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It is now known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors

(VEGFRs) play a pivotal role in angiogenesis process. Nowadays, the use of inhibitors of angiogenesis promoting

factors is a powerful tool in anticancer combination therapeutic strategies, especially in cancer anti-angiogenic

therapy (AAT).

VEGF  VEGF receptors  anti-angiogenic therapy

1. VEGF Glycoproteins

The first reports on VEGF appeared in 1980s, when it was recognised as vascular permeability factor ,

vasculotropin  and, as currently known, vascular endothelial growth factor , an endogenous effector of

prominent pro-angiogenic action through direct activation of vascular endothelial cells. VEGF belongs to the

mammalian peptide family consisting of constituents originating from different genes: VEGF-A, VEGF-B, VEGF-C,

VEGF-D and PlGF (placenta growth factor), but also viral homolog VEGF-E  and VEGF-F of snake venom origin

. The common feature of these glycoproteins is the creation of dimeric forms through specific sequence of

cysteines forming disulphide bridges between two monomers . Each VEGF family protein occurs as a

glycosylated peptide monomer; however, it has to homodimerise or heterodimerise to activate its biological

function.

VEGF-A (commonly called VEGF), is the most researched representative of the family and occurs in multiple

isoforms (e.g., VEGF-A , VEGF-A , VEGF-A , VEGF-A , VEGF-A  and VEGF-A ) due to an alternative

splicing of mRNA obtained in the transcription process of the human gene VEGFA . The VEGFA gene consists

of eight exons that are highly conserved between species. In the first five constitutive exons are encoded the

fundamental signal sequence, dimerisation cysteine fragment, specific VEGF receptors recognition domain,

fragment employed in glycosylation and plasmin cleavage site, respectively. Furthermore, exons 6 and 7 encode

an alternative heparine binding sequence and neuropilin binding domain, while last exon 8 encodes the unique

VEGF domain. Alternative splicing results in variability of the primarily structure between isoforms, which affects

their bioavailability and biological potency, mainly due to the isoform affinity to heparin sulphate and proteoglycan

present on the extracellular surface competing with VEGF receptors . Therefore, VEGF-A  is freely diffusible

and highly active isoform because it binds to neither neuropilins nor heparin sulphate, while VEGF-A  and VEGF-

A  bind to both, resulting in expansion of their retention on the cellular surface or extracellular matrix.
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Althought VEGF-A is highly recognised as a critical angiogenic inductor, it shows broad pleiotropic action in

mammals, namely,

(I) significant mitogenic effect on vascular endothelial cells , as well as anti-apoptotic impact on these cells ;

(II) increase of vascular permeability, resulting in increased serum peptides extravasation and local intra-tissue

pressure ;

(III) induction of chemotaxis and activation of monocytes and haematopoietic stem cells ;

(IV) neurotrophic and neuroprotective action .

The production of VEGF-A glycoproteins occurs in the endothelium and vascular smooth muscle cells, but also in

activated platelets, fibroblasts, lymphocytes and macrophages , where the production may be stimulated by

numerous factors. This process is especially noticeable in tumour cells, that hyperexpress VEGF to stimulate the

promotion of tumour growth neoangiogenesis . The main initiator of the transcription of mRNA encoding VEGF-A

is hypoxia state, especially noticeable in the necrotic and cancer cells . This phenomenon is associated with the

formation of hypoxia induced factor in these cells, which is called hypoxia inducible factor-1 (HIF-1) . In

contrast to hypoxia, HIF-1 cellular concentration is strictly regulated under physiological conditions. Other

significant stimulating factors of VEGF-A cellular synthesis are cytokines (interleukin 1b, IL-1b and tumour necrosis

factor alpha, TNF-α), several hormones and specific growth factors , activation of oncogenes RAS and SRC,

mutation in suppressor genes p53 and von Hippel–Lindau (VHL) , as well as nitric oxide and oxygen

radicals . These factors are more or less known as indirect initiators of angiogenesis, acting on the synthesis

of VEGF-A.

The activity of other mammalian VEGF proteins is more specific than that of VEGF-A, however effects in site of

action of all VEGF glycoproteins are more or less similar. VEGF-B has a relatively limited angiogenic action only

towards ischemic myocardium, which is associated with VEGF-B level decrease . More recently, it has been

revealed that potent metabolic and antioxidative action of VEGF-B is possibly related to pro-angiogenic effects 

. It contributes to the homeostasis of lipids in numerous tissues and the upregulation of brown adipose tissue,

resulting in reduced risks of obesity and insulin resistance induced by diet rich in fat. Moreover, there are also

reports of neuroprotective activity of exogenous VEGF-B  isoform in the distal neuropathy and Parkinson’s

disease models . This effect is assumed to be induced directly on the motor neurons, similar to VEGF-A, not

through their vascularity.

Some similarities to VEGF-B action exhibits placenta growth factor. PlGF is expressed dominantly by placental

trophoblasts, but also during early embryonic development and to a lesser extent in a few adult organs such as

heart, lungs, thyroid or skeletal muscles . Contribution of PlGF in physiological angiogenesis in adults is

negligible, however under pathological conditions such as ischemia, it prominently stimulates vascular endothelium

proliferation and also differentiation and activation of the monocytes into the macrophages recognised as an
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angiogenic feedback stimulant . Moreover, PlGF increases vessel permeability and inflammation in

degenerations as rheumatoid arthritis and atherosclerosis promoting neoangiogenesis . In addition, several

types of tumour cell lines have the ability of PlGF expression, which favours the pro-angiogenic M2-phenotype

tumour-associated macrophages .

VEGF-C is recognised as the fundamental promotor of proliferation and migration of the lymphatic system

endothelium . It also stimulates the cytokine-inducted migration and permeability of the vascular endothelial

cells, although to a lesser extent than VEGF-A and independently of hypoxia stimulus. Similar in structure and

function to VEGF-C, VEGF-D plays a secondary role in the physiological stimulation of human endothelium of

vascular and lymphatic systems. Concomitantly, the high expression of both growth factors significantly promote

and correlate with the metastasis through the lymphatic vessels in a variety of cancers .

2. VEGF Receptors and Their Co-Receptors

The site of action of VEGF glycoproteins are their specific receptors presented on the surface of target cells. There

are three such receptors: VEGFR-1 (also known as FLT1, due to the same name of its gene), VEGFR-2 (known as

KDR or FLK1, encoded by KDR gene) and VEGFR-3 (FLT4, encoded by FLT4 gene).

VEGFRs are classified as members of receptor tyrosine kinase superfamily due to their autophosphorylation ability

induced by recognition of specific ligands. They are present in the form of homo- or heterodimers consisting of

three functional fragments defined as extracellular part with seven Ig-like subunits, lipophilic single transmembrane

domain and intracellular domain with distinctive tyrosine kinase activity. Individual VEGF proteins (and their

isoforms) have different affinity towards each receptor. It is well known that VEGFR-1 binds VEGF-A, VEGF-B and

PlGF, while VEGFR-2 binds VEGF-A as well as post-proteolytic VEGF-C and VEGF-D. Both VEGF-C and VEGF-D

have affinity mainly towards VEGFR-3  (Figure 1).
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Figure 1. Scheme of expression of VEGF receptors and specificity of VEGF ligands. VEGF receptors occurs

mainly as the homodimer transmembrane receptor tyrosine kinases, known as VEGFR-1, VEGFR-2 and VEGFR-

3, or in soluble forms defined as sVEGFR-1 or sVEGFR-2. Moreover, surface receptors can create mixed

heterodimers or even dimerise with soluble forms. VEGFR-1 expression occurs on vascular endothelium as well as

haematopoietic stem cells, macrophages and monocytes. Expression on VEGFR-2 occurs mainly on vascular

endothelium, less often on lymphatic endothelium, as well as on the surface of haematopoietic stem cells. The third

receptor is mosty expressed on lymphatic endothelium. Conjugation of soluble form with transmembrane receptor

preclude VEGF-driven signaling inside the cell. The mammalian VEGF glycoproteins, VEGF-A, VEGF-B, VEGF-C,

VEGF-D and PlGF, are expressed as dimers that create different interations with specific VEGFRs, which is

indicated by the dashed arrows. Representative VEGF-A glycoprotein binds to VEGFR-1 and VEGFR-2 with

significantly higher affinity towards the first receptor. Concomitantly, VEGFR-1 is a specific molecular target for

VEGF-B and PlGF, while VEGF-C and VEGF-D selectively bind to VEGFR-3; however, after proteolytic maturation,

both VEGF-C and VEGF-D can also bind to VEGFR-2.

Interaction of growth factor with its receptor becomes much stronger with the participation of specific co-receptors

that facilites the creation of the molecular complex ligand-receptor . These co-receptors, known as neuropilins,

occur as neuropilin 1 (NRP-1) that participates in VEGFR-1 or VEGFR-2 interactions with ligands and neuropilin 2

(NRP-2) mostly assigned to VEGFR-3 (Figure 1). Both types of neuropilins are expressed on endothelial cells and

specific types of tumours . NRP-1 binding differs between VEGF isoforms, so that VEGF-A  and VEGF-

A  create stronger complexes with VEGFR-2 and NRP-1 than VEGF-A , which is deprived of NRP-1 binding

domain . Nevertheless, direct interaction of VEGF-A  with NRP-1 can regulate endothelial cell migration and

sprouting independently of specific VEGF receptors .
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The expression of VEGFR-1 occurs predominantly on endothelial cells of blood vessels, but also on monocytes

and macrophages, placental trophoblasts as well as renal mesangial cells . Similarly, VEGFR-2 occurs mostly

on blood vessel endothelium, as well as platelets, haematopoietic and retinal stem cells. Both receptors are clearly

expressed on cell surfaces of solid cancers and haematopoietic system neoplasms . VEGFR-3 expression is

specified only on endothelial cells of lymphatic system . Therefore, a substantial share of VEGFR-1 and

VEGFR-2 on vascular endothelium shows their significant contribution in angiogenesis, while VEGFR-3 and NRP-2

highly contribute in lymphangiogenesis .

For ligand binding receptors require at least the first three Ig-like domains, however, not all must participate in

ligand binding. Simultaneously, if the ligand binds to neuropilin, then the third and fourth domains of the receptor

will also attach to neuropilin. Moreover, besides ligand interaction, receptors also have to dimerise to be able to

transduct signals intracellularly . When both conditions are met, ligand can trigger the mutual

autophosphorylation of the receptor intracellular tyrosine subunits and activation of specific signalling pathways

inside the cell.

Different ligands can stimulate various biological effects through activated receptors, as well as activation of

VEGFR-1 and VEGFR-2 by VEGF-A cause a different induction of intracellular signalling pathways .

Activation of VEGFR-2 leads to stimulation of the cell cycle, proliferation, migration, cell differentiation,

angiogenesis, increased permeability of blood vessels but also inhibition of the apoptotic death and up-regulation

of VEGF-A synthesis in endothelial cells . On the contrary, VEGF-A can bind to VEGFR-1, activating its low-

efficient tyrosine kinases, which has insignificant influence on endothelial cells . Despite the high abundance

of this receptor on endothelium, second receptor exerts even 10-fold higher density on endothelial cells .

Concomitantly, VEGF-A has about 10-fold lower affinity to VEGFR-2 compared to VEGFR-1. Hence, it is suspected

that VEGFR-1 acts as concomitant decoy receptor and uptakes VEGF-A before it can bind to adjacent VEGFR-2,

ergo VEGFR-1 plays an angiogenic-regulation role . However, the same receptor interaction with PlGF

promotes VEGF-A pool for endothelial angiogenic action through VEGFR-2  and can regulate

transphosphorylation of VEGFR-2 , thus amplifying angiogenesis through VEGFR-2. VEGFR-1 signalling can

also regulate paracrine release in the vascular endothelial cells of other tissue endothelium growth factors inducing

intestinal organogenesis and morphogenesis before vascular flow formation .

All VEGF isoforms that bind selectively to VEGFR-2 are capable to elicit receptor autophosphorylation, thus

triggering the activation of numerous intracellular signalling pathways (Figure 2) . Phosphorylated

receptor subunits bind many adaptor molecules such as Shb (SH2 domain-containing adapter protein B), SOS

(Son of sevenless proteins) or Grb-2 (Growth factor receptor-bound protein 2) that activate Ras GPTase. This last

protein stimulates MAPK pathway responsible for endothelium proliferation. Simultaneously, phosphorylated

intracellular VEGFR-2 domain activates phospholipase C-gamma (PLC-γ), which catalyses hydrolysis of

phosphatidylinositol bisphosphate (PIP ) to inositol triphosphate (IP ) and diacylglycerol (DAG). IP  triggers

intracellular release of Ca  form endoplasmic reticulum, which employs calcium modulated protein calmodulin to

stimulate cAMP phosphodiesterase, adenylate cyclase and site-specific endothelial NO synthase (eNOS) and

consequently increase NO-driven vasodilation and vascular permeability. However, DAG activates calcium-
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dependent protein kinase C (PKC), a multi-target kinase stimulating indirect cell proliferation and migration.

Additionally, phosphorylated VEGFR-2 induces protein kinase B (commonly known as AKT) at the beginning of

PI3K/AKT/mTOR pathway, an important signalling regulator of the cell cycle and metabolism, reducing risk of

apoptosis and promoting cellular transcription, proliferation and migration . Moreover, phosphorylated

VEGFR-2 activates signalling of focal adhesion kinase (FAK) observed during cellular migration, adhesion,

cytoskeleton rearrangement and tumour progression . Nevertheless, it was observed that VEGF-A can

regulate endothelial cell attachment independently of VEGFR-2 through NPR-1 .

Figure 2. Scheme of endothelial signal transduction of VEGF-VEGFR-2 ligand-receptor molecular complex. The

autophosphorylation of receptor tyrosine kinase domains caused by VEGF binding stimulates multiple specific

VEGFR-associated proteins (VRAPs) and adaptor molecules inducing concurrent intracellular signalling pathways

that promotes proliferation, differentiation, migration, gene expression and apoptosis survival of endothelium

leading to angiogenesis.

VEGF receptors, in addition to transmembrane forms, can also occur in soluble forms, known as sVEGFR-1 and

sVEGFR-2 (Figure 1) . Their formation can be explained by two mechanisms, namely, a proteolysis of

extracellular binding domain  and alternative splicing of primary gene transcript , both forming freely

diffusible proteins consisting of only six of seven Ig-like subunits . Soluble receptors are secreted by identical

cells that express regular receptors, mostly by vascular endothelial cells . Due to the fact that sVEGFRs exhibit

comparable binding affinity on a similar basis as regular receptors, but are deprived of effector domains of tyrosine

kinases, they can demonstrate only a regulatory decoy function. Both soluble receptors compete for VEGF-A with

regular receptors inhibiting angiogenic and other actions of the growth factor. Simultaneously, sVEGFR-2 can
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uptake VEGF-C and VEGF-D reducing their overall supply intended for lymphangiogenesis stimulation through

VEGFR-3 . Moreover, creation of heterodimers from soluble and regular receptors precludes cellular signalling

; however, it is suspected that interaction of sVEGFRs with NRP-1 can mediate VEGF-A trigger of intracellular

PKC pathway signalling .

Interestingly, several reports have shown the reverse correlation between sVEGFR expression and cancerous

angiogenesis or metastasis. Such research has indicated that sVEGFR-1 permanently suppresses tumour growth

and decreases metastasis promoting overall survival rate in rodents or humans with fibrosarcoma and glioblastoma

, advanced renal cancer , breast cancer , acute myeloid leukaemia , colorectal cancer  and non-

small cell lung cancer . Similar results were presented for sVEGFR-2 , demonstrating significant

biomarker role of these receptors in diagnosis of numerous cancers.

3. Anti-Angiogenic Therapy Strategies for Tumour Treatment

Although various angiogenesis-stimulating factors exist, VEGF-A is considered the most potent and predominant

one. This also applies to sustained angiogenesis in cancers. Currently, it is known that angiogenesis, besides its

crucial role in the tumour growth, stimulates the progression of invasiveness and development of vascular network

in the surrounding tumour microenvironment . The concept of angiogenesis targeting for cancer diagnosis

and treatment seems promising, therefore, a wide variety of therapeutic strategies have been directed at

visualisation and interfering with tumour-stimulated angiogenesis. However, since the first FDA approval of

bevacizumab (BV), humanised anti-VEGF-A mAb, for the combinational chemotherapy regimen with 5-fluorouracil

of metastatic colorectal cancer , only a few AAT strategies have been granted similar approval. It has become a

challenge to evaluate these strategies almost personally for each patient, due to considerable variability of the

angiogenic process in each treated entity . Although the correlation between tumour progression and VEGF-A

expression is well established, it does not transfer into intended anti-angiogenic therapeutic effects. This is due to

the heterogeneity of the same tumour between patients, but also between different tumours in an individual patient,

that occurs and changes at different stages of the lesion development. This raises the need for appropriate

methods of assessing how the patient responds to the proposed therapy. In terms of AAT, this applies to clinically

significant parameters as the lesion location with regard to tumour admission of therapeutic agents and expression

of endogenous growth factors in tumour microenvironment affecting the saturation of target receptors involved in

angiogenesis. Despite the complexity of this issue, the use of radiopharmaceuticals is increasingly proposed for

independent preliminary screening, which can provide the prediction of patient clinical response . Radioligands

successfully targeting VEGF/VEGFR system in vivo are potentially valuable tracers for the study of angiogenic

processes , stratification of patients to AATs , as well as monitoring therapy efficacy and clinical outcomes 

.

Basically, the aforementioned radiopharmaceuticals are based on various approaches to VEGF/VEGFR system

targeting including radiolabelled derivatives of human VEGF-A ligands, anti-VEGF or anti-VEGFR antibodies,

VEGFR binding peptides, small molecular inhibitors of tyrosine kinase domain of VEGF receptors and

peptidomimetic ligands targeting NRP-1 co-receptor. Additionally, depending on specific radiation features of
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applied radionuclide, the radiopharmaceuticals are dedicated for diagnostic, therapeutic or theranostic purposes.

This multitude of radiopharmaceutical solutions allows for the design of tailor-made therapeutic tool and its

evaluation on a specific cancer model. The broad selection of above listed biovectors enables choice of one that

provides the desired multiple molecular targets or just specific one, exhibits eligible pharmacokinetics, predicts

response of certain chemotherapeutic strategy, or shows confirmed complemental contribution to the selected

chemotherapy.

AAT methods have especially found a place in clinical practice applied in monotherapy. Currently, it is well known

that even these methods used alone are inefficient, they advantageously support conventional chemotherapy

effects . Interestingly, the AAT contributes to normalisation of the tumour vasculature resulting in enhanced

metabolic rate and delivery capacity of the tumour; hence, AAT can increase efficacy of the radiotherapy or activity

of immune system in the close tumour surroundings.
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