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Investigations on the budget of plant litter and litter carbon in forest streams can provide a key scientific basis for

understanding the biogeochemical linkages of terrestrial-aquatic ecosystems and managing forest catchments.

litter input and output litter carbon budget mountain forest stream

| 1. Introduction

In the geosphere, streams cover less than 3% of the forest catchment area, but function as the bridges linking
terrestrial-aquatic biogeochemical cycles LI, In particular, plant litter from neighboring forests and riparian zones is
the major source and carrier of carbon in forest streams and plays crucial roles not only in maintaining stream
ecosystem productivity, but also in maintaining the structure and function of the butted aquatic ecosystem 23],
Additionally, litter decomposition in the forest stream ecosystem can contribute significantly to the global carbon
cycle BIBIE Therefore, understanding the budget of litter and litter carbon in forest streams can provide a key

scientific basis for managing forest catchments and predicting the global carbon cycle.

The forest stream might act as a sink of plant litter and bioelements in the forest catchment. Theoretically, litter
input to the stream is hierarchically regulated by three interactive factors: climate, forest type, and stream
characteristics . First, the climate has been considered the primary factor influencing litter production [,
Generally, average litter production decreases gradually from tropical zones to boreal alpine zones along the
climate gradient 229 Compared to cold temperate zones, evergreen broadleaved forests in tropical regions often
have larger amounts of litter production due to the higher temperature and moisture 112 implying that more litter
can enter the stream. Second, the dynamics of litter input vary greatly with forest types, as different tree species
have different phenological phases 13l which in turn determine the quantity and dynamics of litter input to the
forest stream 13141 For instance, on a local scale, evergreen and deciduous forests usually show higher litter
production than dark coniferous forests in the subalpine forest region 13281 Pplant species composition in the
riparian zone differs greatly from that in the mountain forest, and the litter production of shrub and herb species in
the riparian zone is lower than that in the mountain forest 4 implying that the litter input to the stream in the
riparian zone might be lower than that directly in the forest. Third, litter input is also modulated by the stream length
and width 7, and longer and wider streams can receive more litter along the stream 18II131 Although litter input to
the stream has been systematically investigated in northern America 2221122l |itter input to streams has not been
fully investigated around the world, limiting our understanding of the biogeochemical linkages of mountain forest

and riparian zones with streams and rivers.
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The litter and litter carbon output from streams are known as the major carbon sources of butted rivers. That is to
say, the forest stream also acts as the source of litter and litter carbon 23241, |n theory, the litter output from forest
streams is usually regulated by the stream litter quality and quantity, stream biological community, stream
characteristics, and climate [!23, To begin with, the magnitude of litter input to the stream determines the size of
the litter source of a butted river 45, Meanwhile, the scouring action of stream water on litter can directly
accelerate litter fragmentation 28, which may lead to the output and confluence characteristics of litter varying with
the seasons 271281129 For example, streams with lower flow rates and slower velocities always accompany faster
litter decomposition and litter deposition, leading to smaller amounts of output, and vice versa 29, In addition, the
length and width of the streams, together with their microtopography, might significantly influence litter output 221,
Finally, forest stream characteristics, such as discharge and velocity, are always regulated by seasonal
precipitation (rainfall, snowfall, and snowmelt), theoretically modulating the output of litter and litter carbon from the
streams. In particular, the plant rhythm with seasonal changes accompanies the seasonal dynamics of precipitation
and temperature, which play important roles in controlling the output of litter from a forest stream B, Therefore,
investigations into the litter output from forest streams could facilitate a better understanding of the biogeochemical
linkages of mountain forests and riparian zones with aquatic ecosystems.

Carbon is the basic component in both terrestrial and aquatic ecosystems. The dynamic pattern of litter carbon in
forest stream ecosystems can reveal terrestrial-aquatic carbon biogeochemical linkages B[22l past investigations
have found that the carbon fractions derived from upstream and neighboring ecosystems are the two major
sources of dissolved carbon (DC) in forest stream ecosystems [3334 Most investigations of carbon
biogeochemical linkages between mountain forests and butted aquatic ecosystems have employed the small-scale
runoff field method 3. However, this method has difficulty revealing the roles of forest streams in terrestrial—
aquatic carbon biogeochemical linkages, especially in geographically fragile mountainous regions B8, First, due to
geological fragmentation and serious soil percolation B4, surface runoff is rarely observed in most rainfall and
snowfall events, while percolating water becomes an important biogeochemical link between mountain forest
ecosystems and aquatic ecosystems in fragile mountainous regions. Second, forest streams can be directly
involved in the biological carbon cycle rather than indirectly involved through surface runoff, since litter from forest
and riparian vegetation is a major source of carbon input to the butted aquatic ecosystem (&l Third, the riparian
zone is an important domain in the forest stream ecosystem. The decomposition of allochthonous organic materials
(e.g., foliar litter) in riparian zones is often a critical factor affecting the continued availability of carbon resources in
these ecosystems 22, Hence, the systematic investigation of litter carbon dynamics in streams and riparian zones
will provide baseline data for further understanding of the biogeochemical linkages of terrestrial-aquatic
ecosystems.

As the second largest forest region in China, the subalpine forest region in the eastern Qinghai-Tibet Plateau is the
most important freshwater conservation area and headwater region of the Yangtze River, and plays paramount and
irreplaceable roles in holding water, conserving soil, and maintaining the safety of water resources and
downstream aquatic ecosystems X941l These forest stream ecosystems are typically cold ecosystems that
experience considerable seasonal freezing and thawing events, and seasonal changes are associated with distinct

changes in environmental conditions 4243l Therefore, a deep investigation of the budget of litter and litter carbon
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in these forest stream ecosystems is key to revealing the carbon biogeochemical linkages between subalpine

forests and aquatic ecosystems.

| 2. Site Description

This study was conducted at the Long-Term Research Station of Alpine Forest Ecosystem in the Bipenggou Valley
(31°14'~31°19' N, 102°53'~102°57"' E, 2458~4619 m above sea level (masl)), Li County, Southwest China, which is
located in the alpine gorge area with frequent geological breaks, clear seasonal snow cover (the maximum snow
depth was about 35 cm), and frequent freeze/thaw cycles [ (Figure 1). The mean annual precipitation is
approximately 850 mm, and the annual mean air temperature is approximately 3 °C, with maximum and minimum
temperatures of 23 °C (July) and —-18 °C (January), respectively. The frozen season lasts from November to April,
and thaw begins in late April. This subalpine forest is dominated by Minjiang fir (Abies faxoniana Rehder &
E.H.Wilson), larch (Larix mastersiana Rehder & E.H.Wilson), and cypress (Sabina saltuaria Rehder & E.H.Wilson),
and is interspersed with shrubs of azaleas (Rhododendron spp.), willow (Salix spp.), and barberry (Berberis
sargentiana C.K.Schneid). The herbaceous plants consist mainly of ferns (Cystopteris montana (Lam.) Bernh. ex
Desv) . The concentrations of carbon (C), nitrogen (N), and phosphorus (P) in the surface soil (5 cm depth) was
126.0, 5.8, and 1.2 g kg1, respectively.
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Figure 1. The investigated streams in the Bipenggou Valley, located in the upper reaches of the Yangtze River. The

letters A—O indicate the 15 sampling streams [,

| 3. Monitoring the Input and Output of Litter and Litter Carbon

In order to collect litter, according to the stream length, a quadratic litter collector (0.8 m x 0.8 m) was randomly
installed at the source, middle, and end of the stream (when the stream width < 0.8 m, one litter collector was
positioned; when the stream width > 0.8 m and <1.6 m, two litter collectors were positioned; the stream widths are

shown in Table 1), and each was installed 0.5 m above the water or ground surface (Figure 2). To avoid litter
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decay in the litter collectors caused by rainfall, the litter samples were collected every 15 days, but the litter was
collected only once in the cold winter since litterfall in winter was rare. All of the collected litter samples were put
into precleaned polyethylene bags and transported to the lab. The samples were dried to a constant weight and

stored at 65 °C for less than one week until analysis.
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Figure 2. Litter and litter carbon input and output monitoring system in the investigated streams of the Bipenggou

Valley, located in the upper reaches of the Yangtze River.

Table 1. Basic characteristics of 15 representative subalpine forest streams in the investigated subalpine forest

catchment.
ElevationLength Width Water Level FIOVY .
Stream (m) (m) (m) (cm) Velocity Main Plants
(m3ls)
A 3668 220  003% 857+3.20  0.11+0.11 A. faxoniana, Cyperus spp., S
0.16 saltuaria
B 3667 66 0.69% 515+160  0.07 +0.07 AL IR (O I ] 2
0.14 saltuaria
c 3658 13 0.63 = 716+3.83  0.01+0.02 A. faxoniana, Cyperus spp., S.
0.22 saltuaria
D 3658 924  086% 481+£1.08  0.06+0.07 A. faxoniana, Cyperus spp., S.
0.19 saltuaria
E 3657 a7 0.34 + 3.73+3.43 0.01+0.01 A. faxoniana, Cyperus spp., S.
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. . Flow
ElevationLength Width Water Level : .
Stream Velocity Main Plants
(m — (m)  (m) (cm) (mls)
0.30 saltuaria
111 + . .
F 3640 65 0.30 6.90 +1.44 0.11 £0.12 S. saltuaria, R. lapponicum
G 3640 186  02% 8.96+1.91  0.06+0.06 S. saltuaria, Carex spp., R.
0.33 weginzowii
H 3634 108  082*F 673+438  0.04+0.07 S. saltuaria, Carex spp., S.
0.28 rufopilosa
3634 256 1.02 + 719 +1.80 013+0.12 S. saltuaria, R. weginzowii, Carex
0.22 Spp.
. . . .
3 3634 18 1.29+ 3.85+ 3.05 0.04 +0.07 S. saltuaria, R. weginzowii, Carex
1.00 spp.
1.00 £ . .
K 3611 36 0.24 7.93+2.32 0.10 £ 0.08 R. lapponicum, S. saltuaria
0.93 + . .
L 3611 11 058 3.70 £ 1.89 0.03 £ 0.05 R. lapponicum, S. saltuaria
0.85+ . .
M 3610 12 0.23 6.26 £ 1.42 0.03 +0.08 R. lapponicum, S. saltuaria
N 3607 28 0.84 1172+488 015+014 > Mmastersiana, Cyperus spp., S.
0.32 rufopilosa
0.65 + S. mastersiana, S. rufopilosa,
+ + :
@] 3607 17 041 4.34 +3.84 0.02 +0.04 e Sy, | fish
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