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In an era where sustainability is becoming the main driving force for research and development, supercritical fluids-based

techniques are presented as a very efficient alternative technology to conventional extraction, purification, and

recrystallization processes. Supercritical antisolvent (SAS) precipitation is a novel technique that can replace liquid

antisolvent precipitation techniques. Additionally, through the optimization of precipitation operating conditions,

morphology, particle size, and particle size distribution of nanoparticles can be controlled. As an antisolvent, supercritical

carbon dioxide (scCO ) is far more sustainable than its conventional liquid counterparts; not only does it have a critical

point (304 K and 73.8 bar) on its phase diagram that allows for the precipitation processes to be developed so close to

room temperature, but also its recovery and, consequently, the precipitated solute purification stage is considerably

simpler. This technique can be used efficiently for preparing nanocatalysts to be used in biodiesel production processes.
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1. Introduction

Ever since Baron Charles de la Tour first theorized supercritical fluids (SCFs) in 1822 , several research studies

have been executed regarding its applications, resulting in several technologies such as supercritical fluid extraction,

supercritical drying, supercritical dyeing, and supercritical fluid chromatography.  SCFs are characterized by having both

their temperature and pressure values higher than their critical point, where a significant difference between liquid and gas

does not exist .

As these operating conditions exceed the critical point, a clear interface between the liquid and gas phases tends to

disappear and, thus, becomes a mixed gas, as shown in Figure 1. This mixed gas has properties inherited from both

gaseous and liquid states, namely: low viscosity, high density, high diffusivity, non-existing surface tension, good fluidity,

heat and mass transfer characteristics, as well as an adjustable solvent selectivity .

Figure 1. A brilliant orange CO -philic complex of rhodium was added in order to obtain better contrast and to

demonstrate the solvent behavior of the liquid and the supercritical phase in the CO  phase diagram, which is illustrated

with figures of the transition from the liquid/gas region to the supercritical region .
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Supercritical carbon dioxide (scCO ) and supercritical water have been recognized as green solvents for the future,

mostly due to their ecological benefits, as they are nontoxic, noncarcinogenic, non-mutagenic, nonflammable, and

thermodynamically stable. Supercritical carbon dioxide (scCO ), when compared to supercritical water, exists at

temperatures above 647 K and pressures over 221 bar, and it is more easily accessible by having a critical temperature

(TC) of 304 K and a critical pressure (PC) of 73.8 bar, as shown in Figure 1.

2. Preparation of Nanomaterials Using Supercritical CO

Nanoscale materials, often known as nanomaterials, are defined by the International Union of Pure and Applied Chemistry

(IUPAC) as having organized components with at least one dimension less than 100 nm . New nanomaterials, including

nanoclays, nanofibers, nanoporous materials, carbon nanotubes, nanocomposites, and nanoparticles, have recently been

used for several different applications .

The most used methods to produce nanomaterials are gas condensation, vacuum evaporation and deposition,

precipitation, impregnation, chemical vapor deposition, nano-grinding, calcination-hydration-dehydration, and sol–gel

techniques . Liquid anti-solvent processes are also used in the industry, based on the miscibility between two

solvents. The solute to be micronized has to be soluble in the first solvent, but not soluble in the anti-solvent. Therefore,

by adding the anti-solvent, the formation of a solution between the two liquids and the supersaturation is induced, and

subsequent precipitation of the solute occurs . This traditional micronization technique usually produces wide particle

size ranges and products with an uneven morphology. The elimination of liquid solvent residues is also a matter of

concern . These limitations can be particularly pertinent for some industrial applications, such as the production of

pharmaceutical compounds .

Due to the features of supercritical fluids (SCFs) that have been previously described, approaches based on SCFs have

been suggested as an alternative to traditional procedures . By adjusting the operational parameters like the

temperature, pressure, and solvent flow rate, supercritical fluids like scCO  can produce nanoparticles. It is also feasible

to modify the particle size as well as the morphology of nanoparticles by utilizing the unique properties of supercritical

solvents . The earliest evidence of supercritical fluids being used for particle formation upon their depressurization was

found in 1879 by Hannay and Hogart . Surprisingly, the first patent for the rapid expansion of supercritical expansion

solutions by valves or other spraying devices, or Rapid Expansion of Supercritical Solutions (RESS), was not published

until 1986, more than a century after the invention was made . Since CO  has a low critical pressure, and particularly

temperature, in addition to being abundant and reasonably non-expensive, it has several technological advantages: used

CO  can be easily collected and reutilized , and different processes have been developed for that purpose.

Recently, new proposals and developments have been made concerning various micronization technologies aiming to

benefit from the peculiarities of fluids at supercritical conditions: new approaches for particle formation methods focused

on the use of scCO  have started to be designed, developed, and tested, such as solvent (RESS), antisolvent

(supercritical antisolvent (SAS)), aerosol solvent extraction system (ASES), precipitation with compressed antisolvent

(PCA), gaseous antisolvent (GAS), supercritical antisolvent using enhanced mass transfer (SAS-EM), solution enhanced

dispersion by supercritical fluids (SEDS), suspension-enhanced dispersion by supercritical fluids (SpEDS)), co-solute

(particle formation from gas-saturated solutions (PGSS)) and co-solvent . A conceptual picture of the various

scCO -based particle production processes is shown in Figure 2.
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Figure 2. Conceptually distinct particle precipitation mechanisms are represented using scCO : (a) Formation of particles

from gas-saturated solutions (PGSS). (b) Expansion (rapid) of supercritical solutions (RESS). (c) Expansion (rapid) of a

supercritical solution into a liquid solvent (RESOLV). (d) Precipitation using a compressed anti-solvent (PCA)/Aerosol

solvent extraction system (ASES). (e) Supercritical antisolvent with enhanced mass transfer (SAS-EM). (f) Solution-

enhanced dispersion by supercritical fluids (SEDS). (g) Suspension-enhanced dispersion by supercritical fluids (SpEDS)

.

3. Supercritical Antisolvent (SAS) as a Micronization Technique

Supercritical antisolvent precipitation (SAS), is a novel, ecologically benign method of creating nanomaterials that may be

used as a substitute for liquid solvent precipitation since it is far more efficient. scCO  has been extensively used for

producing a variety of materials, such as polymers, biopolymers, superconductors, explosives, colouring agents, active

pharmaceutical ingredients (APIs), and catalysts, using an antisolvent for the controlled precipitation of solids dissolved in

conventional solvent, if the processed compounds do not dissolve in the supercritical medium .

Additionally, the size and morphology of the resulting solids precipitated by SAS technologies are usually correlated with

the system solvent/antisolvent high-pressure VLEs (vapour-liquid equilibrium), or the position of the SAS operating point

around the critical point of the mixture (MCP) . For instance, if the process is being conducted as a single-phase

method with no interface between the solution and the antisolvent, this indicates that micronization is occurring at

supercritical conditions, i.e., above the MCP, and the very fast diffusion of scCO  into the liquid solvent causes its

expansion, thus producing the solute’s supersaturation and resulting in forming nanoparticle morphologies that are not

typically achieved by traditional catalyst preparation methods . This phenomenon, adding to the quasi-zero surface

tension of scCO , allows for obtaining particles of smaller size and having a narrow particle size distribution (PSD) with

the complete elimination of the solvents, when compared to the traditional micronization techniques ; or, if the

process shows a two-phase mixing, the micronization is occurring at subcritical operation conditions, i.e., in the biphasic

region below the MCP, resulting in the production of microparticles .

The success of SAS precipitation techniques is strongly dependant on the affinity between the solvent and the

supercritical antisolvent, i.e., the solubility of the liquid solvent in the supercritical CO  and the quick gas-like diffusion of

the scCO  in the solvent , as shown in Figure 3. Several organic liquids that are completely miscible with scCO

under process conditions have been used, such as acetic acid, acetone, chloroform, dichloromethane, dimethyl

formamide, dimethylsulfoxide, ethanol, ethyl acetate, formic acid, isopropanol, methanol, N-methyl pyrrolidone, and

tetrahydrofuran. In some other cases, mixtures of two of the indicated solvents have also been used .
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Figure 3. Schematic diagram of the supercritical antisolvent (SAS) apparatus, composed of: BPV: Back-pressure valve;

LS: Liquid separator; MV: Micrometric valve; P1, P2: Pumps; PC: precipitation chamber; RB: Refrigeration bath; S1: CO

supply; S2: Liquid solution supply; R: Rotameter .
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