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An in-depth analysis of classical Lorenz models and newly developed, generalized Lorenz models suggested a

revised view that “the entirety of weather possesses a dual nature of chaos and order with distinct predictability”, in

contrast to the conventional view of “weather is chaotic”.  Major features that yield distinct predictability include

three types of solutions (for monostability), two kinds of attractor coexistence (for multistability), and their

concurrent and alternative appearance.  The distinct predictability suggests limited predictability for chaotic

solutions and unlimited predictability (or up to their lifetime) for non-chaotic solutions. Here, the following features

are discussed: (1) an analogy for monostability and multistability using skiing vs. kayaking; (2) single-types of

attractors, SDIC, and monostability within the Lorenz 1963 (L63) model; (3) coexisting attractors and multistability

within the generalized Lorenz model (GLM); (4) time varying multistability and slow time-varying solutions; and (5)

the onset of emerging solutions.

chaos  Lorenz models  multistability  weather and climate  coexisting attractors

1. An Analogy for Monostability and Multistability Using
Skiing and Kayaking

To help readers, the sensitive dependence of solutions on initial conditions (SDIC) , monostability, and

multistability, which are the most important concepts regarding predictability studies, are first illustrated using real-

world analogies of skiing and kayaking. To explain SDIC, the book entitled “The Essence of Chaos” by Lorenz,

1993  applied the activity of skiing (left in Figure 1) and developed an idealized skiing model for revealing the

sensitivity of time-varying paths to initial positions (middle in Figure 1). Based on the left panel, when slopes are

steep everywhere, SDIC always appears. This feature with a single type of solution is referred to as monostability.
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[1]



Coexisting Attractors within Classical and Generalized Lorenz Models | Encyclopedia.pub

https://encyclopedia.pub/entry/36139 2/12

Figure 1. Skiing as used to reveal monostability (left and middle, Lorenz 1993 ) and kayaking as used to indicate

multistability (right, courtesy of Shutterstock-Carol Mellema https://www.shutterstock.com/image-photo/kayaker-

enjoys-whitewater-sinks-smoky-mountains-649533271 (accessed 1 November 2022)). A stagnant area is outlined

with a white box.

In comparison, the right panel of Figure 1 for kayaking is used to illustrate multistability. In the photo, the

appearance of strong currents and a stagnant area (outlined with a white box) suggests instability and local

stability, respectively. As a result, when two kayaks move along strong currents, their paths display SDIC. On the

other hand, when two kayaks move into a stagnant area, they become trapped, showing no typical SDIC (although

a chaotic transient may occur ). Such features of SDIC or no SDIC suggest two types of solutions and illustrate

the nature of multistability.

2. The Generalized Lorenz Model (GLM) and The Lorenz 1963
(L63) Model

Over the past several years, a series of papers regarding high-dimensional Lorenz models that have applied a

different number of Fourier modes have yielded the following generalized Lorenz model (GLM) :

(1)

[1]

[3]

[4][5]

dX

dτ
= σY − σX,
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(2)

(3)

(4)

(5)

(6)

Here, τ is dimensionless time. The three integers j, M, and N are related to the number of additional Fourier modes

within higher dimensional Lorenz models (LMs). While M represents the total number of modes (or equations), N

indicates the total number of pairs for higher wavenumber modes that do not appear within the original L63 Model.

The time-independent parameters, including σ and r,  represent the Prandtl number and the normalized Rayleigh

number (or the heating parameter), respectively. The heating parameter represents a measure of temperature

differences between the bottom and top layers. Parameter “a” is defined as the ratio of the vertical scale of the

convection cell to its horizontal scale and a  = 1/2. The last three parameters in Eq. (6) are coefficients for the

dissipative terms. Detailed discussions for each of the above terms can be found in the 2-page Supplementary

Materials of Shen et al., 2021 . Variable X denotes the amplitude of the Fourier mode for the stream function.

Variables (Y, Z), (Y , Z ), (Y , Z ), and (Y , Z ) are referred to as the primary, secondary, tertiary, and quaternary

modes, respectively, and represent the amplitudes of the Fourier modes at different wave numbers for

temperature. The GLM with M = 5, 7, or 9 is referred to as the 5D-, 7D-, or 9DLM, respectively, and the classical

L63 model (referred to as the 3DLM) can be obtained using Eqs. (1-3) without the nonlinear term XY , written as

follows :

(7)

dY

dτ
= −XZ + rX − Y ,

dZ

dτ
= XY − XY1 − bZ,  

dYj

dτ
= jXZj-1 − (j+1)XZj − dj-1Yj,  

dZj

dτ
= (j+1)XYj − (j+1)XYj+1 − βjZj,  

N =
M − 3

2
; dj-1 =

(2j + 1)2 + a2

1 + a2
;βj = b(j + 1)2; b =

4

1 + a2
.

2
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(8)

(9)

This research keeps σ = 10 and b = 8/3, but varies r in different runs.   

 

3. Single-Types of Attractors and Monostability within the
L63 Model

Previous studies have shown that the L63 model produces three types of solutions at small, medium, and large

heating parameters . Below, three numerical experiments, which apply three different values of Rayleigh

parameters and keep the other two parameters as constants within the same L63 model, are discussed. The

selected values of the Rayleigh parameters are 20, 28, and 350, representing weak, medium, and strong heating,

respectively. For each of the three cases, both control and parallel runs were performed. The only difference in the

two runs was that a tiny perturbation with ϵ = 10  was added into the initial condition (IC) of the parallel run. The

SDIC along with continuous dependence of solutions on IC (CDIC) is then discussed. Solutions of the Y

component are provided in the top panels of Figure 2. Three panels, from left to right, display long-term time

independent responses, irregular temporal variations, and regular temporal oscillations referred to as steady-state,

chaotic, and limit cycle solutions, respectively. Corresponding solutions within the X-Y phase space are shown in

the bottom panels of Figure 2. Non-chaotic, steady-state and limit cycle solutions become point attractors and

periodic attractors in panels 2d and 2f, respectively. As a comparison, all three types of attractors within the three-

dimensional X-Y-Z phase space are provided in Figure 3. Below, the features of SDIC for chaotic solutions are

further discussed.

dY

dτ
= −XZ + rX − Y ,

dZ

dτ
= XY − bZ.  

[5][6][7]
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Figure 2. Three types of solutions within the Lorenz 1963 model. Steady-state (a,d), chaotic (b,e), and limit cycle

(c,f) solutions appear at small, moderate, and large normalized Rayleigh parameters (i.e., r = 20, 28, and 350),

respectively. Control and parallel runs are shown in red and blue, respectively. SDIC is indicated by visible blue

and red curves in panel (b), where the first and second green horizontal lines indicate CDIC and SDIC,

respectively. (a–c) depict the time evolution of Y. (d–f) show orbits within the X–Y space, appearing as a point

attractor (a,d), a chaotic attractor (b,e), and a periodic attractor (c,f), respectively (after Shen et al., 2021 ). The

other two parameters are kept as constants: σ = 10 and b = 8/3. The initial conditions of (X, Y, Z) for the control and

parallel runs are (0,1,0) and (0, 1 + ϵ, 0), respectively.

Figure 3. Three types of solutions within the X–Y–Z phase space obtained from the Lorenz 1963 model. Panels

(a–c) display a steady-state solution, a chaotic solution, and a limit cycle with small, medium, and large heating

parameters, respectively. While panels (a,b) show the solution for τ ∈ [0, 30], to reveal its isolated feature, panel

(c) displays the limit cycle solution for τ ∈ [10, 30]. Values of parameters are the same as those in the control run in

Figure 2.

For chaotic solutions in the middle panels of Figure 2, both the control and parallel runs produced very close

responses at an initial stage, but very different results at a later time. Initial comparable results indicate that CDIC

[6]
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is an important feature of dynamical systems. Despite initial tiny differences, large differences at a later time, as

indicated by the red and blue curves in Figure 2b, revealed the feature of SDIC. Such a feature suggests that a

tiny change in an IC will eventually lead to a very different time evolution for a solution. However, the concept of

SDIC does not suggest a causality relationship. Specifically, the initial tiny perturbation should not be viewed as the

cause for a specific event (e.g., a maximum or minimum) that subsequently appears or for any transition between

different events.

As discussed above, depending on the relative strength of the heating parameter, one and only one type of steady-

state, chaotic, and limit cycle solution appears within the L63 model. Such a feature is referred to as monostability,

as compared to multistability for coexisting attractors. Over several decades, chaotic solutions and monostability

have been a focal point, yielding the statement “weather is chaotic”. As discussed below, such an exclusive

statement is being revised by taking coexisting attractors and time varying multistability into consideration.

4. Coexisting Attractors and Multistability within the
Generalized Lorenz Model

Based on various high-dimensional Lorenz models , a generalized multi-dimensional Lorenz model (GLM)

has been developed . Mathematical descriptions of the GLM are summarized in the Supplementary

Materials of Shen et al., 2021 . Major features of the GLM include: (1) any odd number of state variables greater

than three; (2) the aforementioned three types of solutions; (3) hierarchical spatial scale dependence (e.g., );

and (4) two kinds of attractor coexistence . Additionally, aggregated negative feedback appears within

high-dimensional LMs when the negative feedback of various smaller scale modes is accumulated to provide

stronger dissipations, requiring stronger heating for the onset of chaos in higher-dimensional LMs. Such a finding is

indicated in Table 2 of Shen, 2019 , which compared the critical values of heating parameters for the onset of

chaos within the L63 and GLM that contains 5–9 state variables. Sufficiently large, aggregated negative feedback

may cause (some) unstable equilibrium points to become stable and, thus, enable the coexistence of stable and

unstable equilibrium points, yielding attractor coexistence, as illustrated below using the GLM with nine state

variables.

Amongst the three types of solutions (i.e., steady-state, chaotic, and limit-cycle solutions), two types of solutions

may appear within the same model that applies the same model parameters but different initial conditions. Such a

feature is known as attractor coexistence. The GLM produces two kinds of attractor coexistence, including

coexisting chaotic and steady-state solutions and coexisting limit-cycle and steady-state solutions, referred to as

the 1st and 2nd kinds of attractor coexistence, respectively. To illustrate coexisting attractors that display a

dependence on initial conditions, Figure 4 displays two ensemble runs, each run using 128 different initial

conditions that were distributed over a hypersphere (e.g., Shen et al., 2019 ). The 1st and 2nd kinds of attractor

coexistence are illustrated using values of 680 and 1600 for the heating parameter, respectively. As shown in

Figure 4a, 128 orbits with different starting locations eventually reveal the 1st kind of attractor coexistence for one

chaotic attractor, and two point attractors. As clearly seen in Figure 4a, each of the chaotic and non-chaotic

[8][9][10][11]

[4][7][12]

[5]

[10][11]

[4][5][12][13]

[7]

[12]
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attractors occupies a different portion of the phase space. By comparison, in Figure 4b, 128 ensemble members

produce the 2nd kind of attractor coexistence, consisting of limit cycle and steady-state solutions.

Figure 4. Two kinds of attractor coexistence using the GLM with 9 modes. Each panel displays orbits from 128

runs with different ICs for τ ∈ [0.625, 5]. Curves in different colors indicate orbits with different initial conditions. (a)

displays the coexistence of chaotic and steady-state solutions with r = 680. Stable critical points are shown with

large blue dots. (b) displays the coexistence of the limit cycle and steady-state solutions with r = 1600.

The above two kinds of attractor coexistence occur in association with the coexistence of unstable (i.e., a saddle

point) and stable equilibrium points. As discussed in Shen, 2019 , the appearance of local stable equilibrium

points is enabled by the so-called aggregated negative feedback of small-scale convective processes. The feature

with coexisting attractors is referred to as multistability, as compared to monostability for single type attractors. As a

result of multistability, SDIC does not always appear. Namely, SDIC appears when two orbits become the chaotic

attractor that occupies one portion of the phase space; it does not appear when two orbits move towards the same

point attractor that occupies the other portion of the phase space.

In a recent study by Shen et al. , three major kinds of butterfly effects can be identified: (1) SDIC, (2) the ability

of a tiny perturbation in creating an organized circulation at a large distance, and (3) the hypothetical role of small

scale processes in contributing to finite predictability. While the first kind of butterfly effect with SDIC is well

accepted, the concept of multistability suggests that the first kind of butterfly effect does not always appear.

5. Time Varying Multistability and Recurrent Slowly Varying
Solutions

Within Lorenz models, a time varying heating function may be applied to represent a large-scale forcing system 

; and references therein). Since the heating function changes with time, the first and second kinds of attractor

coexistence alternatively appear, leading to time varying multistability and transitions from chaotic to non-chaotic

solutions. An analysis of the above two features can help reveal the predictable nature of recurrence for slowly

varying solutions, and a less predictable (or unpredictable) nature for the onset for emerging solutions (defined as

the exact timing for the transition from a chaotic solution to a non-chaotic limit cycle type solution).

Here, by extending the study of Shen et al., 2021 , the GLM with a time-dependent heating function is applied in

order to revisit time varying multistability. Figure 5a displays three trajectories during a dimensionless time τ

[4]

[14]

[5]

[15]

[5]
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between 0 and 35π (i.e., τ ∈ [0, 35π]). As shown in the second panel of Figure 5, these solutions were obtained

using tiny differences in ICs and a time varying Rayleigh parameter. The 3rd to 5th panels display the feature of

SDIC , the first kind of attractor coexistence (i.e., coexisting steady-state and chaotic solutions), and the

second kind of attractor coexistence (i.e., coexisting steady-state and periodic solutions) at different time intervals,

respectively. The alternative appearance of two kinds of attractor coexistence suggests time varying multistability.

By comparison, the 6th panel indicates that once a “steady state” solution appears (when local time changes for all

state variables become zero), it remains “steady” and slowly varies with the time-dependent heating function. Such

a recurrent, slowly varying solution may, in reality, be used as an analogy for recurrent seasons.

Figure 5. Two kinds of attractor coexistence revealed by three trajectories using a time varying heating parameter

(i.e., Rayleigh parameter), r = 1200 + 520 sin (τ/5), within a GLM (Shen, 2019 ). The green, blue, and red lines

represent the solutions of the control and two parallel runs. The parallel runs include an initial tiny perturbation,

ϵ = 10 or ϵ = −10 . The heating function is indicated by an orange line. From top to bottom, panels (a,b) display

the three orbits and the heating parameters for τ ∈ [0, 35π], respectively. Panel (c) for τ ∈ [19, 21] displays

diverged trajectories, showing SDIC. The first kind of attractor coexistence (i.e., coexisting chaotic and steady-state

solutions) is shown in panel (d) for τ ∈ [29, 31]. The green line, indeed, represents a steady state solution. The

second kind of attractor coexistence (i.e., coexisting regular oscillations and steady-state solutions) is shown in

panel (e) for τ ∈ [39, 41]. Panel (f) displays a nearly steady-state solution (2Y/3) and the heating function for τ ∈

[30, 110]. The three vertical lines in panel (b) indicate the starting time for the analysis in Figure 6. (After Shen et

al., 2021 ).

[1][2][14][16]

[4]

−8 −8
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Figure 6. Panels (a–c) display the same trajectory during three different time intervals of τ ∈ [Ts, Ts + π], with the

starting time Ts equal to 10π, 20π, and 30π, respectively. The orange line in each panel represents the half value

of the heating function.

6. Onset of Emerging Solutions

Although the GLM with a time dependent heating function produces time varying multistability, as a result of

simplicity within the model and the complexity of the problem, here, no attempt is made to address the attractor

basin, intra-transitivity, final state sensitivity, or a hidden attractor (e.g., ). Instead, the transition from one type

of solution to the other type of solution is a focus. Here, for emulating a real-world scenario for the first appearance

of African Easterly waves during a seasonal transition , the transition from a chaotic (irregular) solution to a limit

cycle type (regular) solution is analyzed. Within Figure 5, while two trajectories display a sensitivity to initial

conditions after τ > 19 (Figure 5c), they become regularly oscillatory solutions with comparable frequencies and

amplitudes for τ ∈ [39, 41] (Figure 5e). Reappearance of the regular solution (i.e., limit cycle type solutions) is

defined as the “onset of an emerging solution”. Below, a challenge in predicting the onset of the transition from a

chaotic solution to a regularly oscillatory solution is illustrated.

Figure 6 displays the same trajectory during three different time intervals of τ ∈ [Ts, Ts + π]. Here, the starting time

Ts is equal to 10π, 20π, and 30π in panels (a)–(c), respectively. An orange line in each panel represents the half

value of the heating function. Given any vertical line, its intersection with each of the three orange lines in all panels

yields the same value for the heating parameter. In other words, although the starting time is different, the time

evolution for the heating functions is exactly the same in all three panels. As a result, if the appearance of regularly

oscillatory solutions is solely determined by the values of the heating function, the same time evolution of

oscillatory solutions should appear in the three panels of Figure 6. However, differences are observed. For

[5][13]

[5][7]
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example, panel (a) displays the onset of a regularly oscillatory solution (e.g., the timing of the regular solution) at

τ = Ts + 0.4π = 10.4π. Panels (b) and (c) show an onset around Ts + 0.8π = 20.8π and Ts + 0.6π = 30.6π,

respectively. As a result of the time lag, the correlation coefficient for the solution curves in any two panels is low,

although the solutions are regularly oscillatory. The results not only indicate a challenge in predicting the onset of

oscillatory solutions but also suggest the importance of removing phase differences for verification (to obtain a

better correlation between two solution curves).

For the three solution curves (which represent the same trajectory at different time intervals) in Figure 6, different

times for the onset of solutions suggest a time lag (or phase differences). However, the period and amplitude for

solutions within the regime of limit-cycle solutions are comparable, suggesting an optimistic view in predictability.

Similar to Figure 6, Figure 7a,b provides the same trajectory during three different time intervals of

τ ∈ [Ts, Ts + π], including Ts for 12π, 22π, and 32π. Such a choice is required in order to assure the full

development of nonlinear oscillatory solutions. The selected time intervals are referred to as Epoch-1, Epoch-2,

and Epoch-3, respectively, and the solution curve from the first epoch (i.e., Epoch-1) is used as a reference curve.

The top panels clearly show phase differences amongst the solution curves, although the heating function remains

the same for selected epochs. For solution curves during two different epochs, their cross correlation is computed

to determine a time lag. Such a time lag is then considered to have a different starting time for the first epoch. For

example, in panel (c), a time lag of Δτ = 0.0522 is added to become a new starting time for the revised first epoch,

referred to as a revised Epoch-1. After the time lag is considered, the solution curves for revised Epoch-1 and

Epoch-2 are the same. In a similar manner, panel (d) displays the same evolution for solution curves for another

revised Epoch-1 and Epoch-3.
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Figure 7. Panels (a,b) display the same trajectory during three different time intervals of τ ∈ [Ts, Ts  + π], with the

starting time Ts equal to 12π, 22π, and 32π, respectively. These three time intervals are referred to as Epoch-1,

Epoch-2, and Epoch-3, respectively. In panels (c,d), to adjust the phase differences between two solutions curves,

a time lag is added into Epoch-1.

Time varying multistability associated with the alternative occurrence of two kinds of attractor coexistence yields

the alternative and concurrent appearance of various types of solutions. Such a feature indicates complexities of

weather and climate that possess both chaotic and non-chaotic solutions, and their transitions. While chaotic

solutions and their transition to regular solutions possess limited predictability, slowly varying solutions and

nonlinear oscillatory solutions (i.e., limit-cycle type solutions) may have better predictability.   The onset of an

emerging solution (i.e., during a transition from a chaotic solution to a limit-cycle type solution) suggests a different

predictability problem. In summary, the above discussions of various types of solutions support the revised view

that emphasizes the dual nature of chaos and order in weather and climate. 

References

1. Lorenz, E.N. The Essence of Chaos; University of Washington Press: Seattle, WA, USA, 1993;
227p.

2. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141.

3. Yorke, J.; Yorke, E. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz
model. J. Stat. Phys. 1979, 21, 263–277.

4. Shen, B.-W. Aggregated Negative Feedback in a Generalized Lorenz Model. Int. J. Bifurc. Chaos
2019, 29, 1950037.

5. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R. Is Weather
Chaotic? Coexistence of Chaos and Order within a Generalized Lorenz Model. Bull. Am.
Meteorol. Soc. 2021, 2, E148–E158.

6. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R.; Reyes, T.A.
Is Weather Chaotic? Coexisting Chaotic and Non-Chaotic Attractors within Lorenz Models. In
Proceedings of the 13th Chaos International Conference CHAOS 2020, Florence, Italy, 9–12 June
2020; Skiadas, C.H., Dimotikalis, Y., Eds.; Springer Proceedings in Complexity. Springer: Cham,
Switzerland, 2021.

7. Shen, B.-W. On the Predictability of 30-Day Global Mesoscale Simulations of African
EasterlyWaves during Summer 2006: A View with the Generalized Lorenz Model. Geosciences
2019, 9, 281.



Coexisting Attractors within Classical and Generalized Lorenz Models | Encyclopedia.pub

https://encyclopedia.pub/entry/36139 12/12

8. Shen, B.-W. Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci. 2014, 71,
1701–1723.

9. Shen, B.-W. Nonlinear feedback in a six-dimensional Lorenz Model: Impact of an additional
heating term. Nonlin. Processes Geophys. 2015, 22, 749–764.

10. Shen, B.-W. Hierarchical scale dependence associated with the extension of the nonlinear
feedback loop in a seven-dimensional Lorenz model. Nonlin. Processes Geophys. 2016, 23, 189–
203.

11. Shen, B.-W. On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz model.
Chaotic Modeling Simul. 2017, 2, 147–157.

12. Shen, B.-W.; Reyes, T.; Faghih-Naini, S. Coexistence of Chaotic and Non-Chaotic Orbits in a New
Nine-Dimensional Lorenz Model. In Proceedings of the 11th Chaotic Modeling and Simulation
International Conference, CHAOS 2018, Rome, Italy, 5–8 June 2018; Skiadas, C., Lubashevsky,
I., Eds.; Springer Proceedings in Complexity. Springer: Cham, Switzerland, 2019.

13. Cui, J.; Shen, B.-W. A Kernel Principal Component Analysis of Coexisting Attractors within a
Generalized Lorenz Model. Chaos Solitons Fractals 2021, 146, 110865.

14. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Atlas, R. Three
Kinds of Butterfly Effects within Lorenz Models. Encyclopedia 2022, 2, 1250–1259.

15. Lorenz, E.N. Can chaos and intransitivity lead to interannual variability? Tellus 1990, 42A, 378–
389.

16. Shen, B.-W.; Pielke, R.A., Sr.; Zeng, X. One Saddle Point and Two Types of Sensitivities Within
the Lorenz 1963 and 1969 Models. Atmosphere 2022, 13, 753.

Retrieved from https://encyclopedia.pub/entry/history/show/82750


