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Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and
systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy
by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of
delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into
nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an
especially promising tool for clinical translation of combination therapies with tunable dosing schedules.
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| 1. Introduction

Ovarian cancer is primarily diagnosed in advanced stages (stage Il and later) when the 5-year survival rate is only 30% [
(21314181, The standard of care includes surgery to remove the majority of the tumor followed by chemotherapy [EIZIEl At
advanced stages, surgery alone is ineffective at completely removing the cancer as microscopic tumor tissue and
macroscopic peritoneal implants form . For these patients, platinum-based chemotherapy, such as cisplatin, following
surgery was the standard of care for over 40 years. Platinum agents induced cytotoxicity by disrupting deoxyribonucleic
acid (DNA) synthesis and normal cellular function. In the 1990’'s the United States Food and Drug Administration
approved paclitaxel (Taxol), an extract from the bark of the Yew tree for cancer treatment [,

However, treating ovarian cancer remains challenging with the currently available chemotherapeutic agents K=,
Combination and sequential treatment schedules of drug combinations is a common practice for managing recurrent
ovarian cancer BRI For example, one of the common sequences is first-line carboplatin and paclitaxel therapy
followed by a re-treatment of both drugs at first relapse. While this treatment has been found to prolong survival and
improve quality of life for patients, it is associated with severe systemic toxicity and only a small population of patients
exhibit long-term remission (.

Due to various factors such as the type of ovarian cancer, genetic mutations, and development of resistance mechanisms,
selection of appropriate drug combinations as well as treatment schedules is challenging. Both clinical and pre-clinical
studies have investigated sequence schedules of drug combinations to overcome these limitations. The goal is to
leverage the downstream effects of the drugs to induce synergistic interactions L2131 Clinjcally, sequences of drug
combinations are treated on the order of days to weeks 241, In contrast, preclinical studies performed in in vitro and in vivo
animal studies of sequential drug treatments are often conducted on the order of hours i.e., the same timescale as many
drug-activated pathways L8817 Therefore, direct comparisons between clinical and pre-clinical results are challenging
due to a difference in time schedules. Furthermore, while delivering therapeutic dosages on the same time scale as
cellular activity can enhance therapeutic efficacy, clinical translation of the protocols is difficult. Two major challenges for
clinical translation are patient compliance and increased cytotoxicity. Thus, treating patients with recurrent ovarian cancer
and acquired drug resistance mechanisms remains a significant challenge =191,

Nanoparticle delivery of drug combinations can overcome many of these limitations. Encapsulating drugs into
nanocarriers allows for control over the pharmacokinetic properties by controlling drug release as well as increasing
circulation half-life and lowering interaction with healthy tissue. Nanoparticle carriers can be designed to accumulate in
tumor tissue by utilizing the enhanced permeability and retention (EPR) effect. Additionally, several nanoparticle
formulations loaded with chemotherapeutic drugs have been approved by the United States Food and Drug Administration
for treating ovarian cancer IS8l Specifically, polymer nanoparticles offer control over parameters including size and
material selection i.e., drug combinations. Therefore, polymer nanoparticles are an especially attractive approach for
improving delivery of chemotherapeutic agents 181181 with appropriate selection of the polymer, nanocarriers can
facilitate high loading of hydrophobic drugs and tunable release of the payload. The chemical-physical properties can also



be potentially tuned to ensure stability during storage and administration 2. Furthermore, use of biodegradable polymers
is promising to avoid accumulation of the nanocarriers. Biodegradable polyesters such as poly (lactic acid) (PLA), poly
(lactic acid-co-glycolic acid) (PLGA) and poly (e-caprolactone) are especially promising due to their well-established use
(20 pLGA is a particularly promising system to tune the degradation rate of the system [18l21] A formulation of paclitaxel
using PLA has entered Phase Il clinical trials 2922],

| 2. Nanoparticle Formulation of Drug Combinations

Overall, platinum and taxane based drug combinations have been well studied for treating ovarian cancer. Dosing
schedules can be used to improve treatment efficacy. However, it is challenging to translate pre-clinical studies on
sequential drug dosing (hours to days) to clinical (days to weeks) studies due to timescale disparity. Furthermore, there
are many limitations of free drug formulations. For example, free drug formulation is limited by high systemic toxicity and
poorly water-solubility 28241, Thus, achieving a safe and efficacious drug dose is a significant challenge .

Formulation of these drugs combinations into nanoparticles for ovarian cancer treatment can address many of these
challenges 231124 |ncorporation of the drugs into nanoparticles can improve the solubility and reduce toxicity L8251,
Controlled drug release from nanoparticles could facilitate sequential drug delivery to facilitate improved control of the
pharmacokinetics (28112711281 Thys, we review polymer-based nanoparticles (micelles, dendrimers, and solid lipid polymer-
based platforms (Eigure 1)) for simultaneous and sequential delivery of platinum- or taxane-based combinations applied to
ovarian cancer with an emphasis on quantitative evaluation of nanoparticle formulation on drug synergy.
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Figure 1. Schematic overview of the polymer-based nanocarriers used for combination therapy in ovarian cancer included
in this review.

2.1. Polymer Nanoparticles and Micelles

Micelles and amphiphilic (hydrophobic core/hydrophilic shell) polymer nanoparticles are advantageous for
chemotherapeutic treatment because they can facilitate high drug loading, as well as controlled and stimuli-responsive
drug release 281251, The formulation of polymeric micelles leverages the self-assembly of the amphiphilic polymer. Some
of these self-assembly methods include ultrasonication, thin-film dispersion, and nanoprecipitation, where amphiphilic
polymers form core-shell structures. Drugs are loaded into micelles either by encapsulation into the core or conjugation to
the polymers. The selection of the polymer and ratio of the polymer to core materials affect the surface chemistry,
degradation rate, as well as particle size and shape (important for the EPR effect i.e., selective accumulation at the tumor
site) (L8129 Thorough reviews of micellar nanoparticles for chemotherapeutic treatment of cancer can be found elsewhere
28130 | this review, we will focus on nanoparticles encapsulating platinum or taxane agents in combination with small
molecules drugs for the treatment of ovarian cancer.

2.2. Platinum Based Combinations

Polymer nanoparticles encapsulating platinum-drug combinations have been investigated for ovarian cancer treatment
(summarized in Table 1). This class of drug is commonly combined with paclitaxel for synergistic drug interactions. For
example, carboplatin and paclitaxel were co-encapsulated into folic acid targeted PEGylated nanoparticles by click
chemistry and sonication. Specifically, azide functionalized p-phosphonated calix[4]arene was used as a surfactant to
stabilize paclitaxel and carboplatin nanoparticles formed by sonication. Folic acid-PEG-alkyne was conjugated to the



azide functionalized p-phosphonated calix[4]arene nanoparticles using azide-alkyne click chemistry. The resulting
particles had a hydrodynamic diameter of 160-185 nm by dynamic light scattering with a polydispersity index between
0.24 and 0.27. The drug ratio was fixed at 1:0.2 paclitaxel: carboplatin. Encapsulating the drugs into nanoparticles
increased their potency in SKOV-3 and HO-8910 ovarian cancer cell lines as indicated by the~2-fold decrease in IC50
concentration compared to the free drug in the same ratio. Conjugating the nanoparticle to the folic acid-PEG further
increased the potency in vitro. An increase in cell apoptosis by flow cytometry was also observed upon encapsulation.
Encapsulation increased the cell mortality rate of SKOV-3 by 2.5-fold; conjugation further increased the cell mortality rate
by 3-fold in vitro. The nanoparticle efficacy was also studied in vivo using ovarian cancer xenografts. Briefly, 5-6-week-old
BALB/c mic were injected with SKOV-3 tumor cells. When the tumors reached a volume of 200 mm3, they were treated
via an intratumor injection once every other day. The efficacy of the nanoparticle formulations was compared to the free
drugs in solution. The conjugated nanoparticles significantly reduced the tumor volume after 18 days compared to the free
drug and the nanoparticles without folic acid-PEG 1],

Co-loaded cisplatin, paclitaxel micelles have also been formulated into injectable hydrogels for ovarian cancer treatment
for sustained, localized drug release. Shen et al. covalently linked to diblock copolymers of poly(ethylene glycol) and
poly(lactide/glycolide) (MPEG-b-PLGA) copolymers to Pt(IV) prodrug. The prodrug was an amphiphilic stabilizer for the
micelle; cisplatin was released upon intracellular reduction. It self-assembled into micelles, encapsulating paclitaxel. Its
concentrated solution shows a reversible sol-gel transition as the temperature increases. The formulations were prepared
by dissolving the paclitaxel and prodrug stabilizer in acetone, removing the solvent, freeze drying, and redissolving the
mixture in water. The in vitro cytotoxicity was evaluated using SKOV-3 cells. The co-loaded formulation was significantly
more potent than prodrug stabilizer as indicated by the over 3600-fold decrease in IC50 value. The drug combination was
synergistic; the combination index was approximately 0.9 321,

Alternative stabilizers such as peptide-based materials have also been considered. For example, cisplatin and paclitaxel
were coloaded into polypeptide-based polymeric micelles. Specifically, triblock copolymers of PEG, glutamic acid, and
phenylalanine were self-assembled into micelles with a hydrophobic phenylalanine core, intermediate glutamic acid shell,
and PEG corona. The intermediate glutamic acid shell was crosslinked with carbodiimide chemistry. Paclitaxel and cis-
dichlorodiamminoplatinum (ll) were coloaded into the crosslinked micelles; paclitaxel was loaded into the hydrophobic
core whereas the cisplatin coordinated with the carboxylic acids of the intermediate glutamic acid shell. Folic acid was
conjugated to the drug loaded nanoparticles using PEG spacers (Fmoc-NH-PEG-NH,, molecular weight 7500 g/mol) via
carbodiimide chemistry. The resulting crosslinked micelles were about 90 nm in diameter by dynamic light scattering. The
efficacy of the nanoparticles was evaluated in vitro using A2780 ovarian cancer cells. Interestingly, conjugation of folic acid
increased the potency of dual drug loaded nanoparticle as indicated by the 2-fold decrease in IC50 after 24 h. The in vivo
efficacy was studied using peritoneal carcinomatosis generated by intraperitoneal injection of A2780/Luc cells treated
every 4 days via tail vein injections. CA-125 a protein elevated in advanced ovarian cancer and was used as an indicator
of tumor progression. Formulating the cisplatin into nanoparticles with paclitaxel reduced CA-125 levels compared to free
cisplatin. Conjugating the nanoparticles to folic acid further reduced CA 125-levels. Conjugation to folic acid also
significantly increased cisplatin accumulation in tumor tissue compared to formulations without folic acid. Finally, the co-
loaded particles demonstrated improved tumor inhibition and survival compared to single drug formulations and the same
drug ratio confirming the advantage of delivering the drug combination in a single carrier 231,

Table 1. Polymer nanocarriers coencapsulating platinum-based agents with other anticancer drugs.
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2.5. Lipid Nanopatrticles

Microemulsions and lipid based nanoparticles are a well-established platform for cancer treatment with improved safety
compared to the free drug 18, When used in combination with carboplatin and bevacizumab, PEGylated-liposomal
doxorubicin has recently been proposed as the new standard clinical treatment for platinum-eligible recurrent ovarian
cancer 8. Adding polymers to the liposome formulations has also been used to enhance the structural stability and tune
the drug release mechanism of drug combinations. For example, poly-L-lysine, a polycation, and hyaluronic acid, a
polyanion were sequentially deposited on liposomes containing cisplatin (in the core) and either olaparib or talazoparib,
poly(ADP-ribose (PARP) inhibitors (in the lipid bilayer). The resulting hybrid polymer-lipid nanoparticles were 90 £ 12 nm
by dynamic light scattering. Due to the drug distribution in the nanoparticle structure, sequential release of the PARP
inhibitors followed by release of the cisplatin was achieved. Examining the drug potency in vitro, formulating the drugs
enhanced potency compared each of the free drug in both OVCAR-8 and COV-362 cells as indicated by the decrease in
IC50 value (Figure 6B). The in vivo efficacy of the nanoparticle formulations was examined using mice with OVCAR-8

xenografts intraperitoneally injected and treated by tail vein injection every week. The nanoparticle formulation of the drug
combination was a more effective treatment than the free drug combination at reducing tumor burden and metastasis as
well as increasing survival 221,

Solid lipid nanoparticles are also a promising platform to achieve controlled drug release because the drug mobility in a
solid lipid is expected to be significantly lower than a lipid in the liquid phase. Solid lipid particles can be prepared by
freeze spray drying and used for retarded release after peroral administration. Aqueous dispersions of submicron particles
are typically produced via high pressure homogenization of lipid, water, and an emulsifier (which has been found to be
more effective than high shear mixing or ultrasound). Dilution of microemulsions has also been used to achieve
dispersions of solid lipid nanoparticles with average particle size below 500 nm. Typically, the dispersions are stabilized
with emulsifiers such as triglycerides, fatty acids, or steroids. Amphiphilic block copolymers such as Poloxamers
(Pluronics, triblock copolymers of polyethylene glycol-b-polyoxypropylene-b-polyethylene glycol) have also been used as
stabilizers. Lipid nanoparticles can encapsulate hydrophobic drugs in the core by dispersing the drug in the lipid prior to
homogenization. Alternatively, drugs can be conjugated to the lipid. Detailed reviews on the formulation of solid lipid
nanoparticles can be found elsewhere 8961l [ ipid based nanoparticles can be combined with polymers to achieve
controlled release drug (small molecule) cocktails. In this review, we highlight examples of lipid polymer hybrid
nanoparticles used to deliver combinations of chemotherapeutics to treat ovarian cancer. Details of lipid-polymer
nanocarrier studies are found in Table 4.

Table 4. Lipid-polymer nanocarriers for co-delivery of anticancer drugs.
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2.6. Dendrimers

As an alternative to assembled polymer micelles and nanoparticles, another versatile polymer nanoparticle platform for
drug delivery has been dendrimers. Dendrimers are hyperbranched, three-dimensional polymers. Starting from a core,

they contain layers of branched repeating units and end groups on the outer layer of repeat units. Dendrimers are
produced using iterative reactions. Each repeated reaction results in an additional layer of branches, i.e., a generation.
The properties and resulting structure of the dendrimer can be tuned. For example, the polymer composition and number
of branches will affect the size, hydrophobicity, surface charge. For drug delivery applications, therapeutic moieties can be
covalently conjugated to polymer branches or entrapped in the dendrimer core by electrostatic or hydrophobic interaction.
More detailed reviews of dendrimer synthesis and formulation can be found elsewhere BAZO7LIZ] | this review, we
highlight examples of dendrimers used to deliver combinations of chemotherapeutics to treat ovarian cancer. Details of

these dendrimer studies are found in Table 5.

Table 5. Dendrimer based nanocarriers for co-delivery of anticancer drugs.
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