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The Finite state Method enables a CPU efficient and reliable analysis of the large scale Markov chains.
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1. Introduction

The manufacturing industry is of great importance to the national and global economies. Many historical examples,

starting with the Industrial Revolution, prove that it is a path towards development and prosperity. More specifically,

we have seen many times that national power correlates to control over the global manufacturing industry and

means of production, like industry sectors in the US, Japan, Germany, Korea, or China. These examples prove that

the growth of the manufacturing output and technological improvement boost long-term economic growth.

Additionally, it is estimated that, via the multiplier effect, each manufacturing job supports 5–7 other employments

in the economy across the global trade of goods and services . Consequently, an efficient and sustainable

economy depends on efficient and sustainable manufacturing. Given that, production system engineering (PSE)

stands as a path to rationalization and improvement of the existing production systems through successful

production planning and control .

PSE relies on production system modeling and analysis using transition system theory at different scales, and

particularly on discrete timed models describing steady-state (time-invariant) and transient production system

responses. Such models have been predominantly used for the performance evaluation of various serial and

assembly production systems focusing on throughput, reliability, sensitivity, lead time, and bottleneck analysis, or

other design and optimization problems. In addition, similar applications can be found in fields of molecular biology,

evolution, healthcare, city traffic, communication services, computer algorithms, money flow, network structures,

etc. .

The application of the stochastic modeling in the case of production systems intensified significantly in the last two

decades. Currently, significant research efforts are being put into a deeper understanding of the production system

behavior in the context of the internet of things , still strongly relying on the application of the operation research

in the industrial context . Therefore, a systematic approach to production system modeling using stochastic

processes has great potential to contribute to current research dealing with Industry 4.0  and advanced

production system concepts like digital twinning . In addition to that, stochastic modeling has been successfully
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applied in cases like tool wear condition monitoring , prediction of cutting force during micro-machining , or

grinding wheel topography modeling . More generally, the importance of the Markovian framework, its

background, and broad application cases is proven by a quite significant number of research papers dedicated to

that topic .

Concerning production system modeling, a variety of problems has been addressed in the literature, such as the

performance evaluation of serial lines, assembly lines, job shops, flexible manufacturing cells, or other specific

types of production. A more detailed review of different modeling approaches, including applications of the Markov

processes, semi-Markov processes, queuing networks, stochastic automata networks, Petri nets, performance

algebra, and diodic algebraic models, was presented recently by Papandopulos et al. . It was pointed out that the

majority of the research body is still dominated by the application of the Markovian framework in cases of serial

production lines—“the working horse of production systems”.

The pioneering work on this topic was presented amid the last century by Sevast’yanov  who developed an

analytical solution to the steady-state response of the Bernoulli serial line composed of two machines and one

buffer using the integral equations. In addition, an idea of the approximation method in the case of lines with more

than two machines was presented since the integral equations proved to be too complex to obtain a more general

solution. The lack of the analytical solution in the case of the general Bernoulli serial line (a line with an arbitrary

number of machines and buffers of arbitrary capacity) and the awareness of the “dimensionality curse” related to

the large scale transition systems have motivated the researchers to further develop different approximation

techniques enabling modeling and performance analysis of production systems. According to Papandopulos , two

methods prevail, namely the decomposition and the aggregation algorithms. The first approach decomposes a

production line into two pseudo-machine and one buffer sublines, while the latter uses a sequential backward–

forward aggregation of two neighboring machines until a complete line is condensed into a single machine.

The advantage of the decomposition and aggregation methods is the ability to model and analyze complex

production lines at low CPU (central processing unit) costs, while getting some idea of the observed production

system and its properties through performance evaluation. Both methods were applied in the manufacturing

industry in cases like the automotive industry, the industry of household appliances, furniture factories, etc.

However, the major drawback of both methods is a lack of systematic verification against the missing analytical

results. In this respect, the analytical solution of the general Bernoulli serial line problem was formulated recently

using the generalized transition matrix approach . Unfortunately, its application was limited due to the

exponential growth of the problem scale known as the “dimensionality curse”, resulting in extensive CPU

requirements and computer memory storage limitations. Consequently, the methods of approximation were verified

only in a limited spectrum of problems.

However, the developed analytical solution enabled the formulation of the eigenvector associated with the largest

eigenvalue of the respective transition (stochastic) matrix. Such an eigenvector can be considered as the DNA of

the transition system under consideration as it is composed of the steady-state probabilities for each state of the

system’s state space. This property is exploited further in the present paper in order to formulate a finite state
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method (FSM) that bypasses the system’s dimensionality issues and approximates the exact results. The essence

of the method reflects the internal relationships between the eigenvector components, allowing further systematic

verification of the approximation methods as well as research on system improvability within the Markovian

framework of the serial Bernoulli production lines. The method is applied in cases of several serial Bernoulli

production lines, providing a possibility of extensive verification of the aggregation method.

2. Validation and Application of the Developed Theory

Validation of the developed FSM is performed in cases of the serial Bernoulli lines L –L  with probabilities of the

state {up} specified in Table 1. Performance measures were calculated using Equations (12), (15), (18), (19), and

(22) for each line using the analytical solution (AN), the aggregation procedure (AGG) and the FSM using ProLab,

an in-house software developed by the authors, and PSEToolbox (Production System Engineering Toolbox) .

Evaluation of the performance measures was performed for the specified lines as well as for their permutations

including even and uneven distribution of the buffer occupancy. However, only selected and the most interesting

results are presented here. In addition, to enable a simple graphical presentation of the results, all of the buffer

occupancies were selected as fractions or multiplies of the first or the last buffer’s capacity. Nevertheless, the

considered approach was valid in case of the arbitrary buffer occupancies. Buffer occupancy was specified

separately for each considered case.

As the first step of the FSM validation, a line L  was considered to check the fundamental accuracy of the method

against the well known analytical solution of the line composed of two machines and one buffer. The performance

measured in the case of the line L  and its reverse were evaluated using AN, AGG, and FSM approaches and are

compared in Figures 1 and 2. Both AGG and FSM approaches agreed very well with the analytical results in this

simplest case, except for some negligible discrepancies due to numerical reasons. An excellent agreement could

also be noticed in the asymptotic values approached by the performance curves in all three cases. In addition, a

reversibility property of the line was excerpted nicely.

Table 1. List of considered serial Bernoulli production lines with probabilities of the state {up} (authors’ work).

Line M p p p p p p p p p p

L1 2 0.6 0.9                

L1R 2 0.9 0.6                

L2 3 0.6 0.75 0.9              
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L2′ 3 0.6 0.75 0.9              

L2′R 3 0.9 0.75 0.6              

L3A 4 0.6 0.7 0.8 0.9            

L3B 4 0.7 0.6 0.8 0.9            

L3C 4 0.9 0.7 0.6 0.8            

L4 5 0.6 0.675 0.75 0.825 0.9          

L5 6 0.6 0.66 0.72 0.78 0.84 0.9        

L6 7 0.6 0.65 0.7 0.75 0.8 0.85 0.9      

L7 8 0.6 0.643 0.686 0.729 0.772 0.815 0.858 0.9    

L8 9 0.6 0.637 0.674 0.711 0.75 0.787 0.824 0.862 0.9  

L9 10 0.6 0.633 0.666 0.699 0.732 0.765 0.798 0.831 0.864 0.9

The performance measures of the line with three machines were evaluated in several cases. The first case, L ,

took into account the original arrangement of machines (see Table 1) and even buffer capacity distribution along

the line. Figure 3 presents the distribution of the performance measures as a function of buffer capacity. A good

agreement of both AGG and FSM with the analytical results was evident, except for slight discrepancies in PR and

ST  between AN and FSM solution for the lowest level of buffers’ capacity.

Uneven distribution of the buffer capacity and perturbed arrangement of the machines were evaluated in the case

of the line labeled as L . The third case, L , considered a reverse of the L  line. The performance measures

obtained using AN, AGG, and FSM approaches are presented in Figures 4 and 5 as functions of the buffer

capacity. It can be seen that generally, all three methods agreed well, particularly in asymptotic values of the

performance measures. It can also be noticed that the reversibility property held for lines L  and L .
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Performance measures of the line with four machines were evaluated in three cases of different machine

arrangements including the uneven distribution of the buffer capacity. A comparison between the obtained results is

presented in Figures 6–8 in cases of lines L , L , and L . Again, the discrepancies were related to the smallest

state spaces of buffers with small capacity. As the state space increased, the methods approached the same

asymptotic values. It is interesting to notice a relationship between the position of the worst machine, WIP, BL, and

ST. In a case when the worst machine was in position i = 2, 3, …, M, WIP  altered from the asymptotic function to

an almost linear curve, while BL  and ST  altered pertaining asymptotes.

The above examples proved a quite good agreement between the aggregation procedure, the finite state method,

and the analytical solution. Therefore, the analytical solution could be omitted from further evaluations of lines L –

L  as it would require considerably more CPU time as compared to the AGG and FSM algorithms. Further, to avoid

the presentation of extensive data generated by the evaluation, only asymptotic values of the performance

measures of lines L –L  are presented in Figures 9 and 10. The machine arrangement is presented in Table 1,

while the buffer occupancy is considered to be even along the lines. The obtained asymptotic value of the

production rate was, as expected, the same for both lines and was equal to 0.6. The probability of machine

blockage was also equal to 0 since the first machine was also the worst one. The asymptotic values of the work-in-

process for each buffer of lines L –L  are presented in Figure 9. It can be seen that both methods yielded almost

the same values. Additionally, the asymptotic values of the probability of starvation for each machine of the

considered lines are presented in Figure 10. A nice agreement between the results can be noticed.
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Figure 1. PR, WIP, BL , and ST  in case of the line L  (authors’ work).1 2 1
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Figure 2. PR, WIP, BL , and ST  in case of the line L  (authors’ work).1 2 1R
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Figure 3. PR, WIP , WIP , BL , BL , ST , and ST  in case of the line L , N  = N  = N (authors’ work).1 2 1 2 2 3 2 1 2
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Figure 4. Performance measures of the perturbed line L  (N  = N, N  = ½N ) (authors’ work).2′ 1 2 1
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Figure 5. Performance measures of the perturbed line L  (N  = ½N , N  = N) (authors’ work).2′R 1 2 2
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Figure 6. Performance measures of the line L  (N  = N, N  = 2N, N  = N) (authors’ work).3A 1 2 3
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Figure 7. Performance measures of the line L  (N  = N, N  = 2N, N  = N) (authors’ work).3B 1 2 3



Finite State Method | Encyclopedia.pub

https://encyclopedia.pub/entry/2655 19/22



Finite State Method | Encyclopedia.pub

https://encyclopedia.pub/entry/2655 20/22

Figure 8. Performance measures of the line L  (N  = N, N  = 2N, N  = N) (authors’ work).

Figure 9. Asymptotic occupancies of buffers, lines L –L  (authors’ work).

Figure 10. Asymptotic probability of the starvation, lines L –L  (authors’ work).

3. Conclusions

Manufacturing is of great importance for the global economy and society. It is, therefore, of great significance to

master the analysis and design of various production systems. In that respect, research on the performance

measures evaluation of the Bernoulli serial production lines was presented in this paper. Several important aspects

of the modeling and analysis using transition systems within the Markovian framework were addressed, including

analytical and approximation methods. The “dimensionality curse” problems of the large scale and dense transition

systems in the PSE field were pointed out as one of the main research and development obstacles.
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Given that, a new analytically-based FSM approach was developed based on the proportionality property of the

stationary probability distribution across the systems’ state space. An analytical solution of the two machine-one

buffer line was exploited to formulate finite state elements used to model a complete Bernoulli serial production

line. Simple and differentiable expressions for the performance measures including the production rate, the work-

in-process, and the probabilities of machine blockage and starvation were developed. The FSM accuracy and

applicability were successfully validated by comparing the obtained results against the rigorous analytical solution.

In addition to that, a thorough validation of the aggregation method was provided, proving its accuracy and

applicability. Currently, the FSM is limited to the evaluation of the single product lines as the cycle time was

assumed to be equal at each machine along the line. Other limitations are related to the assumption of a Bernoulli

reliability model of each machine along the line as well as to the assumption of occurrence of the machine

breakdowns and repairs at the beginning of each cycle which may not be in complete agreement with the real

production system.

Further research in the PSE field, as well as further development and application of the FSM, should focus on the

analytical formulation of problems like improvability analysis, design of lean production lines, closed Bernoulli lines,

Bernoulli lines with rework, assembly systems, the steady-state and transient behavior of transition systems, etc.

Additionally, further effort should be put into FSM modeling of the production lines involving multiple products of

different processing times. Such research will make it possible to model complex stochastic relationships in cases

of systems like ship production or other job shop production systems. A significant impact on the PSE research

body would also be accomplished in case of validation of the evaluation methods against the factory floor data.

Last but not the least, it would be interesting to research a possibility to apply the FSM approach in cases of other

large scale transition systems typically encountered in fields of physics, biology, chemistry, ecology, etc.
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