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Flexible supercapacitors are highly demanding due to their wearability, washability, lightweight property and

rollability. Supercapacitors are specially designed capacitors which have huge capacitance value and energy

density when compared to the conventional capacitors that are with fast storage ability and high energy density

than capacitors

supercapacitor  electrical conductivity  energy storage  banana peel

1. Introduction

Supercapacitors are specially designed capacitors which have huge capacitance value and energy density when

compared to the conventional capacitors that are with fast storage ability and high energy density than capacitors

. Based on the working and energy storage principle, supercapacitors are categorized into three basic groups as

shown in Figure 1. Electric double-layer capacitors (EDLCs) are types of capacitors constructed using three

materials the so-called electrodes, electrolytes, and a separator. They are portable, very efficient, and high-power

energy storage devices . EDLCs store energy by means of non-faradic principle or electrostatically that

encompasses no transmission of charge between the electrolyte and electrode.
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Figure 1. Types of supercapacitors based on its working principles.

Pseudocapacitors on the contrary to EDLCs store charge via the transfer of charge amongst the electrode and

electrolyte faradically . Pseudocapacitors employed various conductive polymers such as polypyrrole (PPy) and

polyaniline (PANI) , poly(3,4-ethylenedioxtthiophne) polystyrene sulfonate (PEDOT:PSS) . Due to the charging

and discharging behavior and the reduction-oxidation rection occurred during processing, pseudocapacitors lack

stability. Stability against the environment is very crucial for such types of materials.

Hybrid supercapacitors for energy storage principle is based on the combinations of the EDLCs and

pseudocapacitors. Hybrid supercapacitors comprise the compensations of pseudocapacitors and EDLCs . The

limitations in both supercapacitor types are eliminated in the hybrid system and show better electrochemical

characteristics.

2. Supercapacitors Based on Carbonized Banana Peels

Banana peels are conventionally waste materials that habitually discarded after consuming the edible parts. This

causes a temporary pollution to the surrounding area where high marketing areas are available. On the other hand,

the depletion of fossil fuels along with the dynamic climatic alteration requires extra exploitation of spotless and

justifiable energy alternative sources . In addition, the recent surge of flexile and lightweight electronics with high

durability pushes most industries to the implementation of the best alternatives to renewable energy sources.

Among the flexible and lightweight energy storage devices, supercapacitors are widely researched.

[3]
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Supercapacitors are the most promising energy storage alternatives for short-term applications. Supercapacitors

have high power density and fast charge-discharge rate beyond they do have long lasting life cycle against the

surrounding environment .

Carbon-based porous structure materials have been proven to be promising as flexible, lightweight, and durable

supercapacitors . Porous supercapacitors based on carbonized banana peel is one of the promising research

areas in recent years . Banana peel can be prepared for a possible supercapacitor in different ways.

Figure 2 illustrates one route of manufacturing supercapacitor from carbonized banana peel.

Figure 2. Illustrations showing process of manufacturing flexible supercapacitors starting from raw material

preparation, carbonization and supercapacitor assembly.

Banana peel is an excellent potential for manufacturing supercapacitors. Various carbonization methods have been

employed to improve the performance of supercapacitors with irrespective of its purposes and achieved high

capacitance values. Table 1 summarizes the applied carbonization methods and its effect on the capacitance

values.

Table 1. Summary of carbonized supercapacitor (SC) manufacturing based on banana peel.

[7]

[7]

[8][9][10][11]

Method of
Carbonization Purposes Results Achieved Ref.

One-step chemical
activation

Improving electrochemical
performance

Capacitance of 227 Fg  at 1 Ag

Carbonization without
activation

Green and cost-effective facile
route

Notable specific capacitance (811
Fg )

one-step hydrothermal
method

To get excellent electrochemical
performance

Capacitance enduring 51 Fg  at 5.0
Ag

−1 −1 [12]
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As indicated in Table 1, carbonization of biomass resulted in carbon materials with porous structure and hence

carbon materials have used for energy storage materials as supercapacitors . Recent developments in the

production of flexible supercapacitors indicated that banana peels represent a possible method to produce durable,

flexible, and light weight energy storage devices. Supercapacitors based on banana peel achieved high

capacitance value due to the ability of embodying high surface area which in turn can encompass highly porous

Method of
Carbonization Purposes Results Achieved Ref.

Chemical activation
To improve conductivity and
electrochemical performance

Specific capacitance of
90.23 Fg  at 10 mVs

Heating banana peel
soaked with KOH at high

temperature

To check stability against
multiple electronic cycling and

bending

Devices displayed high areal
capacitance of 88 mF/cm  at 10 mV/s

scan rate

two-step hydrothermal
process

To reach easily to the active site
and to shorten the ion transport

path

Large capacitance of 816 Fg  at the
current density of 5 mA cm

Green pyrolysis
To check energy storage ability
and environmental remediation

Capacitance of 655 Fg  in 1 M at a
current density of 0.35 Ag  & excellent

cyclic stability of 79.3%

Sulfur-doped (chemical
carbonization)

Sustainable supercapacitor
production

High Brunauer-Emmett-Teller surface
area of 2224.9 m /g, a large pore

volume of 0.77 cm /g

Carbonization with
chemical activation

To see relationship of surface
area to cell capacitance

SC increased from 59–~265 Fg  at
0.1 Ag

Biological activation
Optimization of precursors and

synthesis methods
Get specific capacitance of 476 Fg  in

1 M H SO  electrolyte

Chemical co-precipitation
method

To get high electrochemical
property

specific capacitance of 465 Fg  at a
scan rate of 10 mV s  by CV

Biological fermentation
Stabilize the structure of

electrodes
High-capacity hold of 58.35% after 100

cycles

Hydrothermal method
To increase the electrochemical

performance
Had a specific capacitance of 139.6

Fg  at 300 mA g

straightforward
carbonization

To improve electrochemical
performance

Specific capacitance improved from 59
to 258–273 Fg  at 0.1 Ag

KOH pellets at different
carbonization temperatures

To improve electrochemical
performance

Specific capacitance of 165 Fg  at
energy density of 18.6 Wh kg  at 0.5

Ag

Carbonization followed by
activation

To see the relationship between
surface area and

electrochemical property

Surface area had significant effect on
electrochemical property (specific

capacitance of 68 Fg )

H SO  activation Carbon nanofiber synthesis Carbon nanofiber formed at 700 °C)

−1 −1
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structures. This most likely proves that carbon materials based on banana peels will continue to strive to be one of

the protentional applications for supercapacitor production as far as optimization in terms of activation type, high

porosity, and flexibility achieved.

Banana peels (BP) have been used as the supercapacitor electrode after carbonization. They can be carbonized

by applying various mechanisms such as chemical activation , hydrothermal methods , biological

fermentation , and pyrolysis . For the sake of obtaining higher capacitance value, various chemicals may be

employed to chemically activate the banana peel carbon. The chemical activation may increase the surface area of

the carbonized banana peel with affecting the structure of activated carbon. Activation helps to increases the

surface area to volume ratio and to enhance absorption is enhanced. Moreover, the supercapacitor for chemically-

activated banana peel achieved exceptional recurring steadiness with capacitance maintenance of ~97% for 5000

cycles . Banana peel carbon provides the highest performance when activated using chemicals. Furthermore,

the chemical precipitation has helped to enhance the supercapactive performance of carbonized supercapacitors,

and hence chemical activation in suggested for the production of durable supercapacitors in the future.

3. Supercapacitors Based on PEDOT:PSS

3.1. Introduction

Poly(3,4-ethylenedioxythiophne)-polystyrene sulfonate (PEDOT:PSS) is the most recently explored, widely used,

and successfully implemented intrinsically conductive polymers. The utmost plausible reason for this is due to

excellent electromechanical performance , high conductivity and wash durability , and water processability

and light transmissive behaviour . In addition to this point, PEDOT:PSS is stable in environment and can be

processed up to high temperature ranges. PEDOT:PSS alone is not good conductor as hydrophilic PSS hides the

conductivity. In this case, some researchers have been using polyethylene glycol (PEG) , dimethyl sulfoxide

(DMSO) , and ethylene glycol (EG)  to enhance the conductivity. When PEDOT:PSS is doped with these

solutions, structural rearrangement has taken place (Figure 3c) .

Method of
Carbonization Purposes Results Achieved Ref.

KOH Absorption study
reflection loss peak of −44.59 dB at

10.84 GHz
[26]
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Figure 3. (a) Chemical structure of PEDOT; (b) chemical structure of PSS; (c) when PSS is added to PEDOT; a

water dispersion solution is created; (d) when PEDOT:PSS is doped with conductive enhancers, a structural re-

arrangement is formed, adapted from Ref. .

Perhaps the most well-known example of an organic intrinsic semiconductor polymer is the polymer poly(3,4-

ethylenedioxythiophene) (PEDOT), predominantly when it intricates with poly(styrene sulfonate-PSS)

(PEDOT:PSS). PSS surrounds and mostly found on the surface of PEDOT and which helps PEDOT to be

dispersible in water. It is extremely conductive, light-transmissive to a significant extent, water-processable, and

highly flexible. Considerable recent research on this ubiquitous material has focused on enhancing its deformability

beyond flexibility (a property that any suitably thin material possesses) to stretchability (a property that requires

molecular or nanoscale structure engineering). The aforementioned properties of PEDOT:PSS are fundamental,

which may help researchers to investigate the use of PEDOT:PSS as a durable energy storage materials such as

supercapacitors.

Poly(3,4-ethylenedioxythiphene)-poly(styrene sulfonate) has been used in the production of high-performance

supercapacitors. Table 2 summarizes the use of PEDOT:PSS to produce supercapacitor and its efficiency. Using

PEDOT:PSS conductive polymer not only brought electrochemical performance but also possess excellent

durability against washing .

[30]

[29]
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Table 2. Summary of supercapacitors based on PEDOT:PSS with capacitance (C) main factor.

Precursor/Composite Capacitance Performance Ref.

rGO
226.5 F cm /279.3 mF cm  at

0.5 A cm
74.7% C retention at 50 A cm

WO 1139.6 mF cm  at 2 mA cm Working voltage of 1.6 V

Cellulose nanofibrils 854.4 mF cm  at 5 mV/s Areal ED of 30.86 μWh cm

PANI, PPy 156 mF cm  C at 1 mA cm  CD 41% capacity persisted at 20 mA cm

MgTf
280 Fg  at 3 mV/s and 376.6

Fg  at 100 mA g
PD ~100.08 Wkg

Graphene
C of 2 mF cm  at a scan rate of

10  mV s
>95% C retaining after 10  cycles

Polypyrrole
12.4–10.5 F cm  at a CD of 40–

320 mA cm
C retention rate of 88.1% for 10

charges/discharge cycles

Carbon nanofibers
C of 1321 Fg , at a scanning

speed of 1 mV/s
Retention of 80% of its performance after

2500 CV cycles

MnO  microspheres Capacitance of 135.4 mF cm 94% C maintenance after 3000 cycles

rGO/CoFe O Capacitance of 229.6 mF cm
ED and PD of 25.9 Wh kg  and 135.3 W

kg , respectively

Poly(acrylamide) specific C of 327 Fg  at 3 mV/s
highest ionic conductivity of 13.7 × 10

S/cm at 22 ± 2 °C

CoCCHH-CoSe C of 440.6 Fg  at 1 Ag ED of 137.7 Wh kg

PANI Nanofiber
C of 301.71 mF cm  at CD of 1

mA cm

ED of 0.023 mWh cm , with PD of 0.279
mW cm  at a lower current density of 1

mA cm

nanoflower MnOx C of 580 mF·cm  at 0.5 mA >90% for 40% stretch

---- C of 3.92 mF/cm  at 1 mA/cm C retention > 90% after 3 × 10  cycles

---- Capacitance of 990 mF cm C retention of 74.7% after 14,000 cycles

Alginate/PPy Capacitance of 246.4 mF cm 97% of initial values after 180° bending

Ag-coated Tyvek
Mass C (138.7 Fg ) & volume C
(544.2 F/cm ) at the scan rate of

50 mV/s.
91.2% retention after 100 cycles

−3 −2

−3
−3 [33]

3
−2 −2 [34]

−2 −2 [35]

−2 −2 −2 [36]

2

−1

−1 −1
−1 [37]

−2

2 −1
3 [38]

−3

−3

3
[39]

−1
[40]

2
−2 [41]

2 4
−2

−1

−1
[42]

−1
−3

[43]

−1 −1 −1 [44]

−2

−2

−2

−2

−2

[45]

−2 [46]

2 2 3 [47]

−2 [48]

−2 [49]

−1

3 [50]



Polymers-Based Flexible Supercapacitors for Energy | Encyclopedia.pub

https://encyclopedia.pub/entry/21446 8/12

GO, reduced graphene oxide; WO , tungsten trioxide; MgTf , magnesium trifluoromethanesulfonate; CD, current

density; PD, power density; ED, energy density; CoCCHH-CoSe, heterogenous tube; MWCNT, multi-walled carbon

nanotubes.
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