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Crowd counting refers to estimating the number of individuals who share a certain region. This work present a

survey for the main methods that calculate how many individuals are in a physical region. We start by reviewing

traditional computer vision methods and then review deep learning-based methods.

deep learning  computer vision  Crowd counting

1. Introduction

Automatic crowd scene analysis refers to investigating the behavior of a large group of people sharing the same

physical area . Typically, it counts the number of individuals per region, tracks the common individuals’

trajectories, and recognizes individuals’ behaviors. Therefore, automatic crowd scene analysis has many essential

applications. It monitors the spread of the COVID-19 virus  via ensuring physical distance between individuals in

stores, parks, etc. Securing public events, such as sports championships , carnivals , new year celebrations ,

and Muslim pilgrimage , is another application of automatic crowd scene analysis. Crowd scene analysis supplies

surveillance camera systems with the ability to extract anomalous behaviors from a huge group of people .

Furthermore, analysis of crowd scenes of public places such as train stations, super stores, and shopping malls

can show the effect of crowd path or the shortcomings of the design. Consequently, these studies can better safety

considerations .

2. Crowd Counting

The following subsections review different methods that calculate how many individuals are in a physical region.

For completeness, we start by reviewing traditional computer vision methods and then review deep learning-based

methods.

2.1. Traditional Computer Vision Methods

2.1.1. Detection-Based Approaches

Early approaches used detectors to detect peoples’ heads or shoulders in the crowd scene to count them, such as

in . Counting by detection is usually performed either in monolithic detection or parts-based detection. In

monolithic detection, the detection is usually performed based on pedestrian detection methods such as optical

flow [ , histogram of oriented gradient (HOG) , Haar wavelets , edgelet , Particle flow , and shapelets
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. Subsequently, the extracted features from the former detectors are fed into nonlinear classifiers such as

Support Vector Machine (SVM) ; however, the speed is slow. A linear classifier such as linear SVM, hough

forests , or boosting  usually provides a trade-off between speed and accuracy. Then, the classifier is slid

over the whole image to detect candidates and to discard the less confident candidates. The results of sliding give

the number of people in the scene.

The former methods cannot deal with the partial occlusion problem  when it is raised; therefore, part-based

detection is adopted. Part-based detection focuses on body parts rather than the whole body such as the head and

shoulders as in . Part-based detection is more robust than monolithic, as reported in . Based on 3D shapes

, humans were modelled with ellipsoids, which was employed as a stochastic process  to calculate the

number and shape configuration that best explains a segmented foreground object. Later on, Ge et. al 

extended the same idea with the Bayesian marked point process (MPP)  with a Bernoulli shape prototype .

Zhao et al.  used Markov chain Monte Carlo   to exploit temporal coherence for 3D human models across

consecutive frames.

2.1.2. Regression-Based Approaches

Although counting by detection or part-based approaches achieves reasonable results, it fails in very crowded

scenes and under heavy occlusion. Counting by regression tries to mitigate the former problems. Typically, this

method consists of two main components. The first component is extracting low-level features, such as Foreground

features , texture , edge features , and gradient features . The second component is mapping in a

regression function, e.g., linear regression , piecewise linear regression , ridge regression , or Gaussian

process regression, to map the extracted features into counts, as in . The complete pipeline of this method is

shown in Figure 1.

Figure 1. Crowd counting pipeline using the regression model. Image from .

2.1.3. Density Estimation-Based Approaches
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These approaches build a density map to represent the number of individuals per region in an input image, as

shown in Figure 2. In , the author built density maps via linearly mapping local patch features to its

corresponding object. Formulating the problem in this way reduces the complexity of separating each object to

count it and reduces the potential of counting errors in case of highly crowded scenes. Estimating the number of

objects in this method equates to integration over local batches in the entire image.

Figure 2. (a) Input image, (b) Ground truth, and (c) Estimated density maps. Image from .

2.2. Deep Learning Approaches

Convolutional Neural Networks (CNNs) are similar to plain Neural Networks (NNs) from the perspective that they

consist of neurons/receptive fields that have learnable weights and biases. Each receptive field receives a batch

input and performs a convolution operation, and then, the result is fed into a nonlinearity function  (e.g., ReLU or

Sigmoid). The input image to CNN is assumed to be an RGB image; therefore, the hidden layers learn rich features

that contribute to the performance of the whole network (hidden layers and classifier). This structure has benefits in

terms of speed and accuracy since the crowd scene images have lots of objects that need computationally

expensive operations to detect. End-to-end networks mean the network takes the input image and directly

produces the desired output.

The pioneering work with deep networks was proposed in . An end-to-end deep convolutional neural network

(CNN) regression model for counting people of images in extremely dense crowds was proposed. A collected

dataset from Google and Flickr was annotated using a dotting tool. The dataset consists of 51 images, each of

which has 731 people on average. The least number of counts in this dataset is 95, and the highest count is 3714.

The network was trained on positive and negative classes. The positive images were labelled with the number of

the objects, while the negative images were labelled with zero.
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Network architecture: This network consists of five convolutional layers and two fully connected layers. The

network was trained on object classification with regression loss, as shown in Figure 3.

Figure 3. Convolutional Neural Network (CNN) architecture with positive and negative inputs. Image from .

One of the newest state-of-the-art methods for accurate crowd counting came out in . The authors proposed an

attention-injective deformable convolutional network called ADCrowdNet that they claim can work accurately in

congested noisy scenes. The network consists of two sections: Attention Map Generator (AMG) and Density Map

Estimator (DME). AMG is a classification network that classifies the input image into a crowd image or background

image. The product of AMG is then used as input to DME to generate a density map of the crowd in the frame. This

process is described in Figure 4. ADCrowdNet achieved the best accuracy for crowd counting on the

ShanghaiTech dataset , UCF_CC_50 dataset , the WorldExpo’10 dataset , and the UCSD dataset . In

, Oh et al. proposed an uncertainty quantification method for estimating the count of the crowd. This method is

based on a scalable neural network framework that uses a bootstrap ensemble. Method PDANet (Pyramid Density-

Aware Attention-based network)  generates a density map representing the count of the crowd in each region of

input images. This density map is generated by utilizing the attention paradigm, pyramid scale features, decoder

modules for crowd counting, and a classifier to assess the density of the crowd in each input image. In DSSINet

(Deep Structured Scale Integration Network) , structured feature representation learning and hierarchically

structured loss function optimization are used to count the crowd. In , Reddy et al. tackled the problem of crowd

counting by adaptive few-shot learning. In , an end-to-end trainable deep architecture was proposed. This

approach uses contextual information, generated by multiple receptive field sizes and learning the importance of

each such feature at each image location, to estimate the crowd count in input images.

Figure 4. Structure of ADCrowdNet.
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