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The environmental concerns of global warming and energy consumption are among the most severe issues and

challenges facing human beings worldwide. Due to the relatively higher predicted temperatures (150–180 °C), the latest

research on pavement energy consumption and carbon dioxide (CO ) emission assessment mentioned contributing to

higher environmental burdens such as air pollution and global warming. However, warm-mix asphalt (WMA) was

introduced by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA) to reduce these

environmental problems.
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1. Introduction

The environmental concerns of global warming are among the most severe issues facing human beings. A contributing

factor in the flexible pavement, primarily using hot-mix asphalt (HMA), is significant fuel and energy consumption, resulting

in pollutant emissions . In contrast, WMA technology was developed to meet sustainability’s economic and

environmental needs. However, humans have long been constructing flexible pavements to ensure smooth and durable

road pavements . Hence, the pace of road construction has been increasing globally, and 12 million km of roads were

constructed in 2000; it is projected that 25 million km of roads will be built by 2050 globally . For example, in Malaysia,

the Public Work Department (JKR) reported that there was 237,022 km of roads in 2017 . The construction of about

90% of the world’s paved roads uses asphalt mixture, and the remaining 10% are other types of pavement . The

increasing traffic volume necessitates using asphalt binders and mixes with enhanced properties to ensure the durability

of asphalt pavements . Generally, asphalt mixtures comprise three main materials, namely aggregate, asphalt binder,

and filler. The aggregates and filler make up approximately 94–96% of the total mixture weight, and the remaining 4–6% is

asphalt binder. These materials are heated to high temperatures of 150 and 180 °C to ensure proper aggregate coating by

the asphalt binder and adequate workability of the mixture. This process consumes a large amount of energy and emits

gases. One of the biggest problems faced by the world is global warming . The high pace of transportation contributes to

the emissions of large amounts of greenhouse gases that cause global warming . According to the Inventory of

U.S. Greenhouse Gas Emissions and Sinks, transportation contributes about 27% of total U.S. GHG emissions in 2020

. The Kyoto Protocol adopted in 1977 aims to develop technologies that reduce the emissions of gases that cause

global warming. Therefore, the road construction industry has adopted various techniques to control and reduce the

emission of greenhouse gases, and one of them is the warm-mix asphalt (WMA). Generally, there are four types of

asphalt mixtures, depending on their production temperature. (i) The cold mix asphalt (CMA) produced at 0–30 °C; (ii) the

half-warm mix asphalt (HWMA) produced at 60–100 °C; (iii) the warm mix asphalt (WMA) produced at 110–140 °C; and

(iv) the hot mix asphalt produced at 150–180 °C. Figure 1 shows the classification of the asphalt mixes based on the

production temperature . It is noted that the energy required to achieve the desired workability is exponentially

increased from the CMA to HMA, resulting in higher GHG emissions of HMA compared to other mixtures.
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Figure 1. Classification of asphalt mixes based on production temperature .

The primary reason and motivation for adopting WMA techniques are to produce an asphalt mixture at a temperature 10–

40 °C lower than the conventional hot mix asphalt (HMA), as shown in Figure 2. The low production temperature of WMA

has three benefits. It can significantly reduce environmental burdens, including global warming  and the emissions of

gasses and fumes . The economic benefit of the lower production temperature is directly

proportional to the low energy consumption , which reduces the financial costs 

. WMA production and paving are beneficial because they modulate the mixture viscosity, enhance mixture workability,

facilitate compaction , allow the use of reclaimed asphalt pavement (RAP) , and provide better

working conditions and a healthy work environment . In more detail, and from the environmental perspective,

WMA technology reduces CO  emission based on temperatures during the paving process, which reflect the benefits of

paving using WMA techniques that directly affect the workability and compaction of the mixture. WMA techniques serve as

compaction aids and minimise the amount of pressure required . Using the correct laying and compaction

temperatures is essential to avoid difficulties. Even though a general temperature drop is permitted within WMA, a little

higher temperature between 100 and 150 °C is recommended to be used. The paver screed angle of attack, material

movement between the equipment, and thermal segregation could be negatively impacted in certain instances, such as

temperature differentials occurring in the surface mix resulted . It is easier to achieve the required densities with WMA

in most cases than HMA, even at substantially lower temperatures . This is due to the technologies that have been

developed to produce WMA and also to the additives that are used to reduce the viscosity, which makes the mixture

easier to manipulate and compact at a lower temperature. However, the operation and maintenance of facilities or plants

used for WMA production need additional care to avoid some operational problems . High percentages of RAP can be

used in WMA without compromising the asphalt mixture’s workability . Another motivation for using WMA is the

possibility of cold weather paving since the mix temperature is closer to the ambient temperature. As a result, the

reduction in mixed heat is less dramatic. This closeness of temperatures results in a more extended paving season

because there is more time for paving and compaction, and increased hauling distance . WMA plants can be

located close to urban areas because of their low levels of emissions, fumes, and noise. The plants could also be at

suitable distances from the construction sites, making it possible to pave in non-attainment areas . Furthermore,

traffic lanes can be opened sooner  due to the small temperature difference reduces the cooling time after

construction . This is especially desirable in instances such as the rehabilitation of airports and high-traffic roads 

.

Figure 2. Comparison of HMA and WMA.
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2. Sustainable Materials

Sustainable development requires using fewer raw natural materials due to the high cost and energy consumption for

extraction and transportation. Sustainable development also reduces the emissions of greenhouse gases and uses

recyclable materials without compromising the standard requirements. Figure 3 shows that sustainable development

comprises three interrelated areas, economic development, social development, and preservation of the environment. In

detail, the economic aspect contributes to profits and cost-effectiveness, while the social aspect represents the

contribution of the standard of living and equal opportunity to sustainability. Besides, the environmental aspect reflects the

natural resources, pollution prevention, and biodiversity. Figure 3 also clearly implied that WMA technology supposes to

be consistent with sustainable development that considers the environmental, economic, and social aspects toward

equitability and viability .

Figure 3. Sustainable development .

Among the goals of constructing sustainable roads are to ensure safe, comfortable, cost-effective travel, reduce waste

generation, and reduce the use of raw materials. It prevents the plundering the natural resources by using waste materials

as a substitute . Using waste materials in road construction can reduce the overall environmental impacts  and

requires developing energy-efficient and eco-friendly paving technology . Warm mix asphalt technologies enable the

utilisation of higher percentages of recycled materials , which facilitate the design of perpetual and sustainable

pavement based on the 4R policies (reclaim, recycle, reuse, and reduce). Using waste materials in pavement construction

and rehabilitation can reduce energy consumption. Various types of recycled aggregates are used in WMA pavements,

including reclaimed asphalt pavement (RAP), Recycled Asphalt Shingles (RAS), construction and demolition, and industry

by-products (for example, copper or steel slags) . The primary advantage of WMA is the potential to use a higher

quantity of RAP . Using RAP to replace the raw material eliminates the need to extract base

raw materials and dump asphalt; this reduces the material and end-of-life consequences .

Table 1 shows the effect of using different recycled materials in WMA pavements. It can be reported that many recycled

materials that were used as a partial or total aggregate replacement led to an improvement in the mechanical

performance of WMA mixtures. The addition of RAP materials to the WMA mixture results in a reduction of permanent

deformation due to the enhancement of the stiffness modulus of the RAP/WMA-modified mixtures . Furthermore, the

composite of RAP and WMA technologies led to improved fatigue resistance mixtures as a result of the balance between

the stiff RAP materials and WMA additives that reduce the viscosity and stiffness of the asphalt . Steel slag and furnace

slag as waste materials showed an improvement in the fatigue resistance of asphalt mixtures due to the enhanced

stiffness modulus . It can also be noticed that the combination of RAP materials with steel slag, crumb rubber or

glass fibre results in better moisture, fatigue and rutting resistances . In contrast, using high RAP materials

content in asphalt mixture led to lower moisture susceptibility and fatigue resistances . As a fibre additive to WMA,

jute fibre significantly improves fatigue and fracture resistance due to the enhancing of the adhesion properties of

aggregate and binders toward adequate tensile strength . It was also claimed that the addition of hydrated lime and

nano-hydrated lime to WMA as fillers enhances the moisture damage resistance as a result of improved cohesion and

adhesion properties .

Table 1. The recycled materials used in WMA.
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Usage Type of Waste and WMA Additive Effect Reference

Aggregate

Glass (10% *)
+ Zycotherm  (0.05, 0.10, 0.15 and 0.20%

**)

Reduce resilient modulus, creep, and moisture
susceptibility

Furnace slag (30% *) + Sasobit  (4% **) or
Rediset  (2% **) Improve fatigue resistance and stiffness modulus

Steel slag (40% *) + Surfactant-based
chemical additive (0.5% **)

Improve the fatigue resistance and mechanical
properties of asphalt mixtures

RAP (0, 20 and 40% *)+ Steel slag (0 and
40% *) + Sasobit  (1.5% **)

RAP improves moisture sensitivity and resilient
modulus

Steel slag improves the resilient modulus
The mixes containing RAP and/or slag have a

lower rutting potential
The WMA containing RAP and/or steel slag has

enhanced fatigue resistance

RAP (30 and 60% *) + crumb rubber (CR) (0,
10 and 20% *) + Sasobit  (4 and 5.5% **)

RAP and crumb rubber have a positive effect on
moisture susceptibility

The result of the fatigue test showed that using
RAP and CR improves the fatigue resistance of the

asphalt mixtures

RAP (0, 20, 40 and 50% *) + Glass fibre
(0.3% ***) + Sasobit  (1.5% **)

Improved rutting and moisture susceptibility
resistance

RAP (20, 30, 40, 50 and 60% *) + Mobile
engine oil (10, 12.5, 15, 17.5 and 20% **) +

Evotherm  (0.5% **)

Higher RAP proportion results in lower OBC of the
RAP-WMA mixes

The tensile strength ratio (TSR) decreased with
higher amounts of RAP material. Higher

rejuvenator dosage reduced the TSR

RAP
The use of WMA increases permanent deformation

but adding RAP in the mixture resulted in less
rutting

RAP The 50% RAP WMA has a good fatigue
performance

Fibre
Jute fibre (0, 0.3, 0.5 and 0.7% ***) +

Sasobit  (3% **) Enhanced fracture resistance

Additive or
filler

Hydrated Lime (1% ***) + Advera (0.25%**),
Sasobit (3.0%**), and Cecabase RT (0.35%

**)
Enhanced moisture susceptibility

Nano hydrated lime (1% ***) + Aspha-Min
(0.3% ***), Evotherm (0.5% **), and Sasobit

(1.5% **)
Increase the indirect tensile strength (ITS) and TSR

* By aggregate weight, ** By asphalt binder weight, *** by mixture weight.

3. Components and Production of Asphalt Mixture

WMA and HMA have the same components. WMA is easy to use, and its production does not require major modifications

to the existing HMA plant. However, the manufacturing of HMA contributes to a higher percentage of CO  emissions both

in the initial construction stage  and the rehabilitation process . The only difference between WMA and HMA is the

production temperature . The preparation of HMA requires a high-temperature range of 150 to 180 °C, while the WMA

is prepared at a temperature range of 110 to 140 °C . Table 2 presents the advantages and

disadvantages of HMA and WMA .

Table 2. The advantages and disadvantages of asphalt mixes.
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Mix Type Production
Temperature Advantages Disadvantages

Hot-mix asphalt 150–180 °C

Superior mixture

performance

Lower initial cost

High production temperature

High emissions

High energy consumption

Warm-mix
asphalt 110–140 °C

Low production temperature

Low emissions

Energy saving

Better working conditions

Longer haul distance

Minor wear and tear on the

plant

Less binder ageing

Low mixture performance

Higher initial cost due to the use of

additives

Poor aggregate coating and bonding

The mixing and compaction temperatures of WMA can be reduced using organic additives, chemical additives, and water-

foaming techniques . In 2022, Rahmad et al. investigated the use of PG76 in integration with a chemical WMA

additive to reduce the temperature during compaction based on environmental sustainability aspects, Rediset, and

groundwater and soil contamination. However, it was found that there had been no chemical reaction between PG76 and

Rediset. It was also found that after 64 days submerged under water, Rediset-PG76 had no effect on the adjacent water

source and soil  summarises the different additives and technologies for WMA . Even though the

technologies differ, they all seek to reduce bitumen viscosity, enhance workability, reduce emissions, and maintain the

desired performance. Several studies have shown in Table 3 that these technologies can reduce air pollutants

(emissions) and energy consumption . Even though the low temperature for

producing the mixes the production and paving has several advantages, it could result in poor performance, such as

incomplete aggregate drying, poor bitumen coating, and moisture susceptibility due to the presence of water. However,

researchers have conducted extensive investigations on these issues and proposed solutions . Furthermore, detailed

studies on the cohesion and adhesion failure mechanisms based on advanced laboratory techniques and computational

simulation could help in further understanding the reasons behind such common issues toward proposing solutions. In

addition, a composite of polymers and nanomaterials into WMA technology could mitigate such moisture susceptibility

problems.

Table 3. Warm mix technologies and additives.

Mix Type Production
Temperature Advantages Disadvantages

Hot-mix asphalt 150–180 °C

Superior mixture

performance

Lower initial cost

High production temperature

High emissions

High energy consumption
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Mix Type Production
Temperature Advantages Disadvantages

Warm-mix
asphalt 110–140 °C

Low production temperature

Low emissions

Energy saving

Better working conditions

Longer haul distance

Minor wear and tear on the

plant

Less binder ageing

Low mixture performance

Higher initial cost due to the use of

additives

Poor aggregate coating and bonding

Generally, organic additives such as wax or fatty amides reduce asphalt binder viscosity at temperatures over their

melting point. These additives should have a melting point higher than the maximum service temperature of the asphalt

mixture to increase the rut resistance of the asphalt at high temperatures and limit embrittlement at low temperatures .

Chemical additives are liquid surfactants that act at the microscopic interface and do not change the asphalt binder’s

viscosity; they are surface agents that increase wetting qualities by lowering the tension between asphalt binders and

aggregates and thus reduce internal friction . Foaming technologies lower the asphalt binder viscosity by introducing

small amounts of water into the hot asphalt binder. As the water evaporates, it expands the binder and reduces binder

viscosity; this results in a better aggregate coating. The degree of expansion is dependent on several factors, such as

binder temperature and water content .

An asphalt mixture is a composite of aggregates, asphalt binders, and fillers. Additives or modifiers are occasionally

added to the asphalt binder to improve its performance . Aggregates are the main element of asphalt

pavements and constitute almost 95% of the mixture. The high percentage of aggregates in asphalt pavements has

increased the demand for aggregates in road construction applications. The aggregate materials are often used for the

lower pavement layers, such as the base or subbase layer. In 2015, 2660 million tons of aggregates were produced in

Europe from quarries, with the UK contributing 110 million tons per year. In addition, France produces approximately 250

million tons per year . Malaysia produced 118 million tons of aggregates in 2011 and 160 million tons in 2015 

. In the United States, aggregate production increased from 1.34 billion tons in 2015 to 1.53 billion tons in 2019. About

72% of the aggregates were used as construction aggregate, primarily for road construction .

There are two main phases in asphalt pavement construction and the production and construction of asphalt mixture. The

first phase consists of aggregate stacking, heating the aggregates and asphalt binder, and mixing. The second phase is

transporting, paving, and compacting the asphalt mixture. The energy consumption during asphalt mixture production is

considerably higher than in the transportation and construction phase . The production stage involves heating the

aggregates and asphalt and mixing the asphalt mixture. The aggregate heating process for HMA contributes to 67% or

more of the total carbon emission, while the asphalt heating and mixing processes contribute only 14% and 12%,

respectively . According to Stotko , about 60% of the energy consumption at the asphalt plant is for drying the

aggregates. Peng, Tong, Cao, Li and Xu stated that 76.41% of the total carbon emission is during aggregate heating,

while asphalt heating emits 15.67% of the carbon . The moisture content of the aggregate is one of the factors

determining the amount of energy consumed during the aggregates drying process .

Moreover, the specific heat capacity of the aggregate materials is a critical determiner of the fuel needs and CO

emissions of WMA and HMA. The same type of aggregate extracted from different sources may have different specific

heat capacities even if their specific gravities are similar . Jamshidi et al.  investigated the effects of the thermal

properties (specific heat capacity) of asphalt binders and aggregate materials on energy consumption and environmental

footprints of HMA and WMA. The results showed that using low-specific heat capacity aggregates is more energy-efficient

and environmentally friendly. The difference in energy requirements varies with the moisture content ; a 1% increase

in moisture content results in a 3.5% higher energy consumption to dry the aggregates . Another study has shown that

energy consumption increased by 1% for every 0.7 L moisture content  and that one of the ways to reduce energy

consumption is by reducing the mixing temperature . The energy demand is about 2.62 kWh for a 10 °C increase in
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the mixture temperature and 8.21 kWh for every 1% increase in moisture content . The fuel for heating or drying the

aggregates is one of the sources of emissions, where the energy consumption and CO  differ with the type of fuel, as

shown in Table 4. It can be seen that using natural gas to heat the aggregate results in the lowest CO  emission

compared to different fuel types reported in Table 4, however, natural gas showed to be the highest heating energy

required. On the other hand, using fuel oil (N°1/2) as a heating energy source showed to be the lowest among all fuel

resources, with a reduction of 9.45% compared to required natural gas energy. However, using fuel oil (N°1/2) results in

about 480% CO  emission higher than the emission due to using natural gas. Furthermore, it was reported that the use of

natural gas instead of heavy oil to heat the aggregates reduces carbon emissions by 27.72% and the cost by 18.63% .

According to Stotko , using WMA could reduce fuel oil consumption by about 8400 GJ and prevent CO  emission by

620 tons annually based on an asphalt plant in South Africa.

Table 4. Energy and CO  emission by different fuel types.

Fuel
Heating Energy for Aggregate CO  Emission

Value Unit Value Unit

Diesel 42,791,000 J/kg 2.6390 kg/L

Heating oil 42,612,000 J/kg - -

Fuel oil (N°1/2) 42,686,000 J/kg 3.2160 kg/t

Natural gas 47,141,000 J/kg 0.1836 kg/kWh

Propane gas 46,296,000 J/kg - -

Electricity 3,600,000 J/kWh 0.5410 kg/kWh
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