

Core–Shell Structures with Fe_3O_4 Core for Biomedical Applications

Subjects: **Materials Science, Biomaterials**

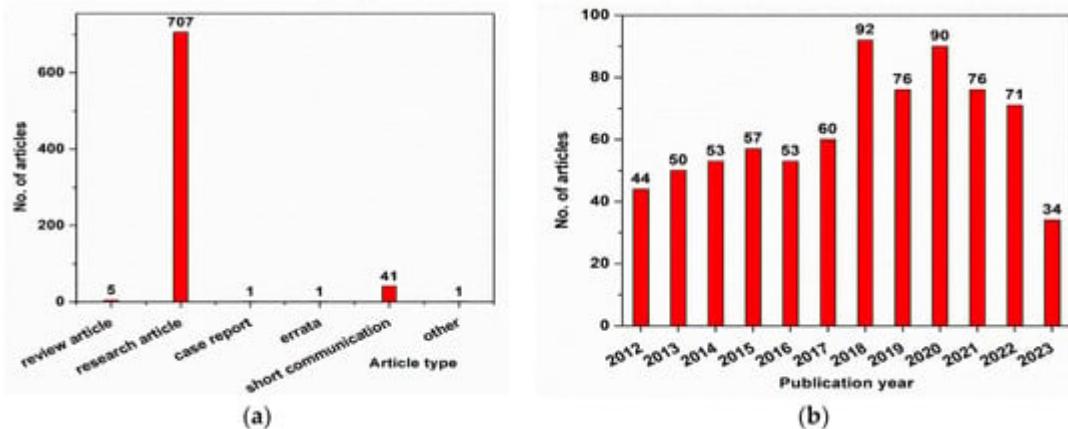
Contributor: Miruna-Adriana Ioța , Laura-Mădălina Cursaru , Adriana-Gabriela Șchiopu , Ioan Albert Tudor , Adrian-Mihail Motoc , Roxana Mioara Piticescu

Core–shell nanoparticles are functional materials with tailored properties, able to improve the requirements of various applications. Both core and shell components can be inorganic or organic, and there are numerous studies in this field regarding their synthesis methods, properties, and applications.

iron oxide

core–shell nanostructures

magnetic properties


1. Different Types of Core–Shell Structures with Fe_3O_4 Core for Biomedical Applications

Core–shell nanostructures are defined as heterogeneous nanoparticles composed of two or more nanomaterials that can be identified and are separated by distinct boundaries. Both core and shell components can be inorganic (metals, metal oxides) or organic (polymers, biomolecules) [1][2][3]. Core/shell composite nanostructures (NSs) have attracted much attention in recent years due to their diverse and unique material properties not shown by the core or shell materials alone, such as good mechanical, thermal, and optical properties [1][4]. These properties are significantly enhanced compared to pure compounds [4]. The interaction between the core and the shell of a nanostructure can lead to new properties and functions [5].

There are numerous core–shell materials with various applications and much literature about their classification and detailed descriptions of the preparation method.

Fe_3O_4 can be coated with different types of shells, such as metals (Ag, Au) [6][7][8][9][10], metal–organic frameworks (Cu–MOF), metal oxides (SiO_2 , TiO_2 , ZnO), and organic polymers (polyethyleneimine: PEI, polyacrylic acid: PAA, etc.), to obtain core–shell nanostructures with desired properties [11].

Core–shell nanostructures with Fe_3O_4 as a core have been a popular research topic over the last decade, with more than 700 articles published in the field, as shown in **Figure 1a**. As can be seen from **Figure 1b**, most of the papers published on this topic were research articles (>700 papers) and short communications (>40 papers). The data presented in **Figure 1** were obtained using the ScienceDirect database (<https://www.sciencedirect.com/>) and searching for “ Fe_3O_4 core–shell nanoparticles for biomedical applications”. The results were refined by year (selecting from 2012 to 2023) in **Figure 1a** and by article type in **Figure 1b**. These data were collected in May 2023.

Figure 1. (a) Evolution of the published articles in the field of Fe_3O_4 core–shell nanoparticles; (b) types of papers published in the field of Fe_3O_4 core–shell nanoparticles.

2. Metal-Coated Fe_3O_4

Silver-coated Fe_3O_4 nanohybrids have been used in a broad range of applications, including chemical and biological sensors [1][12], drug delivery—as successful drug carriers with focused antimicrobial, anticancer properties [1][13], diagnosis, and cancer therapy [1][14][15].

Different methods were used to synthesize Ag-coated Fe_3O_4 nanoparticles. Generally, a two-step synthesis procedure is applied: magnetite is prepared by a solvothermal, co-precipitation, or microemulsion route [12][16][17], obtaining spherical-shaped particles, and then Fe_3O_4 nanoparticles are dispersed in AgNO_3 solution in the presence of an organic solvent (ethanol, di-chlorobenzene), a surfactant (oleylamine, cetyltrimethylammonium bromide—CTAB), and a reduction agent for Ag (butylamine, sodium borohydride). Another approach uses combined phyto- and hydrothermal synthesis, preparing the magnetite core in the presence of a plant extract (neem leaf extract, leaf extract of *Eryngium planum*, *Vitis vinifera* (grape) stem extract, *Euphorbia peplus* Linn leaf extract), followed by hydrothermal synthesis of Fe_3O_4 –Ag (silver nitrate was added in the magnetite suspension). Plant extract acts as a reducing agent for silver shells [14][18][19][20]. Spherical core–shell structures with 7–80 nm are obtained in these cases [12][14][16][17][18][19][20]. Moreover, brick-like Ag-coated Fe_3O_4 nanoparticles with ~13 nm in width and ~15 nm in length were prepared by single-step thermal decomposition of the magnetite precursors in the presence of AgNO_3 salt and 1,2-hexadecane-diol reduction agent [13].

It has been discovered that Fe_3O_4 –Ag nanocomposites present a self-sterilizing property that avoids the formation of biofilms, which are the most dangerous source capable of spreading toxic bacteria into the environment [16], improving the contrast of magnetic resonance imaging (MRI) in cancer detection [1].

Similar synthesis methods as in the case of silver-doped magnetite core–shell structures (coprecipitation, thermal decomposition of Fe_3O_4), followed by reduction of HAuCl_4 or gold acetate with various agents (NaBH_4 , sodium citrate, 1,2-hexadecane-diol), as well as combined phyto-hydrothermal synthesis (with *Juglans regia* green husk as reducing and stabilizing agent for HAuCl_4), were reported in [21][22][23][24][25][26][27][28] for gold-coated magnetite

nanostructures. In 2023, Danafar et al. [21] prepared Fe_3O_4 –Au hybrid nanoparticles coated with bovine serum albumin (BSA) by co-precipitation of magnetite at 60 °C followed by the reduction of HAuCl_4 with sodium citrate and NaBH_4 , resulting in Fe_3O_4 –Au hybrids that were further coated with BSA under magnetic stirring at room temperature. They studied their potential application as a contrast agent in magnetic resonance imaging (cancer diagnosis). Gold nanoparticles represent a good option for Fe_3O_4 coating due to their good biocompatibility, large specific surface area, “surface plasmon” property, and well-known attraction for thiol groups from organic molecules [22]. Fe_3O_4 –Au core–shell nanoparticles can be used in biomedical applications such as magnetic resonance imaging, hyperthermia, biosensors, immunosensors, photothermal therapy, controlled drug delivery, targeted gene delivery, protein separation, DNA detection, and DNA/RNA interaction [23][24][25][26][27].

3. Metal–Organic Framework (MOF) Coated Fe_3O_4

Fe_3O_4 nanoparticle was used as a core for improving the physicochemical properties and the thermal stability of the Cu–MOF compound. Metal–organic frameworks (MOFs) are a class of crystalline, porous materials composed of metal ions surrounded by multi-dented organic molecules. The metal ions form nodes that bind the arms of the organic ligands which act as linkers in the cage-like network structure. MOFs have a high surface area, significant porosity, tunable pore size, and high thermal stability in comparison to other nanostructures. Azizabadi et al. [4] prepared Fe_3O_4 –Cu–MOFs by an ultrasonic-assisted reverse micelle synthesis (ultrasonic irradiation time of 10 min, temperature of 25 °C, power of 80 W) and found that this core–shell composite has good antibacterial activities against both Gram-positive and Gram-negative bacteria, which recommends it for advanced biomedical applications.

4. Metal Oxide-Coated Fe_3O_4

One of the most studied metal oxides as a shell for the Fe_3O_4 core was SiO_2 , due to the powerful attraction of magnetic nanoparticles to silica [29]. SiO_2 particles are non-toxic, highly biocompatible, and abundant in surface hydroxyl groups, which makes them an ideal surface functional coating for magnetic nanoparticles in the medical field [11][30][31][32][33][34][35]. Fe_3O_4 nanoparticles coated with SiO_2 shells obtained by Ta et al. through hydrolysis and condensation [31] showed increased biocompatible properties and provided new ideas for future bioconjugation studies [11]. Moreover, the Fe_3O_4 – SiO_2 core–shell structure prepared by Lu et al. using an ultrasound-assisted method [36] has good opportunities in the field of biomedicine [11].

TiO_2 is another metal oxide with interesting properties such as biocompatibility, chemical inertness, high stability, and resistance to body fluids that lead to its use in cosmetics, pharmaceutics, and malignant tumor therapy [37][38][39]. The coating of magnetite nanoparticles with a TiO_2 shell protects the core from environmental damage and improves biocompatible properties [37]. Fe_3O_4 – TiO_2 core–shell structures with various Fe_3O_4 : TiO_2 molar ratios were synthesized by a modified sol–gel method [40] or hydrothermal process [41]. The obtained Fe_3O_4 – TiO_2 core–shell nanorods are superparamagnetic and could be further used for magnetic hyperthermia applications [37].

Fe_3O_4 –ZnO core–shell nanoparticles represent some of the most studied materials for magnetic hyperthermia and bio-imaging applications [42][43][44][45][46][47]. ZnO is well known for its anti-bacterial and biocompatible properties and possesses unique physical and chemical characteristics due to its wide bandgap and elevated exciton binding energy (piezoelectricity, photoluminescence, chemical stability) [48][49][50]. It has been demonstrated that ZnO– Fe_3O_4 composites combine the magnetic properties of Fe_3O_4 with the antibacterial activity of ZnO, resulting in a material with improved biocompatibility and enhanced antibacterial activity. ZnO– Fe_3O_4 composites inhibit microorganisms' biofilm formation due to their synergistic activity of ion lixiviation (Fe^{3+} , Zn^{2+}) and oxidative activity. The material's magnetic properties play a major role in reducing the ability of microorganisms to attach to different surfaces, inhibiting biofilm formation [43]. It is very important to hinder the formation of biofilm because its existence makes microorganisms more resistant to antibiotics. ZnO/ Fe_3O_4 composites have shown enhanced antibacterial ability under visible light irradiation compared to single ZnO [51]. In 2021, Gupta et al. [42] reported the hydrothermal synthesis of Fe_3O_4 –ZnO core–shell nanoparticles. The obtained material preserved the photoluminescence capacity of ZnO and the superparamagnetic properties of Fe_3O_4 , demonstrating its potential use for hyperthermia therapy and fluorescent-based cellular imaging. Fe_3O_4 –ZnO nanoparticles significantly reduced the viability of human cervical cancer cells (HeLa) under the applied AC magnetic field. However, in 2018, Madhubala et al. [45] found that only the lowest concentrations of Fe_3O_4 –ZnO core–shell nanoparticles are non-toxic for cells and could be used for cancer treatment using magnetic hyperthermia therapy (MHT). Moreover, the authors concluded that Fe_3O_4 –ZnO with a molar ratio of 1:20 has a small particle size and high crystallinity, and Fe_3O_4 is completely encapsulated in the ZnO nanoparticles [45].

5. Polymer-Coated Fe_3O_4

Magnetite surface coating with natural or synthetic polymers has been widely investigated [11][52][53][54][55][56][57][58][59] due to their good biocompatibility, biodegradability, non-toxicity, stability, and ability to modify physical-chemical surface properties. Covering magnetite with polymers improves the antibacterial and anticancer properties of core–shell nanoparticles. Different polymers such as polyethylene glycol (PEG), chitosan, poly-N-vinylpyrrolidone (PVP), hydroxyl ethylene cellulose (HEC), nanocrystalline cellulose (NCC), heparin-poloxamer (HP), poly(N-isopropyl acrylamide) (PNIPAAm), polyethyleneimine (PEI), and polyacrylic acid (PAA) have been coated on the Fe_3O_4 surface for tumor-targeted drug delivery. In 2021, Mohammadi et al. [54] synthesized magnetic nanoparticles with cross-linked PEG coatings using plasma treatment. The plasma-induced graft polymerization creates a cross-linked network of PEG chains, resulting in a rigid surface that hinders the burst release of the drug. The classical coprecipitation method of magnetite core followed by direct addition of chitosan or PEG shell and heating at 80 °C for 30 min [55] leads to an irregular and dendrimer-like surface morphology with small and large grain sizes. Fe_3O_4 surface functionalized with PEG has significant results at 20 mg/mL against antimicrobial activities. The anticancer activity was tested against HepG2 liver cancer cell lines, and magnetite-polymer nanoparticles are suitable for hyperthermia therapy to treat carcinoma.

When superparamagnetic iron oxide nanoparticles (SPIONs) were coated with heparin-poloxamer (HP) and the core–shell system was tested for anticancer drug delivery, doxorubicin (DOX) was entrapped in the polymer shell,

showing a controlled release up to 120 h without any initial burst effect [57]. Moradi et al. [52] prepared Fe₃O₄ core–shell nanoparticles as drug nanocarriers, having PNIPAAm grafted with chitosan as a polymer shell. PNIPAAm is a thermo-responsive polymer, while chitosan is a pH-responsive moiety. Therefore, the highest release percentage of methotrexate (MTX) as a negatively charged anticancer drug has been observed at T = 40 °C and pH = 5.5.

References

1. Yeneayehu, K.; Senbeta, T.; Mesfin, B. Enhancement of the Optical Response of Fe₃O₄@Ag Core-Shell Nanoparticles. *Phys. E Low Dimens. Syst. Nanostruct.* 2021, 134, 114822.
2. Díez, A.G.; Rincón-Iglesias, M.; Lanceros-Méndez, S.; Reguera, J.; Lizundia, E. Multicomponent Magnetic Nanoparticle Engineering: The Role of Structure-Property Relationship in Advanced Applications. *Mater. Today Chem.* 2022, 26, 101220.
3. Khatami, M.; Alijani, H.Q.; Nejad, M.S.; Varma, R.S. Nanoparticles: Greener Synthesis Using Natural Plant Products. *Appl. Sci.* 2018, 8, 411.
4. Azizabadi, O.; Akbarzadeh, F.; Danshina, S.; Chauhan, N.P.S.; Sargazi, G. An Efficient Ultrasonic Assisted Reverse Micelle Synthesis Route for Fe₃O₄@Cu-MOF/Core-Shell Nanostructures and Its Antibacterial Activities. *J. Solid State Chem.* 2021, 294, 121897.
5. Izadiyan, Z.; Shameli, K.; Teow, S.Y.; Yusefi, M.; Kia, P.; Rasouli, E.; Tareq, M.A. Anticancer Activity of 5-Fluorouracil-Loaded Nanoemulsions Containing Fe₃O₄/Au Core-Shell Nanoparticles. *J. Mol. Struct.* 2021, 1245, 131075.
6. Sun, Y.; Tian, Y.; He, M.; Zhao, Q.; Chen, C.; Hu, C.; Liu, Y. Controlled Synthesis of Fe₃O₄/Ag Core-Shell Composite Nanoparticles with High Electrical Conductivity. *J. Electron. Mater.* 2012, 41, 519–523.
7. Amarjargal, A.; Tijing, L.D.; Im, I.T.; Kim, C.S. Simultaneous Preparation of Ag/Fe₃O₄ Core-Shell Nanocomposites with Enhanced Magnetic Moment and Strong Antibacterial and Catalytic Properties. *Chem. Eng. J.* 2013, 226, 243–254.
8. Iglesias-Silva, E.; Rivas, J.; León Isidro, L.M.; López-Quintela, M.A. Synthesis of Silver-Coated Magnetite Nanoparticles. *J. Non-Cryst. Solids* 2007, 353, 829–831.
9. Mandal, M.; Kundu, S.; Ghosh, S.K.; Panigrahi, S.; Sau, T.K.; Yusuf, S.M.; Pal, T. Magnetite Nanoparticles with Tunable Gold or Silver Shell. *J. Colloid Interface Sci.* 2005, 286, 187–194.
10. Kalska-Szostko, B.; Wykowska, U.; Satuła, D. Magnetic Nanoparticles of Core-Shell Structure. *Colloids Surf. A Physicochem. Eng. Asp.* 2015, 481, 527–536.
11. Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe₃O₄ Magnetic Nanoparticles. *Adv. Colloid Interface Sci.* 2020, 281, 102165.

12. Ghazanfari, M.; Johar, F.; Yazdani, A. Synthesis and Characterization of Fe_3O_4 @Ag Core-Shell: Structural, Morphological, and Magnetic Properties. *J. Ultrafine Grained Nanostruct. Mater.* 2014, 47, 97–103.

13. Brollo, M.E.F.; López-Ruiz, R.; Muraca, D.; Figueroa, S.J.A.; Pirotta, K.R.; Knobel, M. Compact Fe_3O_4 Core-Shell Nanoparticles by Means of Single-Step Thermal Decomposition Reaction. *Sci. Rep.* 2014, 4, 6839.

14. Dehghan, Z.; Ranjbar, M.; Govahi, M.; Khakdan, F. Green Synthesis of Ag/ Fe_3O_4 Nanocomposite Utilizing Eryngium Planum L. Leaf Extract and Its Potential Applications in Medicine. *J. Drug Deliv. Sci. Technol.* 2022, 67, 102941.

15. Ding, Q.; Liu, D.; Guo, D.; Yang, F.; Pang, X.; Che, R.; Zhou, N.; Xie, J.; Sun, J.; Huang, Z.; et al. Shape-Controlled Fabrication of Magnetite Silver Hybrid Nanoparticles with High Performance Magnetic Hyperthermia. *Biomaterials* 2017, 124, 35–46.

16. Nguyen-Tri, P.; Nguyen, V.T.; Nguyen, T.A. Biological Activity and Nanostructuration of Fe_3O_4 -Ag/High Density Polyethylene Nanocomposites. *J. Compos. Sci.* 2019, 3, 34.

17. Singh, P.; Upadhyay, C. Role of Silver Nanoshells on Structural and Magnetic Behavior of Fe_3O_4 Nanoparticles. *J. Magn. Magn. Mater.* 2018, 458, 39–47.

18. Madhubala, V.; Nagarajan, C.; Baskaran, P.; Raguraman, V.; Kalaivani, T. Influences of Superparamagnetic Fe_3O_4 @Ag Core-Shell Nanoparticles on the Growth Inhibition of Huh-7 Cells. *Mater. Today Commun.* 2023, 35, 106139.

19. Venkateswarlu, S.; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N.V.V. A Novel Green Synthesis of Fe_3O_4 -Ag Core Shell Recyclable Nanoparticles Using *Vitis Vinifera* Stem Extract and Its Enhanced Antibacterial Performance. *Phys. B Condens. Matter* 2015, 457, 30–35.

20. Sajjadi, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Green Synthesis of Ag/ Fe_3O_4 Nanocomposite Using *Euphorbia Peplus* Linn Leaf Extract and Evaluation of Its Catalytic Activity. *J. Colloid Interface Sci.* 2017, 497, 1–13.

21. Danafar, H.; Baghdadchi, Y.; Barsbay, M.; Ghaffarou, M.; Mousazadeh, N.; Mohammadi, A. Synthesis of Fe_3O_4 -Gold Hybrid Nanoparticles Coated by Bovine Serum Albumin as a Contrast Agent in MR Imaging. *Heliyon* 2023, 9, e13874.

22. Aydin, E.B.; Aydin, M.; Sezgintürk, M.K. Determination of Calreticulin Using Fe_3O_4 @AuNPs Core-Shell Functionalized with PT(COOH)2 Polymer Modified Electrode: A New Platform for the Impedimetric Biosensing of Cancer Biomarkers. *Sens. Actuators B Chem.* 2022, 367, 132099.

23. Tarhan, T.; Ulu, A.; Sarıçam, M.; Çulha, M.; Ates, B. Maltose Functionalized Magnetic Core/Shell Fe_3O_4 @Au Nanoparticles for an Efficient L-Asparaginase Immobilization. *Int. J. Biol. Macromol.* 2020, 142, 443–451.

24. Wang, W.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I.S.; Engelhard, M.H.; Lin, Y.; Kim, N.; Wang, J.Q.; Zhong, C.J. Monodispersed Core-Shell Fe₃O₄@Au Nanoparticles. *J. Phys. Chem. B* 2005, 109, 21593–21601.

25. Chatterjee, K.; Sarkar, S.; Jagajjanani Rao, K.; Paria, S. Core/Shell Nanoparticles in Biomedical Applications. *Adv. Colloid Interface Sci.* 2014, 209, 8–39.

26. Salihov, S.V.; Ivanenkov, Y.A.; Krechetov, S.P.; Veselov, M.S.; Sviridenkova, N.V.; Savchenko, A.G.; Klyachko, N.L.; Golovin, Y.I.; Chufarova, N.V.; Beloglazkina, E.K.; et al. Recent Advances in the Synthesis of Fe₃O₄@AU Core/Shell Nanoparticles. *J. Magn. Magn. Mater.* 2015, 394, 173–178.

27. Rajkumar, S.; Prabaharan, M. Multi-Functional Core-Shell Fe₃O₄@Au Nanoparticles for Cancer Diagnosis and Therapy. *Colloids Surf. B Biointerfaces* 2019, 174, 252–259.

28. Izadiyan, Z.; Shameli, K.; Miyake, M.; Teow, S.Y.; Peh, S.C.; Mohamad, S.E.; Mohd Taib, S.H. Green Fabrication of Biologically Active Magnetic Core-Shell Fe₃O₄/Au Nanoparticles and Their Potential Anticancer Effect. *Mater. Sci. Eng. C* 2019, 96, 51–57.

29. Mostafaei, M.; Hosseini, S.N.; Khatami, M.; Javidanbardan, A.; Sepahy, A.A.; Asadi, E. Isolation of Recombinant Hepatitis B Surface Antigen with Antibody-Conjugated Superparamagnetic Fe₃O₄/SiO₂ Core-Shell Nanoparticles. *Protein Expr. Purif.* 2018, 145, 1–6.

30. Shao, H.; Qi, J.; Lin, T.; Zhou, Y. Preparation and Characterization of Fe₃O₄@SiO₂@NMDP Core-Shell Structure Composite Magnetic Nanoparticles. *Ceram. Int.* 2018, 44, 2255–2260.

31. Ta, T.K.H.; Trinh, M.T.; Long, N.V.; Nguyen, T.T.M.; Nguyen, T.L.T.; Thuoc, T.L.; Phan, B.T.; Mott, D.; Maenosono, S.; Tran-Van, H.; et al. Synthesis and Surface Functionalization of Fe₃O₄-SiO₂ Core-Shell Nanoparticles with 3-Glycidoxypolytrimethoxysilane and 1,1'-Carbonyldiimidazole for Bio-Applications. *Colloids Surf. A Physicochem. Eng. Asp.* 2016, 504, 376–383.

32. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants. *Langmuir* 2001, 17, 2900–2906.

33. Tadyszak, K.; Kertmen, A.; Coy, E.; Andruszkiewicz, R.; Milewski, S.; Kardava, I.; Scheibe, B.; Jurga, S.; Chybczyńska, K. Spectroscopic and Magnetic Studies of Highly Dispersible Superparamagnetic Silica Coated Magnetite Nanoparticles. *J. Magn. Magn. Mater.* 2017, 433, 254–261.

34. Khalid, A.; Ahmed, R.M.; Taha, M.; Soliman, T.S. Fe₃O₄ Nanoparticles and Fe₃O₄ @SiO₂ Core-Shell: Synthesize, Structural, Morphological, Linear, and Nonlinear Optical Properties. *J. Alloys Compd.* 2023, 947, 169639.

35. Asgari, M.; Miri, T.; Soleymani, M.; Barati, A. A Novel Method for in Situ Encapsulation of Curcumin in Magnetite-Silica Core-Shell Nanocomposites: A Multifunctional Platform for

Controlled Drug Delivery and Magnetic Hyperthermia Therapy. *J. Mol. Liq.* 2021, 324, 114731.

36. Lu, C.H.; Chen, G.H.; Yu, B.; Cong, H.L.; Kong, L.M.; Guo, L. Design and Synthesis of Fe₃O₄@SiO₂ Core-Shell Nanomaterials. *Integr. Ferroelectr.* 2017, 182, 46–52.

37. Madhubala, V.; Nagarajan, C.; Baskaran, P.; Raguraman, V.; Kalaivani, T. Formulation of Magnetic Core-Shell Nanostructured Fe₃O₄@TiO₂ for Cytotoxic Activity against Huh-7 Cells. *Inorg. Chem. Commun.* 2023, 149, 110430.

38. Chen, X.; Selloni, A. Introduction: Titanium Dioxide (TiO₂) Nanomaterials. *Chem. Rev.* 2014, 114, 9281–9282.

39. Madhubala, V.; Pugazhendhi, A.; Thirunavukarasu, K. Cytotoxic and Immunomodulatory Effects of the Low Concentration of Titanium Dioxide Nanoparticles (TiO₂ NPs) on Human Cell Lines—An In Vitro Study. *Process Biochem.* 2019, 86, 186–195.

40. Khashan, S.; Dagher, S.; Tit, N.; Alazzam, A.; Obaidat, I. Novel Method for Synthesis of Fe₃O₄@TiO₂ Core/Shell Nanoparticles. *Surf. Coat. Technol.* 2017, 322, 92–98.

41. Rani, N.; Dehiya, B.S. Influence of Anionic and Non-Ionic Surfactants on the Synthesis of Core-Shell Fe₃O₄@TiO₂ Nanocomposite Synthesized by Hydrothermal Method. *Ceram. Int.* 2020, 46, 23516–23525.

42. Gupta, J.; Hassan, P.A.; Barick, K.C. Core-Shell Fe₃O₄@ZnO Nanoparticles for Magnetic Hyperthermia and Bio-Imaging Applications. *AIP Adv.* 2021, 11, 025207.

43. Medina-Ramírez, I.E.; Díaz de León-Macias, C.E.; Pedroza-Herrera, G.; González-Segovia, R.; Zapien, J.A.; Rodríguez-López, J.L. Evaluation of the Biocompatibility and Growth Inhibition of Bacterial Biofilms by ZnO, Fe₃O₄ and 3O₄ Photocatalytic Magnetic Materials. *Ceram. Int.* 2020, 46, 8979–8994.

44. Liu, H.; Wu, J.; Min, J.H.; Zhang, X.; Kim, Y.K. Tunable Synthesis and Multifunctionalities of Fe₃O₄-ZnO Hybrid Core-Shell Nanocrystals. *Mater. Res. Bull.* 2013, 48, 551–558.

45. Madhubala, V.; Kalaivani, T. Phyto and Hydrothermal Synthesis of Fe₃O₄@ZnO Core-Shell Nanoparticles Using Azadirachta Indica and Its Cytotoxicity Studies. *Appl. Surf. Sci.* 2018, 449, 584–590.

46. Manikandan, A.; Yogasundari, M.; Thanrasu, K.; Dinesh, A.; Raja, K.K.; Slimani, Y.; Jaganathan, S.K.; Srinivasan, R.; Baykal, A. Structural, Morphological and Optical Properties of Multifunctional Magnetic-Luminescent 3O₄ Nanocomposite. *Phys. E Low Dimens. Syst. Nanostruct.* 2020, 124, 114291.

47. Ahadpour Shal, A.; Jafari, A. Study of Structural and Magnetic Properties of Superparamagnetic Fe₃O₄-ZnO Core-Shell Nanoparticles. *J. Supercond. Nov. Magn.* 2014, 27, 1531–1538.

48. Aljohar, A.Y.; Muteeb, G.; Zia, Q.; Siddiqui, S.; Aatif, M.; Farhan, M.; Khan, M.F.; Alsultan, A.; Jamal, A.; Alshoaibi, A.; et al. Anticancer Effect of Zinc Oxide Nanoparticles Prepared by Varying Entry Time of Ion Carriers against A431 Skin Cancer Cells In Vitro. *Front. Chem.* 2022, 10, 1069450.

49. Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. *Front. Phys.* 2021, 9, 641481.

50. Wang, J.; Yang, J.; Li, X.; Wang, D.; Wei, B.; Song, H.; Li, X.; Fu, S. Preparation and Photocatalytic Properties of Magnetically Reusable Fe₃O₄@ZnO Core/Shell Nanoparticles. *Phys. E Low Dimens. Syst. Nanostruct.* 2016, 75, 66–71.

51. Sin, J.C.; Tan, S.Q.; Quek, J.A.; Lam, S.M.; Mohamed, A.R. Facile Fabrication of Hierarchical Porous ZnO/Fe₃O₄ Composites with Enhanced Magnetic, Photocatalytic and Antibacterial Properties. *Mater. Lett.* 2018, 228, 207–211.

52. Moradi, S.; Najjar, R.; Hamishehkar, H.; Lotfi, A. Triple-Responsive Drug Nanocarrier: Magnetic Core-Shell Nanoparticles of Fe₃O₄@poly(N-Isopropylacrylamide)-Grafted-Chitosan, Synthesis and In Vitro Cytotoxicity Evaluation against Human Lung and Breast Cancer Cells. *J. Drug Deliv. Sci. Technol.* 2022, 72, 103426.

53. Tang, S.; Lan, Q.; Liang, J.; Chen, S.; Liu, C.; Zhao, J.; Cheng, Q.; Cao, Y.C.; Liu, J. Facile Synthesis of Fe₃O₄@PPy Core-Shell Magnetic Nanoparticles and Their Enhanced Dispersity and Acid Stability. *Mater. Des.* 2017, 121, 47–50.

54. Mohammadi, M.A.; Asghari, S.; Aslibeiki, B. Surface Modified Fe₃O₄ Nanoparticles: A Cross-Linked Polyethylene Glycol Coating Using Plasma Treatment. *Surf. Interfaces* 2021, 25, 101271.

55. Munir, T.; Mahmood, A.; Rasul, A.; Imran, M.; Fakhar-e-Alam, M. Biocompatible Polymer Functionalized Magnetic Nanoparticles for Antimicrobial and Anticancer Activities. *Mater. Chem. Phys.* 2023, 301, 127677.

56. Bekaroğlu, M.G.; Alemdar, A.; İşçi, S. Comparison of Ionic Polymers in the Targeted Drug Delivery Applications as the Coating Materials on the Fe₃O₄ Nanoparticles. *Mater. Sci. Eng. C* 2019, 103, 109838.

57. Thi, T.T.H.; Tran, D.H.N.; Bach, L.G.; Quang, H.V.; Nguyen, D.C.; Park, K.D.; Nguyen, D.H. Functional Magnetic Core-Shell System-Based Iron Oxide Nanoparticle Coated with Biocompatible Copolymer for Anticancer Drug Delivery. *Pharmaceutics* 2019, 11, 120.

58. Ding, Y.; Shen, S.Z.; Sun, H.; Sun, K.; Liu, F.; Qi, Y.; Yan, J. Design and Construction of Polymerized-Chitosan Coated Fe₃O₄ Magnetic Nanoparticles and Its Application for Hydrophobic Drug Delivery. *Mater. Sci. Eng. C* 2015, 48, 487–498.

59. Yeamsuksawat, T.; Zhao, H.; Liang, J. Characterization and Antimicrobial Performance of Magnetic Fe₃O₄@ Nanoparticles Synthesized via Suspension Technique. *Mater. Today Commun.*

2021, 28, 102481.

Retrieved from <https://encyclopedia.pub/entry/history/show/104325>