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Synthetic Aperture Radar (SAR) is a high-resolution imaging sensor commonly mounted on platforms such as airplanes

and satellites for widespread use. In complex electromagnetic environments, radio frequency interference (RFI) severely

degrades the quality of SAR images due to its widely varying bandwidth and numerous unknown emission sources.

Although traditional deep learning-based methods have achieved remarkable results by directly processing SAR images

as visual ones, there is still considerable room for improvement in their performance due to the wide coverage and high

intensity of RFI.
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1. Introduction

Synthetic aperture radar (SAR) is a high-resolution imaging radar, whose resolution can surpass the diffraction limit of the

aperture, and even reach the centimeter level . SAR satellites with various frequency bands have been widely

deployed, including the European Sentinel satellites, Chinese Haisi satellites, and the Canadian Radarsat satellites .

While SAR satellites hold significant economic value in ocean monitoring, geospatial mapping, and target recognition 

, they also face complex electromagnetic interference. Common interference sources include co-frequency radars,

satellite communication systems, and radar jammers . Radio frequency interference (RFI) is a prevalent pattern, and

because of its high intensity and wide coverage, it severely degrades the quality of SAR images . Figure 1 shows a

common RFI in Sentinel-1 satellites, with interference region typically exceeding 0.5 million pixels, corresponding to areas

larger than 30 square kilometers.

Figure 1. Common RFI in Sentinel-1 satellites.

Satellite cross-interference and military conflicts can lead to SAR satellite blindness. To solve the above problems,

numerous methods have been proposed. According to the different stages of anti-interference, radar anti-interference can

be divided into system-level anti-interference and signal-level anti-interference. System-level anti-interference technology

mainly uses array antennas to cancel interference, and this technology has achieved long-term development. However,

SAR is a single-antenna radar imaging system, and currently deployed SAR satellites generally lack system-level anti-

interference capability. In addition, the overlap between interference signals and radar signals in time and frequency is

high, and simple filtering algorithms are difficult to be effective. Therefore, signal-level anti-interference technology has

important research value.

Traditional interference suppression methods can be broadly classified into three categories: non-parametric methods,

parametric methods, and semi-parametric methods . Non-parametric methods mainly include subspace projection 

 and notch filtering . Although non-parametric methods are simple to implement, they lack protection

for targets. Parametric methods are required to model RFI signals, and in complex imaging scenarios, the performance is

constrained by the models . Instead of directly modeling the RFI, semi-parametric interference suppression algorithms

establish an optimization model to perform matrix decomposition. Semi-parametric methods can effectively eliminate

interference while maximizing target preservation, thus receiving widespread attention. With the rise of compressive

sensing, sparse reconstruction algorithms have gradually become a commonly used semi-parametric method . The

earliest proposals for mitigating RFI using iterative models were made by Nguyen  and Nguyen and Tran , who
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explored the sparsity of scenes and the correlation between transmitted and received signals in the time domain, and

proposed a sparse recovery theory applicable to SAR images. By utilizing different characteristics in various domains

(image domain, time domain, Doppler domain, wavelet domain, etc.), various iterative relations and models have been

explored, including sparse models , low-rank models , joint sparse low-rank models , and

variations in robust PCA . Although the aforementioned semi-parametric algorithms have achieved excellent

performance, they require iterations for each individual data with the selection of specific hyperparameters, resulting in

high computational complexity and poor generalization ability.

2. Interference Suppression Networks

SAR is a type of microwave imaging radar, and RFI produces similar noise effects in images, so deep learning has been

naturally introduced into SAR interference suppression. In terms of the image domain, refs.  introduce residual

networks and attention mechanisms into the networks. However, these algorithms lack an understanding of SAR

principles and only treat interference as noise. When interference intensity is high, the performance is poor. In the time-

frequency domain, ref.  introduces neural networks for the first time in interference suppression. The authors of 

propose to adopt properties of RFI and SAR data as prior knowledge to inject into the network; this algorithm achieves

better performance than traditional non-deep learning methods (including semi-parametric methods) and it serves as one

of the main comparative methods in this paper.

3. Transformer

Transformer has achieved great success in natural language processing (NLP), especially in GPTs  and ChatGPT

. Unlike CNN architecture, Transformer-based networks hold global attention mechanisms, making it easier to capture

global information. Pretrained models based on BERT  have demonstrated state-of-the-art performance in various

downstream NLP tasks. These results indicate that the Transformer holds excellent feature extraction capabilities, which

naturally inspires other tasks such as computer vision. In visual tasks, the pioneering work of VIT  achieves state-of-

the-art results in the image classification task.

Although Transformer has shown great success in many tasks, it also presents two limitations in visual tasks. First, visual

tasks often involve high redundancy and large amounts of data, resulting in significant computational costs. Second, local

information is often important, but Transformer lacks the ability to capture local information. To address the first limitation,

some works  explore local attention windows to reduce computational costs. Other works employ mask

mechanisms and discard most mask pixels to reduce computational costs . To address the second limitation, some

works propose a pyramid Transformer  to enable multi-dimensional information interaction. Also, some works

combine Transformer with CNN in network architectures to capture both local and global information. Due to the excellent

feature extraction capabilities, a series of Transformer-based models have been proposed in high-dimensional visual

tasks  and low-dimensional generative tasks .
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