from the waste stream.

7. Comparative Costs between BRWO and Seawater RO (SWRO)
Costs

Over the past decade, the cost of SWRO has steadily decreased, based on the common use of energy recovery devices and

the scale factor that is associated with the design and construction of very-large-capacity facilities . The OPEX cost of

some seawater plants has now fallen below BWRO OPEX costs for some of the larger facilities, in the 100,000 to 1,000,000

m /d range. A key difference between the SWRO and BWRO facilities is the chemistry differences in the raw water supply,

and the ability to design and construct very-large-capacity SWRO plants above 200,000 m /d. The issue of concentrate

disposal is another factor favoring a lower seawater desalination cost, where the disposal is back into the ocean. While

equivalent-capacity plants will continue to show higher OPEX costs for BWRO, the trend will continue to reduce SWRO costs

as the capacities grow. It is interesting to note that the use of seawater from groundwater sources should significantly reduce

pretreatment, due to the lack of organic carbon in groundwater. However, the possible occurrence of hydrogen sulfide in the

feedwater will necessitate its removal after membrane treatment, and thereby could cause an increase in the overall treatment

cost.
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