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Solid-state lithium metal batteries (LMBs) have become increasingly important in recent years due to their potential

to offer higher energy density and enhanced safety compared to conventional liquid electrolyte-based lithium-ion

batteries (LIBs). However, they require highly functional solid-state electrolytes (SSEs) and, therefore, many

inorganic materials such as oxides of perovskite La2/3−xLi3xTiO3 (LLTO) and garnets La3Li7Zr2O12 (LLZO),

sulfides Li10GeP2S12 (LGPS), and phosphates Li1+xAlxTi2−x(PO4)3x (LATP) are under investigation. Among

these oxide materials, LLTO exhibits superior safety, wider electrochemical window (8 V vs. Li/Li+), and higher bulk

conductivity values reaching in excess of 10−3 S cm−1 at ambient temperature, which is close to organic liquid-

state electrolytes presently used in LIBs. 

safety  perovskite  ceramic  solid-state electrolytes  LLTO  tape casting

lithium metal batteries

1. Introduction

It is widely believed that the most efficient strategy to achieve meaningful reduction in greenhouse gas (GHG)

emissions is by electrification of transportation and expanding the use of renewable energy sources. Both of these

approaches require transformative energy storage technology . One of the most promising energy

storage technologies is solid-state lithium batteries (LBs) . LBs are rechargeable, and they were first

introduced on the market by Sony Corporation in 1991 . One of the key distinctions of LBs is that they have a

much higher energy density than conventional nickel-cadmium (Ni-Cd) , lead-acid (Pb-acid) , nickel-hydrogen

(Ni-H ) , and silver-zinc (Ag-Zn)  batteries represented in a Ragone plot (Figure 1).
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Figure 1. Ragone plot of lithium batteries .

However, another safety issue common for conventional LBs is the high flammability and low thermal stability of

organic liquid-state electrolytes . This issue can be solved by substituting solid-state electrolytes (SSEs)

in place of liquid-state electrolytes . Solid oxide electrodes and electrolytes enable energy/power cells to

operate at a higher temperature range and accelerate reactions at the cathode and anode, leading to a higher

discharging/charging rate. In addition, SSEs have wider electrochemical windows that increase their adaptiveness

to high-voltage cathode materials and lithium-metal anodes, which can also enhance the energy density (up to

70% ) and cycling performance of LBs. When combined with a lithium metal anode and Ni-rich oxide ceramic

cathode, SSEs can enable the safest batteries with the highest energy density to meet the demand for

electrification of air and surface transportation .

SSEs include polymer, inorganic (e.g., ceramic-based oxide electrolytes) and hybrid electrolytes. Free-standing

polymer electrolytes could be prepared with proper crosslinkers  followed by photopolymerization as

an in-situ approach . Fabricated gel polymer electrolytes are capable of creating high-quality

interfacial contact with electrodes and good electrochemical properties . Besides, Li et al.  and Yao et al. 

presented recently progress on polymer-based electrolytes. Unfortunately, they still have limited ionic conductivity

at room temperature. Inorganic oxides SSEs mainly include perovskites, garnets, NASICON-type, and LISCON-

type . Cao et al.  comprehensively reviewed inorganic SSEs for lithium batteries. Similar to perovskites,

hybrid polymer-ceramic systems utilize ceramic fillers with garnets as a dispersant into the polymer matrix (i.e.,

[15]

[16][17][18][19]

[20][21][22]

[23]

[24]

[25][26][27][28][29]

[30][31][32][33][34]

[35] [36] [37]

[38] [38]



Perovskite Solid-State Electrolytes for Lithium Metal Batteries | Encyclopedia.pub

https://encyclopedia.pub/entry/16257 3/13

poly (ethylene oxide) (PEO)-based, polyacrylonitrile(PAN)-based, polyvinylidene fluoride (PVDF)-based, etc.) .

Goodenough et al.  fabricated low-cost hybrid PEO-LLZTO electrolytes and applied them in LiFePO |Li cells that

delivered high discharge capacity (139.1 mAh g  with capacity retention of 93.6% after 100 cycles). Falco et al.,

innovatively prepared cross-linked hybrid electrolytes to enhance ionic conductivity by mixing LLZO, lithium

bis(trifluoromethanesulfonyl) imide (LiTFSI), tetra (ethylene glycol dimethyl ether) (G4) together under UV-light 

. The hybrid electrolytes exhibited excellent ionic conductivity of 0.1 mS cm  at 20 °C. Passerini’s group 

presented UV cross-linked PEO polymer electrolytes  with ionic liquids. The room temperature ionic conductivity

could reach nearly 10  S cm .

We summarized the progress of LLTO electrolytes in solid-state LBs (as shown in Figure 2). Many investigations

have been undertaken on LLTO composite SSEs and electrochemical performance of selected electrolytes are

summarized in the Table 1. However, hybrid electrolytes still suffer safety issues due to the flammability of the

organic polymers. There is few research working on 100% ceramic electrolytes in solid-state LBs applications.

Figure 2. Timeline for the development of typical LLTO (La Li TiO ) solid-state electrolytes (SSEs) in lithium

metal batteries.

Table 1. Summary of electrochemical performance for selected LLTO SSEs in LBs.
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Perovskites usually demonstrate relatively high lithium-ion conductivities (10 ~10  S cm  at room temperature

as shown in Figure 3a and low electronic conductivity  (i.e., 10  S cm ). Inaguam et al.  was the first to

report LLTO solid-state electrolytes (SSEs) with relatively high bulk ionic conductivity (i.e., 1 × 10  S cm  at room

temperature) and total ionic conductivity (i.e., >2 × 10  S cm  at room temperature). Figure 3b shows the

SSEs Composition Anode|Cathode
Ionic

Conductivity (S
cm )

Discharge Capacity/Charging
rate/Cycle Number (Capacity

Retention Rate)

LLTO/  PEO/LiTFSI/SN
Li|NMC 532 >10  at 55 °C

143.2 mAh g
C/20

30 (data unavailable)

LLTO/PEO 

  147 mAh g

Li|LiFePO
3.31 × 10  at 

RT
C/10

  100 (~98%)

15 wt.% LLTO/  PVDF
Li|LiFePO

5.3 × 10  at 25
°C

121 mAh g
1C

100 (~99%)

LLTO/PEO/LiTFSI Li|LiFePO
1.3 × 10  at 60

°C

144.6 mAh g
1C

100 (~96%)

LLTO/PEO/LiTFSI Li|LiFePO
1.6 × 10  at 60

°C

135 mAh g
2C

300 (79%)

5 wt.%
LLTO/PEO/LiTFSI Li|LiFePO

3.63 × 10  at 60
°C

123 mAh g
C/2

100 (94%)

8 wt.% LLTO/PEO/
PPC/LiTFSI 

  135 mAh g

Li|LiFePO
4.72 × 10  at 60

°C
C/2

  100 (96%)

3wt.%
LLTO/PEO/LiClO  Li|LiFePO

4.01 × 10  at 60
°C

140 mAh g
1C

100 (92.4%)

LLTO/  BC 

  151.7 mAh g

Li|LiFePO 1.54 × 10  at RT C/5

  100 (98.5%)

Sr/Ta co-doped LLTO
Li|LiFePO

1.40 × 10  at 25
°C

83.8 mAh g
C/10

80 (89%)
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Arrhenius plots of the ionic conductivities of the perovskite compared with other ceramic SSEs. Thus, LLTO has

been widely used as an additive within polymers to form composited electrolytes for ionic conductivities

enhancement.

Figure 3. (a) Typical SSEs with highly ionic conductivities at room temperature; and (b) ionic conductivities of

selected SSEs with elevated temperature. Reprinted (adapted) with permission from . Copyright 2017 American

Chemical Society.

In general, LLTO has many advantages: (1) large ionic transference numbers (i.e., 0.5~0.9); (2) superior chemical

and thermal stability in air; and (3) environmental friendless without any release of toxic gases during

decomposition reactions. Besides, LLTO SSEs show wide electrochemical windows (8 V vs. Li/Li ) that increase

their adaptiveness to high-voltage cathode materials and if combined with lithium-metal anodes. Also, LLTO

exhibits excellent thermal stability (4–1600 K ) that provide potential applications even at extreme conditions.

However, there are several challenges that hamper the application of LLTO SSEs in batteries. First of all, the large

grain boundary resistance reduces total ionic conductivity below 10  S cm  at room temperature . Secondly,

LLTO is chemically unstable when in direct contact with lithium metal. Lithium can be intercalated into LLTO at

voltages below about 1.8 V, which causes the Ti  reduction and enhanced electronic conductivity . Thirdly, the

brittleness nature of LLTO makes it hard to fabricate and assemble into batteries. Besides, due to internal volume

changes of batteries during operation, delamination of the ceramic oxide electrode and electrolyte layers can occur,

causing the battery life to be shortened .

In this review, we presented and analyzed the origins of large grain boundary resistance for LLTO and solutions.

We also gained an insight to the chemical instability of LLTO electrolytes when contacts lithium-metal anode.

Moreover, we reviewed the tape-casting fabrication methods and electrochemical performances for 100%

amorphous and crystalline LLTO SSEs in LBs.

2. Crystal Structure/Composition of LLTO and Relationship
to Ionic Conductivity
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Perovskite La Li TiO  (LLTO)-family (0.04 < x < 0.16) with ABO  structure (Figure 4a,b) has Li, La (La-rich and

La-poor regions), and vacancies occupying the A sites, and Ti-ions occupying B sites that are octahedrally

coordinated by oxygen .

Figure 4. (a) ABO  structure; (b) La-rich and La-poor regions; (c) Crystal structure of (P4/mmm)-type LLTO ;

and (d) bottleneck structure of 12-fold coordinated with oxygen ions .

Figure 4c indicates the crystal structure of the tetragonal-type perovskite with the lattice parameter of a = 3.8 Å 

for cubic unit cell. Various x values of the lithium and lanthanum lead to distorted structures which generally

originates from the unequal distribution of vacancies and displaced cations of Li  and La . The bottleneck

structure of perovskites consists of 12-fold coordinated with corner-shared oxygen as shown in Figure 4d . The

stable structure could be maintained when the x value is between 0.04 and 0.16.

Cubic and tetragonal LLTO (x ≈ 0.11) display a lattice structure with the stacking of La-rich and La-poor regions

(Figure 4b) to maintain high bulk conductivity . Inaguma and Itoh  showed that the conductivity of LLTO solid

solution shows a parabolic dependence on x due to variations in the lithium to vacancy concentration and the

formation of low activation energy pathways for ions controlled by site percolation and bottleneck size.

A lot of research has been dedicated to perovskite-type electrolytes to better understand the relationship of the

chemical composition, crystal structure, and synthetic methods on lithium ionic conductivity . Many works

synthesized LLTO that the content of lithium around 0.11. Proper adjustments of this value depend on dopants in

LLTO. Table 2 shows the summary of room-temperature ionic conductivities for selected LLTO SSEs (with common

dopants) ionic conductivity at room temperature. The optimal x with the highest conductivity (more than 10  S
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cm  at room temperature) was found by many researchers to be around ~0.1 (LLTO commercial powder from

TOHO TITANIUM Co., Ltd.).

Table 2. Summary of selected LLTO SSEs in ionic conductivities.
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