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Hypovolemia is a physiological state of reduced blood volume that can exist as either (1) absolute hypovolemia

because of a lower circulating blood (plasma) volume for a given vascular space (dehydration, hemorrhage) or (2)

relative hypovolemia resulting from an expanded vascular space (vasodilation) for a given circulating blood volume

(e.g., heat stress, hypoxia, sepsis). The external environment and the user's level of physical activity can

exacerbate hypovolemic challenges to the body. Noninvasive, wearable sensing systems are being developed to

track a user's ability to compensate for these challenges. 

wearable sensors  compensatory reserve  cardiac decompensation

1. Introduction

For many occupational, military and athletic situations, an individual may suffer marked hypovolemia, which impairs

health, safety and performance. As discussed, hypovolemia can occur from dehydration or decreased total

circulating protein and/or increased vascular space from cutaneous and skeletal muscle vasodilation induced by

environmental exposure or performing physical work. It is important to note that the physiological responses to

these conditions are highly individual, with some people exhibiting much greater tolerance and capacity to

compensate for the conditions than others .

Decision-support wearable technologies are needed that can measure the integrated physiological compensation

or decompensation providing ‘individualized’ assessment of progression towards hypovolemia-mediated

compromised capacity, or degree of physiological adaptation to several stressors that protect against hypovolemia

to sustain performance . A ruggedized wearable physiological monitoring system that can reliably measure

the magnitude of integrated physiological compensation or decompensation from hypovolemia would provide

critical information to manage health, safety and optimize performance .

2. Compensatory Reserve

The compensatory reserve measure (CRM), a novel concept introduced by Convertino and colleagues, provides a

single indicator, measured peripherally with noninvasive sensors, that could represent the sum of compensatory

responses to hypovolemia and a validated index of potential cardiovascular instability . The CRM uses a deep

convolutional neural network to compute the distance or similarity between recorded vascular signal segments

from either a non-invasive continuous blood pressure waveform or a transmissive photoplethysmogram (TPPG)
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waveform to a library of arterial waveforms recorded from subjects with known CRM as shown in Figure 1 . The

label from the library waveform with the closest distance or highest similarity to the incoming waveform is then

assigned as the prediction value for the incoming waveform. The library used for comparisons contains

noninvasive blood pressure waveforms recorded from more than 260 healthy subjects (men and women aged 18

to 55 years) who underwent graded lower body negative pressure (LBNP) to induce central hypovolemia until they

reached a point of decompensated shock, which was labeled as 0% compensatory reserve . “Decompensated

shock” refers to the point at which the ongoing trauma or stress to the body overwhelms the body’s compensatory

measures. For the CRM, 0% or “decompensated shock” was defined as the point during the LBNP protocol at

which the subject experienced presyncope, indicating inadequate blood circulation to the brain. The subject’s

normal baseline is then defined as 100% CRM, during which their body is not under any strain. The CRM’s

performance in detecting and monitoring hypovolemia due to hemorrhage has been well documented  and

researchers will present data demonstrating its sensitivity to heat stress, dehydration and physical exercise.

Figure 1. The conceptual framework of the compensatory reserve measure (CRM) algorithm. The input waveform

from the current subject is compared to a library of more than 650,000 waveforms recordings collected from more

than 260 subjects exposed to experimentally-controlled progressive reductions in central blood volume by lower-

body negative pressure to generate an estimated individual compensatory reserve measurement (CRM). Image

modified from .

3. Validation of Compensatory Reserve for Heat Stress,
Dehydration and Physical Exercise

The compensatory reserve measure has been shown to be sensitive to hypovolemia induced by heat stress,

physical exercise, dehydration, resting recovery and rehydration. Figure 2 presents results from experiments

designed to determine if CRM differences could be observed with whole-body hyperthermia (heat stress) and if

such differences would correspond to decreased tolerance to progressive hypovolemia induced by lower body

negative pressure (LBNP) . Healthy subjects underwent LBNP when normothermic (core temperature 37 °C) and
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hyperthermic (core temperature 38.3 °C), and after sweat-induced dehydration of 2% of their body mass. Mean

baseline CRM were 92% on both days, however the cutaneous vasodilation during hyperthermia was associated

with <50% in baseline CRM with a more rapid cardiovascular collapse. These data demonstrate that CRM is

sensitive to relative hypovolemia induced by hyperthermia. During the euhydration (hydrated) and dehydration

experiments all subjects were hyperthermic (core temperature 38.2 °C), thus experiencing relative hypovolemia

(cutaneous vasodilation from hyperthermia) or relative with absolute hypovolemia (dehydration). CRM was initially

lowered with dehydration compared to euhydration, and with LBNP the dehydrated subjects demonstrated a lower

CRM with a more rapid onset of cardiovascular collapse (i.e., reduced physiological performance). Interestingly, the

impact of dehydration with hyperthermia on CRM between experiments was initially more modest than with

hyperthermia alone. These data demonstrate that CRM is sensitive to relative and absolute hypovolemia and their

additive effects with increasing LBNP causing greater simulated hypovolemia.

Figure 2. Compensatory reserve measures for normothermic vs hyperthermic subjects (left) and euhydrated vs

dehydrated subjects (right) during progressive lower body negative pressure (LBNP) experiments. Data are means

and 95% confidence intervals, with the solid lines at the bottom indicating statistically significant differences from

baseline. Image modified from .

Several studies have demonstrated that CRM changes are sensitive to vasodilation and cardiovascular

perturbations associated with physical exercise . Figure 3 presents compensatory reserve values from

subjects during progressive intensity cycle ergometer exercise until they achieved their maximal oxygen uptake

(VO ). CRM progressively decreased with increasing exercise intensity to an asymptote at ~20%. This response

is logical as a greater oxygen uptake should translate to greater active vasodilation or relative hypovolemia. The

asymptote at 20% suggests that blood pressure regulation was not the limiting factor for maximal intensity

exercise.

[5]
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Figure 3. Compensatory reserve measure responses to progressive increases in aerobic exercise intensity

(percent maximal aerobic power) that result in maximal exertion (left). On the (right), low baseline CRM (filled

circles with 95% confidence intervals) is associated with lower maximal aerobic power (VO2max) compared to

subjects with high initial CRM (open circles with 95% confidence intervals) with the final difference shown by the

red arrow on the x-axis. Image from .

It is reasonable to anticipate that if this exercise was performed during heat stress conditions, CRM would have

deceased further indicating muscle oxygen delivery as a more limiting factor.

Figure 4 provides the plotted measurements of compensatory reserve influenced by simultaneous exposure to

physical exercise with heat stress and then resting recovery. In this figure, a human subject performed

progressively increasing levels of physical exercise in a hot environment of 100 °F air temperature. Note the

dramatic progressive reduction in compensatory reserve from a resting value of 91% in a room controlled at 75 °F

air temperature to a significantly compromised level of <30% after only 20 min exposure to exercise and heat. After

exercise was terminated and the subject recovered in the hot conditions, the compensatory reserve was restored

to nearly 80%, suggesting that ~50% of the capacity to compensate for hypovolemia was attributed to the

metabolic demand (active muscle vasodilation) of physical exercise while the remaining ~10% could be explained

by the cutaneous vasodilation induced by heat. In this regard, a measurement of compensatory reserve provides

an accurate integrated indicator of the individual’s physiological status for continued successful performance.

[5]
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Figure 4. Compensatory reserve measured in a human subject during a 20-min graded cycle ergometer exercise

performed at 100 °F air temperature. Each bar represents the average response over 1 min. Bar colors: green,

compensatory reserve >60%; yellow, compensatory reserve ≤60% and >30%; red, compensatory reserve ≤30%.

BL, baseline; W, watts. Image modified from .

Figure 5 provides the plotted measurements of compensatory reserve influenced by 45 min of running exercise

with dehydration and the impact of subsequent rehydration . With each bar representing a 3-min average

measurement, a reduction in compensatory reserve was reported from a resting standing position ≥92% to 28%

after exercise was terminated. It should be noted that the longer exercise duration (45 min vs. 20 min) vs the

previous experiments should have resulted in greater dehydration. Compensatory reserve was restored to

approximately 60% within 10 min of the cessation of metabolic load created by the exercise and continued to

recover to baseline levels of >90% as fluid ingestion reversed the absolute hypovolemia created by prolonged

exposure to physical exercise with an unknown amount of dehydration. In this regard, a measurement of

compensatory reserve provided an accurate integrated indicator of the individual’s physiological status and a way

to assess recovery from heat stress and dehydration.
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Figure 5. Compensatory reserve measures before and after 45 min of running exercise in the heat and resting

recovery (10 min) and then fluid replacement (black line). Bar colors: green, compensatory reserve >60%; yellow,

compensatory reserve ≤60% and >30%; red, compensatory reserve ≤30%. BL, baseline; W, watts. Image modified

from .

4. Future Capabilities Required to Further Advance the CRM

Although the CRM has been validated in its ability to track physiological changes in many different scenarios, it is

potentially limited for use in humans in ambulatory or field settings in its current form, as it requires the use of either

a noninvasive continuous blood pressure monitor (i.e., Finapres) or a transmissive (T) PPG sensor . Continuous

noninvasive blood pressure systems, while used in clinics and research labs, are far too bulky and expensive for

an individualized monitoring device. Additionally, the TPPG sensor type is generally considered too obtrusive for

wear-and-forget use, as it has to clamp over the recording site, which is most often a finger or sometimes an

earlobe . These locations are likely motion sensitive or hindering to the wearer. Moreover, many commercially

available TPPG (or pulse oximeter) devices such as those frequently seen in hospitals and clinics have substantial

filtering and automatic gain control built in, forcing the waveforms to be smoothed and homogenized. While this is

optimal for their designed function of providing heart rate and SpO2 measurements, rich waveform information that

could be used to estimate CRM is lost. The CRM has also not yet been validated in the presence of motion

artifacts and external vibrations that will likely degrade the recorded arterial waveforms. A ruggedized wear-and-

forget form factor is much more likely to be widely adopted for longitudinal monitoring for occupational, military and

sports use . Thus, a later section of this review will examine emerging wearable mechanical sensors, such as
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the seismocardiogram (SCG), which should be able to provide complementary or additional information to expand

upon the current CRM. The SCG records the acceleration of the chest wall due to heart contraction and blood

ejection movements as valves open and close.

One advantage of adding SCG signals to the CRM could be to decouple changes in the signals used for deriving

CRM that are related to peripheral effects—e.g., vasodilation and altered vascular stiffness—from changes that are

related to central effects—e.g., reduced preload. The substantial reduction in CRM for the hyperthermic individuals

in Figure 1 (left) vs Figure 2 (right) even at 0 mmHg of LBNP suggests that peripheral vasodilation (from the hot

environment) may be confounded to some extent with reduced compensatory reserve. PPG signals are very

sensitive to ambient temperature and skin temperature in their waveform characteristics , and thus the

combination of PPG (a peripheral measure) with SCG (a central measure) might be advantageous in future work to

predict cardiovascular instability in individuals exercising in the heat. Finally, though the CRM has presented a

convenient single metric to encapsulate a patient’s cardiovascular status, it utilizes a black-box deep learning

approach for waveform comparisons that does not provide a direct linkage between algorithm features and

physiological phenomena. An example feature that could be extracted for use with the current setup is

measurement of arterial oxygen saturation, which will vary due to changes in altitude or sickness and could be

combined with compensatory reserve .

5. Blood Volume Decompensation Status: Multi-Sensor
Fusion with Explainable AI

Encouraged by the results from CRM, a collaboration led by Inan and colleagues recently developed the blood

volume decompensation status (BVDS) metric . The goal of the BVDS metric builds from that of the CRM—to

develop a single metric that represents the integrative compensatory response based on some aspect of PPG

feature changes, and thus can be used to represent an individual’s compensatory reserve or decompensation

status. One main difference between the BVDS and the CRM algorithmic approach is that the BVDS approach

makes use of multi-modal cardiovascular sensing. A second main difference is that the BVDS approach leverages

explainable AI approaches such that the exact features of the waveforms driving the output result can be

individually examined from a physiological perspective. Thirdly, rather than using a TPPG sensor, the BVDS was

developed with a reflectance-mode photoplethysmogram (RPPG) sensor, which can be placed anywhere on the

body. Beyond capturing vascular information, electromechanical information from the heart is integrated into the

BVDS metric by recording the electrocardiogram (ECG) and seismocardiogram (SCG) signals. This customized

and modular sensing system design including ECG, SCG and RPPG sensors can be deployed in a wearable patch

or smartwatch as shown in Figure 6 .

[12][13]
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Figure 6. Device form factor. Electrodes for a single-lead ECG, photodiodes and LEDs to record the PPG, and tri-

axial accelerometers and gyroscopes (internal to the devices) to acquire the SCG signal can be customized and

modularized to work in multiple form factors. The left side shows the watch-based approach described in , while

the right side shows an updated version of the chest-worn patch originally described in .

The BVDS metric has thus far been limited to a single preclinical animal (pig) study and is thus at an earlier stage

of development. In this study, the animals underwent both relative and absolute hypovolemia through graded

vasodilation and hemorrhage, as well as resuscitation with whole blood. ECG, SCG and RPPG were recorded

continuously through the experiment. As shown in Figure 7, the inclusion of the ECG allows for feature extraction

on a heartbeat-by-heartbeat level. A limited set of clinically relevant features was extracted from the ECG, SCG

and RPPG signals. This set includes the pre-ejection period (PEP) and left ventricular ejection time (LVET) cardiac

timing intervals, their ratio (PEP/LVET), the RPPG pulse arrival time (PAT) and pulse transit time (PTT), the

plethysmography variability index (PVI) and RPPG amplitude, as well as heart rate (HR) and heart rate variability

(HRV) measures. An initial model was developed using only the hemorrhage data recorded from the noninvasive

sensors and compared to another model created with an analogous feature set extracted from simultaneously

acquired invasive catheter blood pressure waveforms . The BVDS model was further developed as data from

the relative and absolute portions of the experiment were used together to train the random forest regression

model with leave-one-subject-out cross validation to create a more generic metric of decompensation status .

The feature importance output by this model is shown in Figure 8, indicating that electromechanical features of

cardiac performance were the most important predictors. This result shows that the ECG and SCG signals contain

information that is very relevant to decompensation status or compensatory reserve. In particular, the ratio of

PEP/LVET was the most important feature. In the literature, PEP/LVET has been shown to be a clear indicator of

left ventricular performance  and changes in PEP/LVET have been shown to correlate with different stages of

lower-body negative pressure .
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Figure 7. BVDS feature extraction. While the CRM evaluates 30-s segments of the recorded arterial waveform

signal, the BVDS metric uses the ECG to segment and analyze all signals on a heartbeat-by-heartbeat level.

Fiducial points are detected in each heartbeat and used to calculate cardiac timing intervals and a handful of other

clinically relevant features.
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Figure 8. Feature importance for the BVDS model, as output by the random forest algorithm in .

Electromechanical features include the pre-ejection period (PEP), left ventricular ejection time (LVET) and their

ratio, PEP/LVET along with heart rate (HR) and multiple measures of heart rate variability (HRV). Vascular features

include the distal (and normalized) pulse arrival time (PAT), the distal pulse transit time (PTT), the PPG amplitude

and the plethysmograph variability index (PVI). PEP/LVET is the most important feature for this model by a large

margin, and six of the top seven features are from an electromechanical signal. This result highlights the relevance

of including the ECG and SCG signals in predicting cardiovascular decompensation. Image modified from .

6. Validation of Decompensation Status

Although the BVDS metric has only been validated in a single study thus far, it has shown promise as a globalized

metric for predicting decompensation status in both relative and absolute hypovolemia as well as for resuscitation

with whole blood following hemorrhage. The overall prediction results from this study are shown in Figure 9. In this

figure, all predictions for all heartbeats for all pigs over the course of the entire protocol (baseline, relative and

absolute hypovolemia and resuscitation) are aggregated. The mean and standard deviation for all graded

decompensation status levels are shown, as well as the line of best fit through the means for each level. Status

levels were defined such that 0% represents a baseline period and 100% represents full cardiovascular

decompensation. Intermediate gradations were designated based on the percentage of blood removed during the

hemorrhage portion of the experiment. As this model was created with data from separate interventions for relative

and absolute hypovolemia and used to predict on hypovolemic, resuscitation and baseline periods, this represents

[15]
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a more generalized metric of cardiovascular decompensation status as compared to the previously published result

focused on absolute hypovolemia alone.

Figure 9. The BVDS metric performance in predicting decompensation. The line of best fit through the mean of the

aggregated predictions for all animals during all portions of the experiment is shown in red. BVDS levels range on a

scale from 0 to 100, with 100 indicating full decompensation status. The slope of the line (0.65) is an indicator of

the overall prediction accuracy, while the R2 value of 0.93 is an indicator of the prediction consistency between

BVDS levels. Standard deviation bars are also shown for each level, indicating the consistency of predictions within

a single decompensation level. Image modified from .

The wearable chest-worn patch  that provides measures of simultaneous ECG, SCG and PPG (and thus could

be used to monitor BVDS) has been used in other studies. The most pertinent data may have been generated in a

study designed to segregate patients with compensated and decompensated heart failure . In heart failure,

patients are generally hypervolemic rather than hypovolemic, while still experiencing poor circulation and perfusion.

Additionally, environmental stressors and exercise exacerbate their poor cardiac performance, particularly for

patients with decompensated heart failure. In this study, the structure of the SCG signals recorded with the patch

was studied in 45 patients with heart failure before and after a standard six-minute walk test, after which a similarity

score was computed from the graph representing the structure of the SCG data in the spectral domain. As seen in

[15]
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Figure 10, significant differences in the SCG signal structure were found between decompensated heart failure

patients at admission and at discharge after receiving treatment. It is notable that some patients responded much

better to the treatment than others, again highlighting the need for individual-specific metrics of performance.

Specifically, decompensated patients had a higher graph similarity score comparing their SCG before and after the

walk test than did compensated patients, indicating a higher similarity in contractility and cardiovascular

hemodynamics between rest and recovery, meaning their cardiovascular systems were unable to compensate for

the strain of exercise. In short, the decompensated patients experienced a lower compensatory reserve than

compensated heart failure patients. In turn, researchers would expect heart failure patients (and those who are yet

to be diagnosed) to experience a lower operating compensatory reserve and a faster decline of their reserve than

healthier patients for a similar amount of physical activity, including activity in the workplace.

Figure 10. The graph similarity score representing structural differences in the SCG signal recorded from a

wearable patch found significant differences between compensated and decompensated heart failure patients from

admission to discharge. Though all patients improved following treatment, some patients responded much better to

the treatment than others. Image from .

7. Advancements and Next Steps

The BVDS metric requires validation in additional studies. As the initial algorithm was developed in an animal

model, new datasets should be curated from human subjects with realistic progression of perturbations that

includes both relative and absolute hypovolemia. Realistic noise sources should also be included in this

development in the form of data from both free-moving subjects and those being transported in multiple classes of

vehicles. Advanced modeling techniques, such as the graph analysis described for the heart failure study, and

other techniques ,such as transfer learning and time series analysis, should be explored.

The previously constructed wearable sensing patch for ECG, SCG and environmental context sensing was

designed for use in patients with heart failure—a frail population of older patients that would wear the device

[22]
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around the home and during normal activities of daily living. To enable usage of this patch for wearable sensing in

the context of human performance—i.e., occupational, military, and sports applications—the hardware should be

ruggedized, appropriately miniaturized, and validated with a broad range of environmental testing scenarios. For

example, the hardware and adhesives must be designed to tolerate high moisture levels such as heavy sweating.

The mechanical coupling integrity of the sensing system to the chest should be evaluated at high levels of vibration

that could result from motion artifacts or other external vibration sources, as well as in the presence of fluids such

as sweat or blood. To this end, some initial testing and validation work has been conducted at Georgia Tech with

healthy human subjects performing various exercise tasks both indoors and outdoors, and with signals being

measured in the presence of external vibrations .

When it comes to addressing motion artifacts, there are two main stages that should be considered. The first is

developing customizable signal quality indices (SQI) to remove portions of the recording that contain too much

noise. The second stage then takes the output from the SQI and processes the signal in the presence of remaining

noise. ‘Motion artifacts’ include any noise sources related to the user—physical movement, speech, interference

from clothing or gear, etc. The SCG and PPG have been criticized for their susceptibility to motion artifacts;

however, recent studies demonstrate that PPG and SCG can be ruggedized for free-range use. Clifford and

colleagues have developed quality indices for hospital-grade ECG and PPG signals and shared them through their

open-source cardiovascular waveform toolbox on PhysioNet . An SQI developed specifically for SCG signals

(but that can be applied to other signals such as PPG) is presented in . This study retroactively stratified SCG

heartbeat quality recorded from subjects during rest, exercise and recovery. Heartbeats from the SCG were

segregated based on their similarity to a template beat, allowing for higher quality beats to be identified during the

noisier periods such as exercise. Multiple groups have made progress on the second stage processing for SCG

and PPG signals. Yang et al. utilized an adaptive filtering technique to effectively process SCG recordings in

walking subjects . Additional studies have indicated that using a gyroscope along with an accelerometer to

record the SCG can improve signal feature estimations, possibly due to differing levels of noise in the linear and

angular domains . By including an array of sensors and leveraging independent component analysis, Yang et

al. were able to extract relevant cardiac timing intervals from the SCG in both walking and jogging subjects, tested

up to 4.6 mph . Beyond SCG improvements, multi-wavelength PPG analysis shows promise for developing

more robust feature extraction methods . Adaptive filtering and signal deconstruction/reconstruction

approaches have also been utilized for analyzing PPG recordings from subjects during moderate and intensive

exercise .

The problem of reducing the impact of external vibration sources, such as vehicles, on SCG and PPG recordings

has been less-thoroughly explored than the problem of reducing motion artifacts in general. One group recorded

the SCG of a single subject for an entire day, including commuting to and from the office in a subway train . To

process the portions with subway noise, Di Rienzo et al. utilized an ensemble averaging approach prior to

annotating the heartbeats. In a separate study, Lin et al. combined SCG recordings with accelerometer recordings

taken on a subway train and used an ensemble empirical mode decomposition approach to remove the vehicular

noise . Similar approaches could potentially be used to remove noise from additional transport vehicles or other

external vibration sources.
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