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Sanfilippo syndrome is caused by mutations in the enzymes responsible for the degradation of heparan sulfate (HS), a

specific GAG, and patients are characterized by severe neurological pathology leading to childhood dementia.
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animal models  induced pluripotent stem cells  cellular models  therapeutic approaches.

1. Introduction

Lysosomal storage disorders (LSDs) comprise a heterogeneous group of rare inherited metabolic diseases that are

characterized by the accumulation of macromolecules inside lysosomes. LSDs are caused by deficiencies in lysosomal

enzymes, leading to lysosomal dysfunction, altered recycling of macromolecules, and impaired flux of the endolysosomal

system. Mucopolysaccharidoses (MPS) are a group of LSDs accounting for approximately 30% of all LSD cases and arise

from mutations in genes involved in glycosaminoglycans (GAGs) degradation, which accumulate inside the lysosomes .

Among MPS, Sanfilippo syndrome (also known as mucopolysaccharidosis III or MPS III) is the most frequent type and it was

first described more than 50 years ago . 

2. Classification

There are four different subtypes of Sanfilippo syndrome based on the mutated gene and the consequent enzyme deficiency:

type A (OMIM#252900), type B (OMIM#252920), type C (OMIM#252930), and type D (OMIM#252940), all of them presenting

an autosomal recessive inheritance pattern . Insufficient or complete loss of activity of any of the Sanfilippo syndrome

causative enzymes leads to accumulation of partially degraded HS chains within lysosomes of cells in several organs and

tissues . In a recent study, a fifth subtype was identified in a mouse model  caused by mutations in the ARSG gene;

however, to date, no human cases have been described. Moreover, human patients with a homozygous mutation in ARSG

present Usher syndrome, leading to deaf-blindness and a small increase in urinary GAGs, although not as dramatic as in

Sanfilippo syndrome patients .

Clinical symptomatology of Sanfilippo patients is similar regardless of the subtype, mainly characterized by an early-onset,

severe, and progressive degeneration of the CNS with mild somatic symptoms . Neurodegeneration starts during the first

decade of life, with cortical atrophy, progressive dementia, motor deterioration, hyperactivity, learning difficulties, aggressive

behavior, sleeping problems, and pronounced mental retardation . Mild somatic manifestations include hirsutism,

hepatosplenomegaly, joint stiffness, dysphagia, hypertrichosis, hypoacusia, speech loss, and skeletal alterations . Death

usually occurs at the second or third decade of life, although in unusual attenuated cases, life expectancy extends until the

fifth or sixth decade .

The incidence of Sanfilippo syndrome varies depending on the subtype and geographical region, but on average is around

one in 70,000 live births . However, this incidence may underestimate the actual prevalence of different MPS III types
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because of the difficulties in the correct diagnosis of mild forms. Prevalence of the different subtypes vary between

populations; subtype A being more frequent in the Northern Europe and subtype B more frequent in Southern Europe . On

the other hand, subtype C is in general less common while subtype D is very rare in all populations.

Table 1. Distribution of total mutations described for each Sanfilippo syndrome (MPS III) subtype (HGMDProfesional 2020.3;

assessed on 9 October 2020).

2.1. Subtype A

MPS IIIA or Sanfilippo syndrome type A is caused by mutations in the SGSH gene, coding for sulfamidase (also known as

heparan sulfate sulfatase or N-sulfoglucosamine sulfohydrolase, EC 3.10.1.1), which releases sulfate groups linked to the

amino group of glucosamine. The gene is localized at 17q25.3  with an approximated length of 11 Kb and contains eight

exons. It codes for a protein of 502 amino acids with five possible glycosylation sites and a total of 155 identified mutations

(Table 1). Sanfilippo syndrome type A is considered the most aggressive form, with patients surviving until 15–18 years old on

average .

2.2. Subtype B

MPS IIIB or Sanfilippo syndrome type B is caused by mutations in the NAGLU gene, which encodes N-acetyl-α-

glucosaminidase (EC 3.2.1.50), a lysosomal enzyme of 720 amino acids with six possible glycosylation sites. The function of

the enzyme is the hydrolysis of the linkage between N-acetylglucosamine (GlcNAc) and the uronic acid, the two saccharides

that conform HS. The gene maps to 17q21.2 ; spans 8.3 Kb; contains six exons; and, to date, 229 mutations have been

identified as shown in Table 1. Sanfilippo syndrome type B patients die on average between 17–19 years old, this subtype

being slightly less aggressive than subtype A .

2.3. Subtype C
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A (SGSH) 155 118 20 9 1 3 3 1 0

B

(NAGLU)
229 167 29 16 1 8 4 4 0

C

(HGSNAT)
77 43 6 6 1 15 4 1 1

D (GNS) 25 7 5 4 1 4 2 0 2
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Mutations in the HGSNAT gene are responsible for MPS IIIC or Sanfilippo syndrome type C. This gene codes for the

lysosomal membrane protein known as acetyl-CoA α-glucosaminide N-acetyltransferase (EC 2. 3.1.78). It is located at

chromosome 8p11.1, was identified by two independent groups in 2006 , spans about 62.5 Kb, containing 18 exons, and

gives rise to a protein of 635 amino acids. For some time, there was controversy about the real initiation codon , but a

recent publication suggested that only one ATG codon worked as the initiation codon . Until now, 77 mutations have been

identified (Table 1). Subtype C is the less aggressive form of Sanfilippo syndrome, with a mean survival of 19–34 years

depending on the study .

2.4. Subtype D

Mutations in the GNS gene, which encodes the lysosomal enzyme N-acetylglucosamine-6-sulfatase (EC 3.1.6.14), are

responsible for MPS IIID or Sanfilippo syndrome type D. The gene is located at 12q14.3, is 46 Kb-long, and contains 14

exons. The enzyme has 552 amino acids and 13 potential glycosylation sites . It catalyzes the sulfate removal in the N-

acetylglucosamine residues. Until now, 25 mutations have been found (Table 1). Due to the rarity of this subtype, there is no

data on average survival of patients.

3. Therapeutic Approaches

Currently, there is no treatment to effectively slow down or reverse Sanfilippo syndrome patients’ neurodegeneration, and their

management consists only of palliative measures to alleviate the symptomatology. Interestingly, different kinds of approaches

have been tested during the last years in cellular and animal models of the disease, focused mainly on the treatment of the

CNS involvement. The main approaches we will review here consist of enzyme replacement therapy (ERT), substrate

reduction therapy (SRT), pharmacological chaperones, stem cell transplantation, and gene therapy (Figure 1). However, other

approaches such as the use of coenzyme Q  ; overexpression of TFEB , the master regulator in the lysosome

biogenesis ; or the use of modified RNAs to recover aberrant splicing processes  have also been assayed showing

different potentials to ameliorate pathological features of cellular and animal models.

Figure 1. Potential therapeutic approaches to treat Sanfilippo syndrome. Schematic representation of the main therapeutic

strategies currently being studied for the treatment of Sanfilippo syndrome patients: enzyme replacement therapy to provide

the correct form of the mutated protein (A), substrate reduction therapy to reduce storage of undegraded molecules (B), use

[16][17]

[18]

[19]

[13]

[20]

10
[21] [22]

[23][24] [25]



Sanfilippo Syndrome | Encyclopedia.pub

https://encyclopedia.pub/entry/3036 4/15

of pharmacological chaperones to correct protein missfolding (C), stem cell therapy for regeneration and production of the

correct form of the protein (D) and gene therapy to provide cells with the correct form of the mutated gene (E).

3.1. Enzyme Replacement Therapy

The success of any therapy relying on administration or production of the correct form of the lysosomal enzyme relies on the

fact that these proteins are tagged with mannose 6-phosphate (M6P) for correct trafficking towards the lysosome. Considering

that cells have M6P receptors in the membrane, lysosomal enzymes can be endocytosed and arrive to the lysosome to

perform their function . For non-neurological LSDs, exogenous administration of the correct form of the enzyme mutated in

patients, known as ERT (Figure 1A), has been proven to be the most successful strategy . However, for diseases affecting

the CNS, the existence of the blood–brain barrier (BBB), which limits the availability of the enzyme in the brain, has to be

taken into account. In addition, antibodies targeting the enzyme can be observed in treated LSD-patients, clearly reducing the

efficiency of the ERT . Thus, intravenous administration is not as useful as for other LSDs without CNS pathology, for which

ERT is currently approved and in use. On the other hand, direct brain administration for the treatment of neurological

disorders seems more beneficial , although it is an aggressive treatment that needs continued injections. Nevertheless,

clinical trials based on ERT for Sanfilippo syndrome type A and B have been carried out without clear results . In

any case, research to further investigate the potential of this approach is required .

3.2. Substrate Reduction Therapy

Taking into account the limitations of ERT, SRT has been presented as a valid alternative approach. The objective of this

therapy is to find molecular targets to decrease the production of the accumulated substrate and restore the balance between

synthesis and degradation (Figure 1B). It is important to remark that the mutant enzyme has to maintain some residual activity

in order to achieve this restoration. SRT has been already approved to treat some LSDs, both with neurological and non-

neurological symptomatology . For Sanfilippo syndrome, different molecules with the ability to cross the BBB for the

treatment of the CNS have been tested.

One of the most studied of these molecules is genistein, a natural isoflavone that inhibits the kinase activity of epidermal

growth factor receptor, which is important for complete expression of genes encoding enzymes responsible for GAG

production. Genistein was able to reduce GAG production in Sanfilippo syndrome type A and B fibroblasts , and to improve

behavioral abnormalities, neuroinflammation, synaptic loss, and lysosomal storage in a Sanfilippo B mouse model . After

these positive results, two clinical trials with genistein treatment were carried out showing a reduction in urinary GAGs, but

with unclear neurological benefits . Another clinical trial using a higher dose of genistein was recently completed for

Sanfilippo syndrome types A, B, and C. Even though these doses were safe for the patients, only a slight reduction of HS in

the cerebrospinal fluid was observed, with no attenuation of the intellectual disability . Further studies with higher doses of

genistein and other flavonoids should be carried out to establish the ability of this group of molecules to ameliorate CNS

pathology in Sanfilippo patients.

A different and interesting option for SRT is the use of specific RNAi directed to key genes involved in the GAG synthesis such

as EXTL genes or genes involved in the linkage region formation. RNAi is a mechanism to selectively silence the expression

of a particular gene by the specific degradation of the mRNA. Synthetic siRNAs and shRNAs have been widely used to

downregulate the expression of a large number of genes in several cell types in vitro and in vivo. In one study, siRNAs were

used to downregulate XYLT1, XYLT2, GALTI, and GALTII, genes encoding enzymes responsible for the formation of the

linkage region  (Figure 2). This strategy was assessed in MPS I and MPS IIIA fibroblasts, resulting in an important decrease

at the mRNA and protein levels for all the genes and a consequent significant decrease in the GAG synthesis after three days
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of treatment. In another study performed in our lab, the use of shRNAs to downregulate EXTL2 and EXTL3 genes was found

to reduce the GAG synthesis and storage in MPS IIIA fibroblasts. These results were observed after three days of treatment,

but failed after seven days . Later on, fibroblasts from Sanfilippo C patients treated with similar siRNAs targeting EXTL2 and

EXTL3 genes showed a reduction in GAG synthesis after three days and a decrease in HS storage after two weeks .

However, these studies were performed on patients’ fibroblasts, therefore, it is important to study SRT in relevant human

neural cells, which are the ones affected in patients. In a recent study, we demonstrate that the same siRNAs that were

effective in Sanfilippo syndrome type C fibroblasts were not efficient in decreasing storage in iPSC-derived neurons generated

from the same fibroblasts assayed in the previous study .

Figure 2. Synthesis and degradation of heparan sulfate (HS). Schematic representation of the biosynthesis and degradation

processes of HS, including organelle location of each step, enzymes responsible for each function, residues in the HS chains,

and modifications of these residues. GAGs—glycosaminoglycans.

3.3. Pharmacological Chaperones for Enzyme-Enhancement-Therapy

In many cases, missense mutations lead to the production of misfolded proteins that are rapidly degraded due to misfolding

but that conserve some residual activity  and chaperons are cellular proteins that help proteins to adopt correct foldings.

For years, several small compounds that act as chaperones, preventing misfolding of mutant proteins, have been identified

(Figure 1C). Among the most common pharmacological chaperones that have been used for enzyme-enhancement therapy

are amino and iminosugars. These molecules are in fact enzyme inhibitors that interact specifically with the active site of

proteins and, used at low concentrations, can effectively stabilize the mutant enzymes and restore the correct folding to

facilitate their trafficking towards the lysosome, thus, partially restoring enzymatic activity. In the case of LSDs, it has been
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proposed that achieving an enzyme activity around 5–15% can be sufficient to avoid the appearance of pathological

symptoms . To date, several compounds with chaperone activity have been tested for different LSDs such as Fabry

disease, G -gangliosidosis, Morquio B disease, Pompe disease, Gaucher disease, Krabbe disease, Niemann-Pick A/B and

C diseases, as well as for other types of disorders such as retinitis pigmentosa, cystic fibrosis, Parkinson’s disease, Alzheimer

disease, or cancer .

In the case of Sanfilippo syndrome, several compounds were tested in a study for their potential to act as pharmacological

chaperones . The results showed that glucosamine, a competitive inhibitor of the HGSNAT enzyme with low toxicity,

significantly increased HGSNAT activity in most patient fibroblasts lines tested, indicating its therapeutic potential. For

Sanfilippo syndrome type C, we carried out a preclinical cell-based study showing a 2.5-fold increase of HGSNAT enzyme

activity using glucosamine in patients’ fibroblasts carrying one splicing mutation that produces a protein lacking four amino

acids . Further studies should be done in order to establish its efficacy and lack of toxicity in brain cells as well as its ability

to cross the BBB.

3.4. Stem Cell Therapy

In the last few years, several stem cell applications have been described for the treatment of neurological diseases in order to

deliver the correct form of the enzyme into the brain (Figure 1D). Allogeneic bone marrow transplantation is used in the

treatment of different LSDs with neurological pathology, but in the case of MPS III, intravenous administration of lentiviral-

transduced bone marrow stem cells were not efficient to treat a mouse model of MPS IIIA  due to an insufficient production

of enzyme by the donor cells or an inefficient uptake by the host cells .

Hematopoietic stem cell transplantation has been largely tested in many patients suffering from different LSDs. In patients’

brain, these cells can replace microglia and become enzyme-secreting donor cells . Nevertheless, this process seems to be

slow and not complete, making this option an invalid therapy for neurological disorders with a rapid progress of symptoms

such as Sanfilippo syndrome, and currently, this approach is no longer considered for the treatment of Sanfilippo

syndrome . However, recent works using genetically modified hematopoietic stem cells carrying the normal copy of the

SGSH or NAGLU genes showed an improvement in the neurological pathology in MPS IIIA or MPS IIIB mouse models

.

Administration of human umbilical cord blood cells to the MPS IIIB mouse model has been explored, resulting in an

amelioration of the neurological and somatic symptoms . However, it presents the inconvenience that the enzyme

production declines with time. On the contrary, the transplantation of umbilical cord blood-derived stem cells in two type B

patients before the disease onset did not prevent the neurological deterioration .

Direct cell transplantation in the brain can be useful to both serve as cell replacement therapy addressing neuronal loss, as

well as a source of cells secreting the correct version of the deficient enzyme . In the last years, the development of iPSC

technology has allowed researchers to easily generate patient-specific neural stem cells (NSCs), which have the potential to

give rise to neurons, astrocytes, and oligodendrocytes. After transplantation into murine brains, NSCs can migrate long

distances within the brain, differentiate, and integrate in the host network without disrupting normal functionality. In conclusion,

NSCs represent an extraordinary opportunity to distribute the wild-type (WT) lysosomal enzyme and to recover neurological

pathology, as it has been shown in studies in which MPS VII  and MPS IIIB  mouse models were treated with this

strategy. However, for Sanfilippo C it is important to consider that HGSNAT does not have a M6P tag and is a membrane

protein, therefore secretion and uptake of this enzyme by deficient cells may not be successful.
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The use of glial precursors cells (GPCs) derived from pluripotent stem cells is another potential therapy to treat LSDs. In the

mouse model of MPS IIIA , GPCs genetically modified to overexpress the SGSH gene were tested. Results showed

promising results for this therapeutic approach, with GPCs successfully engrafting and surviving in the host brain, not forming

teratomas, and showing long-term SGSH overexpression. Interestingly, astrocyte-based therapies are emerging as an option

to treat some neurodegenerative disorders in which astrocytes play important roles, such as amyotrophic lateral sclerosis .

3.5. Gene Therapy

Gene therapy consists of the delivery of the correct copy of the gene to affected cells in order to recover enzyme activity

(Figure 1E). Gene therapy is the most promising therapeutic option for LSDs since, as already referred, it has been proposed

that only 5–15% of enzyme activity is required to maintain a healthy condition in affected patients . Several clinical trials are

currently ongoing or scheduled for different MPS . In the case of Sanfilippo syndrome, several viral vectors have been

tested for their therapeutic potential, such as retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses (AAV). In

addition, an approach using a nonviral vector (pFAR4) via tail vein administration was shown to increase enzyme activity and

reduce GAGs storage in several tissues and lysosomes in the brain of an MPS IIIA mouse model . Importantly, authors

showed that liver of treated animals was converted into an enzyme distributor that promoted the GAG decrease in other

tissues.

In the last years, the use of AAV have become the gold-standard tool for gene therapy in neurological disorders. Among the

qualities that make them good vectors, it is important to highlight that they are nonintegrative, nonpathogenic, and

nonimmunogenic in humans, and have the capacity to infect nondividing cells providing long-term expression. However, a

recent study shows that AAV can induce cell death in some neural cell types in the murine hippocampus, suggesting that

these approaches should be carefully evaluated . Nevertheless, in the last few years, several reports have been published

concerning AAV-mediated therapy using different virus serotypes and delivery strategies.

For MPS IIIA, intracerebral administration of AAV5 carrying the SGSH gene together with the SUMF1 gene (coding for an

essential and limiting factor for sulfatases) in the mouse model showed an increase in the SGSH activity in the brain, a

decrease in the storage and inflammation, and an improvement in the motor and cognitive function . After these results, a

phase I/II clinical trial for MPS IIIA using AAV10 expressing the deficient SGSH enzyme and the SUMF1 enzyme was started.

It recently finished, showing no toxicity or lack of tolerance and a possible slight improvement in patient behavior . AAV5 has

also been used in another clinical trial with MPS IIIB patients, and results indicate an improvement of neurocognitive

progression in all patients .

AAVrh10 has also been used to deliver SGSH in MPS IIIA mice via intraparenchymal administration . This treatment

reduced HS and GM3 ganglioside accumulation and microglial activation, but only in the site of injection. To increase efficacy,

multiple intraparenchymal regions should be injected to ensure widespread distribution. To study SGSH distribution in the

brain of large animals, the same transducing vector was injected via parenchyma in dogs and cynomolgus monkeys, and

SGSH enzyme activity increase was detected .

In a study comparing delivery efficiency of the NAGLU gene using different AAV serotypes in MPS IIIB mice , a better

biodistribution and transduction was found using AAV8 via direct administration of the virus to the CNS, but AAV9 showed

better results for systemic or intracerebroventricular delivery. Intramuscular administration of AAV8 carrying the SGSH gene in

Sanfilippo A mouse models showed no amelioration, while intravenous administration was effective in transducing mainly the

liver, with a consequent amelioration of the pathology in somatic tissues, although with a discrete improvement in CNS

symptoms of male mice . To improve secretion and targeting of the CNS, another study used a fusion protein of SGSH with
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a signal peptide to boost enzyme secretion and a BBB-binding domain. This vector was administered with an AAV8, and

results showed an important increase in enzyme activity in the brain that resulted in brain pathology and behavior

improvements .

Recently, the safety of intravenous administration of an AAV9 carrying the NAGLU gene was tested in unaffected primates .

AAV9 has been suggested to be the most efficient serotype for targeting brain cells and therefore, for the treatment of

neurological disorders. Very interestingly, a consistent and long-term increase in brain enzymatic activity was detected

together with low immunogenic reaction. Similar successful results using AAV9 have been achieved in mouse and canine

models of MPS IIIA . First, a clear increase in enzyme activity combined with a reduction in GAG storage and

neuroinflammation was found in the mouse model treated intravenously, resulting in expanded lifespan . Later, both animal

models were treated with intracerebrospinal injections, showing low immunogenic reaction and resulting in a clear restoration

of enzymatic activity and full body reduction of GAG storage and lysosome alterations, leading to prolonged lifespan  [120].

This same research group also develop a strategy to treat MPS IIIB  or MPS IIID  mice with cerebrospinal fluid delivery of

AAV9 vector carrying NAGLU or GNS genes, respectively. After treatment, enzyme activity in the CNS, normalization of GAG

storage, corrected behavior, and extended lifespan were observed.

All these results in different Sanfilippo subtypes encouraged the application of this approach in human patients. In relation to

cerebrospinal fluid administration, Esteve Laboratories recently started a phase I/II clinical trial using AAV9-hSGSH in MPS

IIIA patients (EudraCT Number: 2015-000359-26). Besides, although some preclinical studies have been performed before, it

was recently confirmed that some AAV were able to cross the BBB . Due to that, Abeona Therapeutics has started a clinical

trial using an intravenous delivery of AAV9 vector carrying the human SGSH gene under the control of a U1a promoter

(ClinicalTrials.gov: NCT02716246, NCT04088734). Preliminary data showed a dose-dependent and sustained reduction in

cerebrospinal HS after 30 days. In the case of Sanfilippo syndrome types A and B, two clinical trials based on intracerebral

injection of AAV have been already completed , and another two for subtype A have started (ClinicalTrials.gov:

NCT03612869, EudraCT Number: 2015-000359-26). However, as for ERT, gene therapy success for lysosomal enzymes

relies in the ability of transduced cells to share the correct lysosomal enzyme through M6P receptors with non-transduced

neighboring cells . As mentioned above, HGSNAT is a lysosomal transmembrane protein that does not undergo the M6P

pathway. For this reason, Sanfilippo C syndrome might not be the best candidate for gene therapy strategy, although some

interesting results have been obtained with a novel AAV .
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