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Chlorine first reacts with organic and inorganic matters before pathogens inactivation. The amount of chlorine

consumed in this process is termed chlorine demand. The combined chlorine that forms together with any free

available chlorine in the water is called the chlorine residual. This is the component of the added chlorine that

disinfects the water. Free available chlorine is formed by differences in the concentrations of hypochlorous and

hypochlorite ions, a process that depends on the pH of the water. Even though the chlorination procedure is well-

researched, establishing an appropriate chlorine dose remains a difficult task for many field applications.

Nevertheless, the effective chlorine dose should be sufficient to destroy pathogens and oxidize the organic

contaminants as well as maintain sufficient free available chlorine in the water distribution system, post-

chlorination.

waterborne pathogens  antimicrobial resistance (AMR)  chlorination

mutant selection window (MSW)

1. Breakpoint Chlorination and Factors Influencing
Disinfection

Breakpoint chlorination is the continuous addition of chlorine until the chlorine demand is satisfied, combined

chlorine compounds are oxidized and only free chlorine remains. The four phases involved in breakpoint

chlorination is depicted in Figure 1.
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Figure 1. Graphical representation of breakpoint chlorination.

Complete oxidation of chlorine occurs in the first phase due to low chlorine concentration and lack of free chlorine

residual. The phase is also known as the initial chlorine demand. Combined chlorine residual is formed between

Cl  and NH  in the second phase. The concentration of the added chlorine in this phase is proportional to the total

concentration of chlorine residual. Continuous addition of chlorine in the third phase causes oxidation of the

combined residues causing a reduced concentration of the residual chlorine up to “dip” or “breakpoint”. Beyond this

point, the concentration of the residual chlorine increases .

Temperature, pH, contact time, density and the inherent nature of microorganisms present determine the efficacy

of the chlorination. Keeping all other factors constant, higher microbial load will demand higher chlorine dose and

contact time. The physiological state of the microbes plays an important role in their chlorine sensitivity .

Generally, autochthonous microbes in natural water environments are more resistant to chlorination than

laboratory-grown strains.

2. Mechanisms of Chlorine Disinfection

The biocidal mechanism of chlorination remains poorly understood. Some investigators opined that HOCl and

OCl  formed when chlorine is added to water destroy microbial macromolecules. Further work on this supposition

led to the “multiple hit” concept, which asserts that bacterial kill by chlorination is probably due to the attack and

damage of microbial biomolecules . Venkobachar et al.  and Haas  reported leakage of cellular

macromolecules when bacteria were treated with chlorine. Venkobachar  also observed that chlorine significantly

inhibits oxidative phosphorylation and the uptake of oxygen, and that, the inhibition of respiratory enzyme was
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responsible for the phosphorylation inhibition phenomenon, rather than a deficiency in phosphate uptake. In a

different study, Chang  suggested that the extensive destruction of bacterial enzymatic systems is responsible for

the rapid destruction of pathogens during chlorination. Various other investigators have also recognized that

chlorine destroys microorganisms through changes in membrane permeability, nucleic acid damage and leakage of

intracellular biomolecules . Generally, it appears that chlorination causes physiological and morphological

changes to the bacterial cell wall, altering its permeability. The chlorine molecules subsequently enter the

cytoplasm, interfering with different enzymatic reactions, in a possible event cascade depicted in Figure 2.

Figure 2. Schematic presentation of the possible events cascade of chlorine disinfection leading to microbial cell

death. 1: Dissociating chlorine molecules attack and destroy bacterial cell walls altering permeability; 2: Entry of

chlorine molecules into the cytoplasm interfering with biomolecules and enzymatic reactions; 3: Altered

permeability causes vital cellular components leakage; 4: The series of events lead to the loss of cellular

constituents and functions; 5: The loss of cellular constituents and function lead to eventual cell death.

3. Incidences of Chlorine Tolerant Microorganisms from
Treated Water Sources

Various international and local authorities have regulations to ensure the protection of water sources from chemical

and microbiological contaminants. At a global level, for instance, the WHO recommends chlorine residual of 0.2 to

0.5 mg/L in water supplies , while the South African Department of Water and Sanitation stipulates chlorine

residual of 0.25 mg/L for discharged wastewater effluents released into surface water environment . Although

some concerns have emerged in recent years about the limitations of chlorine usage in water treatments, there is

no doubt, however, that chlorination remains one of the most significant advances in water purification and public
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health protection . Reports on chlorine surviving microorganisms from chlorinated water sources continue to

emanate . Various investigators have proposed different mechanisms by which microorganisms may

develop tolerance to disinfectants. These include (i) cell surface modifications or encapsulation , (ii) attachment

to surfaces or suspended particulate matter , (iii) microbial aggregation in biofilms , (iv) expression of

multidrug efflux pump activity  and (v) spore formation . These mechanisms conceivably favor the survival of

opportunistic waterborne pathogens, thereby contributing to their persistence in water . Table 1 lists some

published studies on chlorine-resistant microorganisms from different sources and their reported mechanism of

resistance.

Table 1. Summary of some reports of disinfectant-resistant microbes isolated from diverse aquatic sources.
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Source Microorganism Disinfectant
Concentration/Time

Mechanism(s) of
Resistance Reference

Drinking water P. aeruginosa ≤0.5 mg/L Cl

Natural resistance due
to the permeability

barrier caused by outer
membrane

lipopolysaccharides;
biofilm formation

Experimental
isolates

Acinetobacter
baumannii 0.2–4 mg/L

Increased expression
of efflux pumps other
antibiotic resistance

genes

Drinking water
reservoir

Acinetobater species, Serratia species 2 mg/L Not determined

Sewage Bacillus species 0.1 mg/L NaOCl
Probable spore

formation

Secondary
effluent

Citrobacter species
0.5 mg/L

Ca(OCl)  for 30 min
Not determined

Drinking water Bacillus species, Actinomycete
10 mg/L NaOCl for 2

min

Cellular aggregation or
adhesion to suspended
particulate. Production
of extracellular slime or

capsular material

Drinking water
and

experimental
isolates

Heterotrophic bacteria, faecal
coliforms, E. coli, Salmonella

typhimurium, Yersinia
enterocolitica, Shigella sonnie

2.0 mg/L free
chlorine for 1 h

Bacterial attachment to
surface and production
of extracellular slime

layer

Chlorine-
demand–free
buffer solution

Coliform isolated from drinking water
systems and Enteric bacterial from
culture collections cocultured with
protozoa (Ciliates and amoebae).

2–4 mg/L free
chlorine for 1–2 h

Shielding of bacteria
from chlorine by

ingesting protozoans
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