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Crowd counting refers to estimating the number of individuals who share a certain region. This work present a survey for

the main methods that calculate how many individuals are in a physical region. We start by reviewing traditional computer

vision methods and then review deep learning-based methods.
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1. Introduction

Automatic crowd scene analysis refers to investigating the behavior of a large group of people sharing the same physical

area . Typically, it counts the number of individuals per region, tracks the common individuals’ trajectories, and

recognizes individuals’ behaviors. Therefore, automatic crowd scene analysis has many essential applications. It monitors

the spread of the COVID-19 virus  via ensuring physical distance between individuals in stores, parks, etc. Securing

public events, such as sports championships , carnivals , new year celebrations , and Muslim pilgrimage , is

another application of automatic crowd scene analysis. Crowd scene analysis supplies surveillance camera systems with

the ability to extract anomalous behaviors from a huge group of people . Furthermore, analysis of crowd scenes of

public places such as train stations, super stores, and shopping malls can show the effect of crowd path or the

shortcomings of the design. Consequently, these studies can better safety considerations .

2. Crowd Counting

The following subsections review different methods that calculate how many individuals are in a physical region. For

completeness, we start by reviewing traditional computer vision methods and then review deep learning-based methods.

2.1. Traditional Computer Vision Methods

2.1.1. Detection-Based Approaches

Early approaches used detectors to detect peoples’ heads or shoulders in the crowd scene to count them, such as in 

. Counting by detection is usually performed either in monolithic detection or parts-based detection. In monolithic

detection, the detection is usually performed based on pedestrian detection methods such as optical flow [ , histogram

of oriented gradient (HOG) , Haar wavelets , edgelet , Particle flow , and shapelets . Subsequently, the

extracted features from the former detectors are fed into nonlinear classifiers such as Support Vector Machine (SVM) ;

however, the speed is slow. A linear classifier such as linear SVM, hough forests , or boosting  usually provides a

trade-off between speed and accuracy. Then, the classifier is slid over the whole image to detect candidates and to

discard the less confident candidates. The results of sliding give the number of people in the scene.

The former methods cannot deal with the partial occlusion problem  when it is raised; therefore, part-based detection is

adopted. Part-based detection focuses on body parts rather than the whole body such as the head and shoulders as in

. Part-based detection is more robust than monolithic, as reported in . Based on 3D shapes , humans were

modelled with ellipsoids, which was employed as a stochastic process  to calculate the number and shape

configuration that best explains a segmented foreground object. Later on, Ge et. al  extended the same idea with the

Bayesian marked point process (MPP)  with a Bernoulli shape prototype . Zhao et al.  used Markov chain Monte

Carlo  to exploit temporal coherence for 3D human models across consecutive frames.

2.1.2. Regression-Based Approaches

Although counting by detection or part-based approaches achieves reasonable results, it fails in very crowded scenes and

under heavy occlusion. Counting by regression tries to mitigate the former problems. Typically, this method consists of two

main components. The first component is extracting low-level features, such as Foreground features , texture , edge
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features , and gradient features . The second component is mapping in a regression function, e.g., linear regression

, piecewise linear regression , ridge regression , or Gaussian process regression, to map the extracted features

into counts, as in . The complete pipeline of this method is shown in Figure 1.

Figure 1. Crowd counting pipeline using the regression model. Image from .

2.1.3. Density Estimation-Based Approaches

These approaches build a density map to represent the number of individuals per region in an input image, as shown in

Figure 2. In , the author built density maps via linearly mapping local patch features to its corresponding object.

Formulating the problem in this way reduces the complexity of separating each object to count it and reduces the potential

of counting errors in case of highly crowded scenes. Estimating the number of objects in this method equates to

integration over local batches in the entire image.

Figure 2. (a) Input image, (b) Ground truth, and (c) Estimated density maps. Image from .

2.2. Deep Learning Approaches

Convolutional Neural Networks (CNNs) are similar to plain Neural Networks (NNs) from the perspective that they consist

of neurons/receptive fields that have learnable weights and biases. Each receptive field receives a batch input and

performs a convolution operation, and then, the result is fed into a nonlinearity function  (e.g., ReLU or Sigmoid). The

input image to CNN is assumed to be an RGB image; therefore, the hidden layers learn rich features that contribute to the

performance of the whole network (hidden layers and classifier). This structure has benefits in terms of speed and

accuracy since the crowd scene images have lots of objects that need computationally expensive operations to detect.

End-to-end networks mean the network takes the input image and directly produces the desired output.

The pioneering work with deep networks was proposed in . An end-to-end deep convolutional neural network (CNN)

regression model for counting people of images in extremely dense crowds was proposed. A collected dataset from

Google and Flickr was annotated using a dotting tool. The dataset consists of 51 images, each of which has 731 people

on average. The least number of counts in this dataset is 95, and the highest count is 3714. The network was trained on

positive and negative classes. The positive images were labelled with the number of the objects, while the negative

images were labelled with zero.

Network architecture: This network consists of five convolutional layers and two fully connected layers. The network was

trained on object classification with regression loss, as shown in Figure 3.
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Figure 3. Convolutional Neural Network (CNN) architecture with positive and negative inputs. Image from .

One of the newest state-of-the-art methods for accurate crowd counting came out in . The authors proposed an

attention-injective deformable convolutional network called ADCrowdNet that they claim can work accurately in congested

noisy scenes. The network consists of two sections: Attention Map Generator (AMG) and Density Map Estimator (DME).

AMG is a classification network that classifies the input image into a crowd image or background image. The product of

AMG is then used as input to DME to generate a density map of the crowd in the frame. This process is described in

Figure 4. ADCrowdNet achieved the best accuracy for crowd counting on the ShanghaiTech dataset , UCF_CC_50

dataset , the WorldExpo’10 dataset , and the UCSD dataset . In , Oh et al. proposed an uncertainty

quantification method for estimating the count of the crowd. This method is based on a scalable neural network framework

that uses a bootstrap ensemble. Method PDANet (Pyramid Density-Aware Attention-based network)  generates a

density map representing the count of the crowd in each region of input images. This density map is generated by utilizing

the attention paradigm, pyramid scale features, decoder modules for crowd counting, and a classifier to assess the

density of the crowd in each input image. In DSSINet (Deep Structured Scale Integration Network) , structured feature

representation learning and hierarchically structured loss function optimization are used to count the crowd. In , Reddy

et al. tackled the problem of crowd counting by adaptive few-shot learning. In , an end-to-end trainable deep

architecture was proposed. This approach uses contextual information, generated by multiple receptive field sizes and

learning the importance of each such feature at each image location, to estimate the crowd count in input images.

Figure 4. Structure of ADCrowdNet.
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