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α radioisotopes can offer a treatment choice to individuals who are not responding to β− or gamma-radiation

therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and

clinical applications. The majority of available clinical research involves Ac and its daughter nuclide Bi.

Additionally, the Ac disintegration cascade generates γ decays that can be used in single-photon emission

computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine.

Despite the growing interest in applying Ac, the restricted global accessibility of this radioisotope makes it

difficult to conduct extensive clinical trials for many radiopharmaceutical candidates.

targeted alpha therapy  225Ac  physical properties  production routes

theranostic application

1. Introduction

At the end of the 1800s, Pierre and Marie Curie, along with Alexander Graham Bell in the early 1900s, conducted

research linked to cancer-targeted α therapy (TAT), which represented one of the earliest non-surgical cancer

treatments . Furthermore, α-particle emitters have significant curative effects, particularly in patients with limited

therapeutic options and metastatic spread . They can target very small clusters of metastatic cancer cells.

There are many benefits of using these radioisotopes in cancer therapy over common methods. α particles can

selectively destroy tumour cells while preserving adjacent normal tissues due to their narrow extent in human

tissue, corresponding to less than 0.1 mm . Meanwhile, highly efficient cell destruction through DNA double-

strand and DNA cluster damage is caused by the high energy of α emitters, in addition to the strong linear energy

transfer (LET) (80 keV/µm) that goes along with it. These effects are mainly unaffected by the state of the cell cycle

and oxygenation . Thus, α radioisotopes can provide a therapeutic option for patients who are resistant to

therapy with β− or gamma radiation or chemotherapeutic medications . According to research estimations,

tens of thousands of β− particles are needed to reach a single-cell killing rate of 99.99%, whereas only a few α

decays are needed to accomplish a similar killing potential .

The high-LET radiation’s biological efficacy is explained by its tendency to cause complex multiple clusters and

double-strand or single-strand breaks in a target cells’ DNA, rendering cellular repair mechanisms ineffective .

Additionally, reactive oxygen species (ROS), which are produced when emitted particles interact with water, can
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react with biomolecules such as proteins, phospholipids, RNA, and DNA, leading to permanent cell deterioration

. Moreover, during this type of therapy, the primary tumour and any additional cancerous lesions in the body that

the radiation did not directly target may decrease as a result of “the abscopal effect” . It is thought that the

immune system is a key player in this process, even though the precise biological mechanisms underlying the

phenomenon are as yet unknown  (Figure 1).

Figure 1. Schematic representation of the biological effects following the use of α-particle emitter

radiopharmaceutical for cancer therapy. SSD = Single-Strand Break, DSB = Double-Strand Break, ROS = Reactive

Oxygen Species.

Considering the clinical application of TAT, only a limited number of α-particle emitters are appropriate . The use

of Ac and its short-lived daughter nuclide Bi represents the vast majority of available experience in clinical

research . Furthermore, applying γ decays, which are produced during the radioactive Ac cascade  in

SPECT imaging, raises the possibility of theranostic nuclear medicine applications.

Although interest in using Ac as an α-emitting radiolabel has been steadily increasing , substantial clinical

investigations of many radiopharmaceutical candidates cannot be supported due to Ac’s limited worldwide

accessibility . Notwithstanding the significant financial investments made by numerous laboratories to establish

production pathways, the widespread use of Ac-labeled radiopharmaceuticals in human patients is still not
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achievable . This ongoing shortage in Ac supply can be explained by the practical production techniques that

need difficult logistical tasks, such as using controlled nuclear materials or highly irradiating radioactive accelerator

targets .

2. Ac: Physical Characteristics

Actinium is a radioactive component with atomic number 89 . Only two of its 32 isotopes, Ac and Ac, are

naturally produced as a result of the disintegration of Th and U, respectively . With its long half-life of

21.7 years and predominant β− emissions decay, Ac represents the most common actinium isotope. However,

Ac, which is also a β− emitter, is highly uncommon .

Ac is the initial element in the actinide family, and its radioactive parents are parts of the now-extinct “neptunium

series” . This α-emitter isotope has a long half-life of 9.9 days .

Starting from Ac to reach Bi (T  = 1.9 × 10  y), the decay series includes six short-lived radionuclide

daughters .

This radioactive cascade is represented by Fr (T  = 4.8 min; 6.3 MeV α particle and 218 keV γ emission), At

(T  = 32.3 ms; 7.1 MeV α particle), Bi (T  = 45.6 min; 5.9 MeV α particle, 492 keV β− particle and 440 keV γ

emission), Po (T  = 3.72 µs; 8.4 MeV α particle), Tl (T  = 2.2 min; 178 keV β− particle), Pb (T  = 3.23

h; 198 keV β− particle)  (Figure 2) .

Figure 2. The decay chain of U to Ac and Bi.
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3. Ac and Its Potential Theranostic Use

Ac is considered a “nanogenerator”, since one decay of this element produces a total of four α and three β

particles, in addition to two γ emissions . Taking into account its α particle emissions, along with the fact that the

non-tumour binding activity can be eliminated before most of its dose is deposited in organs, Ac is considered

an appealing choice for TAT . However, it is important to give attention to the notable Ac cytotoxicity,

including renal toxicity , due to its extended half-life and the various α particles produced throughout its decay

chain .

A theranostic-based approach, characterised by the imaging–therapeutic duality, is the process of obtaining

positron emission tomography (PET) and SPECT scans by exchanging the therapeutic α-emitting radionuclide with

a positron or gamma diagnostic imaging radionuclide. Significant information on dosimetry and TAT reactions is

obtained from these relevant nuclear medicine images.

Chemical characteristics, half-life, radioactive emission type and intensity, related dosimetry, ease and scalability of

production, radionuclidic purity, economics, and radionuclide progeny considerations are the factors that determine

“the ideal” imaging surrogates for targeted alpha therapy .

Therapeutic use of Ac is often paired with imperfect PET imaging surrogates, such as Ga, Zr, or In,

despite significant differences in their half-lives or chelation chemistry . Studies are being conducted to address

the limitations of imaging radionuclides by utilising lanthanum (La) as a potential alternative, especially La (T

= 4.8 h, 42% β+) and La (T  = 3.9 h, 7% β+) . However, the half-lives of these isotopes are much shorter

than that of Ac, limiting their applicability in PET imaging . In this regard, the production of Ce (T  = 3.2 d)

has recently been started by the U.S. Department of Energy (DOE) Isotope Program . The long Ce T  and

the similar chemical properties of Ac and Ce were considered potential benefits for monitoring in vivo

pharmacokinetics. For PET imaging of the chelate and the antibody trastuzumab, Ce has been demonstrated to

bind with diethylenetriamine pentaacetate (DTPA)  and dodecane tetraacetic acid (DOTA) . On the other

hand, greater molar ratios and higher temperatures are needed for isotope combinations with DOTA and DTPA .

In contrast, N, N′-bis[(6-carboxy-2-pyridyl)methyl]-4,13-diaza-18-crown-6 (macropa) has shown great stability for

nonradioactive cerium and better chelate characteristics for Ac , indicating that it might be useful for the

theranostic development of Ce/ Ac .

The potential use of γ disintegrations, obtained by the decay of the intermediate Fr (218 keV, 11.6% emission

probability) and Bi (440 keV, 26.1% emission probability) , in SPECT in vivo imaging could lead the Ac

radioactive cascade to a possible theranostic prospective in nuclear medicine applications. Nonetheless, planar

SPECT imaging would be challenging because of the effectiveness of Ac, which results in modest administered

doses (~50–200 kBq/kg ), along with low γ emissions . As a possible solution to this limitation, we can

notice the suitable use of Bi, which can be isolated from the Ac decay cascades . Nevertheless, it is

mandatory to consider the short half-life of Bi (45.6 min), which poses difficulties for processing, radiolabelling,

and radiopharmaceutical delivery . In addition, it is necessary to point out that these radiations make reaction
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monitoring complicated. Moreover, the secular equilibrium must be attained (for at least 6 h) before measuring a

trustworthy radiochemical yield (RCY) . Actinium’s chemistry lacks advancement because of its restricted

availability; all Ac isotopes need specific management and facilities .

4. Radiochemistry

During the production of radionuclides, it is mandatory to take into consideration a set of important aspects, such

as safety, the co-generation of a few long-lived radionuclidic impurities, and adjustability, to enable delivery through

clinical sites . Once the target material has been irradiated, potent chemical purification methods are required to

isolate the radioisotope . Furthermore, the alpha particle may radiolytically damage the

radiopharmaceutical itself, reducing in vivo targeting and producing more radioactive deposits in nontarget tissue.

.

Since radiopharmaceuticals are considered typical pharmaceuticals, special manuals have been developed in the

European Pharmacopoeia to deal with quality control issues . Additionally, optimised protocols for preparing

Ac agents in therapeutic doses have been established  (Table 1).

Table 1. Research on Ac chemistry. RCY = Radiochemical yield, RCP = Radiochemical purity, TLC = Thin-layer

chromatography, ITLC = Instant thin-layer chromatography.

[21]

[20]

[27]

[27][36][37][38]

[27]

[39]

225 [40]

225

❖

❖

❖

Study Preparation Method Radiopharmaceutical RCY/RCP

Abou. et

al., 2022

The labelling of the DOTA-conjugated peptide was

carried out under good manufacturing practice within a

shielded hot cell using a multifunctional automated

radiosynthesis module (Trasis, AllinOne mini).

46.6 MBq of the Ac source dissolved in 0.2 M HCl

was loaded under vacuum in the initial vial for

radiolabelling with the DOTA-conjugated precursor (200

µg) on day 5 postsource purification. The source was

transferred to the one-pot radiolabelling reactor

cassette, in which the reaction occurred in Tris buffer (1

M, pH 7.2) at 85 °C for 70 min in the presence of 20%

v/v L-ascorbic acid at pH 6–8. The radiolabelled peptide

was transferred in saline and passed through a 0.2 µm

sterilizing filter, resulting in a final volume of 9.7 mL.

The radiolabelled products were characterised using

thin-layer chromatography, high-pressure liquid

Ac-DOTA-

conjugated

peptide

>99%/>95%
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❖

❖

❖

❖

❖

❖

Study Preparation Method Radiopharmaceutical RCY/RCP

chromatography, gamma counting, and high-energy

resolution gamma spectroscopy.

Dumond.

et al.,

2022 

PSMA-617 precursor was dissolved in 25 μL metal-free

water (0.67 mg/mL) and combined with 500 μL 0.05M

Tris buffer, pH 9. Ac solution (~65 μCi in 15 μL) was

added and the reaction was heated at 120 °C for 40–50

min. The resulting reaction was cooled and 0.6 mL

gentisic acid solution (4 mg/mL in 0.2 M NH OAc) was

added. To formulate the dose for injection, sterile saline

(8 mL) was added and the pH was adjusted by the

addition of 100 μL 0.05 M Tris buffer (pH 9) to give a

final pH of ~7.2. The final solution was filtered using a

0.22 μm GV sterile filter into a sterile dose vial.

Radiochemical purity was determined by radio-TLC

(eluent: 50mM sodium citrate, pH 5), and plates were

analysed using an AR2000 scanner.

Ac-PSMA-617
>99%/98 ±

1%

Thakral. et

al., 2021

Ac-PSMA-617 was prepared by adding the peptidic

precursor-PSMA-617 (molar ratios, Ac: PSMA-617 =

30:1) in 1 mL ascorbate buffer to Ac and heating the

reaction mixture at 90 °C for 25 min.

pH was determined using pH paper.

RCP of Ac-PSMA-617 was determined by ITLC.

Ac-PSMA-617
85–87%/97–

99%

Kelly. et

al., 2021

Ac (9.25 MBq) was obtained from a thorium

generator at Canadian Nuclear Laboratories and

supplied as the dried [ Ac]AcCl  salt. The [ Ac]AcCl

was dissolved in 1 mL 1 M NH OAc, pH 7.0, transferred

by pipette to a 50 mL centrifuge tube, and diluted to 45

mL in 1 M NH OAc. Stock solution (1 mL), containing

approximately 205 kBq [ Ac]Ac(OAc) , was

transferred by pipette to a plastic Eppendorf tube placed

Ac-PSMA

conjugated

peptide/

Ac-DOTA

conjugated

peptide/

2.7 ±

0.55%–98.8

±

0.09%/1.8–

99.5%
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5. Ac Radiopharmaceuticals and Clinical Applications

The delivery of the radiopharmaceutical via the circulatory system enables the targeting of both the main tumour

and its metastases. Whether a radiopharmaceutical is intended for therapeutic or diagnostic purposes depends on

the decay properties of the linked radioisotope. For the purpose of curing, controlling, or palliating symptoms, TAT

aims to provide an adequate amount of ionising radiation to intended malignities areas . This means that any

TAT agent must have a thorough understanding of its stability, pharmacokinetics, and dosimetry.

Investigations on Ac have shown potential in treating neuroendocrine tumours, acute myeloid leukaemia, and

metastatic prostate cancer, and more radiopharmaceuticals are being developed for other cancer types 

 (Table 2).

Table 2. Clinical research based on Ac.

❖

❖

Study Preparation Method Radiopharmaceutical RCY/RCP

on a digital TermoMixer heating block. Then, 20 µL of

the ligand stock solution (0.01–1 mg/mL of PSMA or

DOTA or macropa) was added and the reaction was

shaken at 300 rpm at either 25 °C or 95 °C. A 3 µL

aliquot of the reaction mixture was withdrawn and

deposited on the origin of a silica-gel-60-coated

aluminium plate (Sigma Aldrich) after incubating the

reaction for 1 min, 5 min, and 15 min.

A TLC method was developed to separate the metal

complexed ligand from uncomplexed Ac and its

daughter radionuclides.

Ac-macropa

conjugated

peptide

Hooijman.

et al.,

2021 

Ac was diluted into 0.1 M HCl. Stock solutions (10

mL) were proceeded in quartz-coated sterile vials. All

purchased chemicals were prepared with Milli-Q water.

Stock solutions prepared the day before labelling were 1

M HCl (from 37% HCl), 10 M NaOH, and 0.1 M TRIS-

buffer pH 9. Two stock solutions were prepared on the

day of labelling: First, 20% ascorbic acid was prepared;

the ascorbic acid solution was transformed to ascorbate

by the addition of 10 M NaOH to a pH 5.8. Secondly,

PSMA-I&T (250 µg) was dissolved in 0.1 M TRIS buffer

(pH 9) to a concentration of 600 µg/mL. Directly after

labelling, 4 mg/mL diethylenetriaminepentaacetic acid

(DTPA) was added to the labelling mixture. A solution for

injection was prepared by the addition of ascorbate

(50% v/v) and ethanol (6% v/v, 96%) into saline.

Ac-PSMA-I&T >95%/>90%
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Disease Study Radiopharmaceutical

Prostate cancer Parida et al., 2023 Ac-PSMA RLT[53] 225



225
Ac as a Potential Theranostic Radionuclide | Encyclopedia.pub

https://encyclopedia.pub/entry/52352 8/16

Disease Study Radiopharmaceutical

 
Ma et al., 2022 Ac-PSMA-617

 
Sanli et al., 2021 Ac-PSMA-617

 
Sen et al., 2021 Ac-PSMA-617

 
Zacherl et al., 2021 Ac-PSMA-I&T

 
Feuerecker et al., 2021 Ac-PSMA-617

 
Van Der Doelen et al., 2021 Ac-PSMA-617

 
Sathekge et al., 2020 Ac-PSMA-617

 
Yadav et al., 2020 Ac-PSMA-617

 
Satapathy et al., 2020 Ac-PSMA-617

 
Sathekge et al., 2019 Ac-PSMA-617

 
Kratochwil et al., 2018 Ac-PSMA-617

Neuroendocrine tumours Ballal et al., 2022 Ac-DOTATATE

 
Yadav et al., 2022 Ac-DOTATATE

 
Kratochwil et al., 2021 Ac-DOTATATE

  Ballal et al., 2020 Ac-DOTATATE
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The use of Ac in clinical practice is limited by its low availability. Breaking through this barrier would allow Ac

therapy to spread widely. Automated synthesis and consistent patient doses are essential, regardless of the

production route chosen for this α-isotope acquisition. Ac can be adapted for the commonly accessible DOTA-

conjugated peptides for therapy , which are already capable of labelling Lu or Y. Marc Pretze et al. 

studied the effectiveness and consistency of the radiosynthesis process for creating Ac-labelled DOTA-

conjugated peptides. Additionally, the research aimed to establish whether this process could be adapted for

clinical production purposes through an automated synthesis platform (cassette-based module—Modular-Lab

EAZY, Eckert & Ziegler) . After comparing two purification methods, the researchers obtained Ac-labelled

peptides in an RCY of 80–90% for tumour therapy in patients . Thus, the whole process was meticulously

validated in accordance with the regulations of the German Pharmaceuticals Act §13.2b, knowing that the

estimated costs for the automated synthesis of 1 MBq Ac is around EUR 300–390, taking into account that the

peptides would cost EUR 600–1000, the cassettes would cost EUR 180–200, and the ML EAZY would cost EUR

~30,000 .

6. The Production Routes of Ac

As already mentioned, Ac is part of the Np disintegration family that has vanished in nature. This radioactive

element could be artificially reproduced . In addition to direct production paths, Ac is conveniently reachable

at numerous points along the decay chain, in particular via U (T  =159200 y, 100% α), Th (T  = 7340 y,

100% α), and Ra (T  = 14.9 d, 100% β−) . Ac possesses many fewer nucleons than other actinide nuclei

that are more stable to be employed as production targets, such as Th and Ra . Thus, production methods

should, with rare exceptions, rely on radioactive decay or greater energy bombardments.

The available production routes of Ac and its parents are listed below (Figure 3) :

Disease Study Radiopharmaceutical

 
Kratochwil et al., 2015 Ac-DOTATOC

Acute myeloid leukaemia Rosenblat et al., 2022 Ac-lintuzumab

 
Jurcic, 2018 Ac-lintuzumab

 
Jurcic et al., 2016 Ac-lintuzumab

 
Jurcic et al., 2011 Ac-lintuzumab
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Figure 3. The principal production routes for Ac.
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