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WebAssembly is a low-level bytecode language that enables high-level languages like C, C++, and Rust to be executed in the

browser at near-native performance. WebAssembly has gained widespread adoption and is natively supported by all modern

browsers. Despite its benefits, WebAssembly has introduced significant security challenges, primarily due to vulnerabilities

inherited from memory-unsafe source languages. Moreover, the use of WebAssembly extends beyond traditional web

applications to smart contracts on blockchain platforms, where vulnerabilities have led to significant financial losses.

WebAssembly has also been used for malicious purposes, like cryptojacking, where website visitors’ hardware resources are

used for crypto mining without their consent. 
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1. Introduction

The Internet has come a long way since its inception and one of the key technologies that have enabled its growth and

evolution is JavaScript. JavaScript, which was developed in the mid-1990s, is a programming language that is widely used to

create interactive and dynamic websites. It was initially designed to enable basic interactivity on web pages, such as form

validation and image slideshows. However, it has evolved into a versatile language that is used to build complex web

applications. Today, JavaScript is one of the most popular programming languages in the world, currently being used by 98%

of all websites .

Despite its popularity and versatility, JavaScript has some inherent limitations that have become apparent as web applications

have grown more complex and resource-demanding. Specifically, JavaScript is a high-level, interpreted, dynamically typed

language, which fundamentally limits its performance. Consequently, it is not suited for developing resource-demanding web

applications. To address the shortcomings of JavaScript, several technologies, like ActiveX , NaCl , and asm.js , have

been developed. However, these technologies have faced compatibility issues, security vulnerabilities, and performance

limitations.

WebAssembly was developed by a consortium of companies, including Mozilla, Microsoft, Apple, and Google, as a solution to

the limitations of existing technologies. WebAssembly is designed as a safe, fast, and portable compilation target for high-

level languages like C, C++, and Rust, allowing them to be executed with near-native performance in the browser. It has

gained widespread adoption and is currently supported by 96% of all browser instances . Moreover, WebAssembly is also

being extended to desktop applications , mobile devices , cloud computing , blockchain virtual machines (VMs) ,

IoT , and embedded devices .

Overview. WebAssembly is a technology that aims to address performance, compatibility, and security issues that have

plagued previous approaches. It was developed by a consortium of tech companies, including Mozilla, Microsoft, Apple, and

Google, and was released in 2017 . WebAssembly has since gained widespread adoption and is currently supported by

96% of all browser instances . Additionally, it is an official World Wide Web Consortium (W3C) standard , and is natively

supported on the web. An overview of WebAssembly is given in Figure 1.
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Figure 1. WebAssembly serves as the intermediate bytecode bridging the gap between multiple source languages and host

environments. The host environments compile the WebAssembly binaries into native code for the specific hardware

architecture.

WebAssembly is a low-level bytecode language that runs on a stack-based Virtual Machine (VM). More specifically,

instructions push and pop operands to the evaluation stack. This architecture does not use registers; instead, values are

stored in global variables that are accessible throughout the entire module or in local variables that are scoped to the current

function. The VM manages the evaluation stack, global variables, and local variables.

Host Environment. WebAssembly modules run within a host environment, which provides the necessary functionality for the

module to perform actions such as I/O or network access. In a browser, the host environment is provided by the JavaScript

engine, such as V8 or SpiderMonkey. WebAssembly exports can be wrapped in JavaScript functions using the WebAssembly

JavaScript API , allowing them to be called from JavaScript code. Similarly, WebAssembly code can import and call

JavaScript functions. Other host environments for WebAssembly include server-side environments like Node.js  and stand-

alone VMs with accompanying APIs. For instance, the WebAssembly System Interface (WASI)  allows WebAssembly

modules to access the file system.

Module. WebAssembly modules serve as the fundamental building blocks for deployment, loading, and compilation. A

module contains definitions for types, functions, tables, memories, and globals. In addition, a module can declare imports and

exports, as well as provide initialization through data and element segments or a start function.

Compilation. Languages like C, C++, and Rust can be compiled into WebAssembly since it is designed as a compilation

target. Toolchains like Emscripten  or wasm-pack  can be used to compile these languages to WebAssembly. The

resulting binary is in the wasm binary format, but can also be represented in the equivalent human-readable text format called

wat. A module corresponds to one file. The WebAssembly Binary Toolkit (WABT)  provides tools for converting between

wasm and wat representations, as well as for the de-compilation and validation of WebAssembly binaries.

Use Cases. WebAssembly has been adopted for various applications on the web due to its near-native execution

performance, such as data compression, game engines, and natural language processing. However, the usage of

WebAssembly is not only limited to the web. It is also being extended to desktop applications , mobile devices , cloud

computing , IoT , and embedded devices .

2. Security

Environment. WebAssembly modules run in a sandboxed environment which uses fault isolation techniques to separate it

from the host environment. As a result of this, modules have to go through APIs to access external resources. For instance,

modules that run in the web browser must use JavaScript APIs to interact with the Document Object Model (DOM). Similarly,

stand-alone runtimes must use APIs, like WASI, to access system resources like files. In addition to this, modules must

adhere to the security policies implemented by its host environment, such as the Same Origin Policy (SOP)  enforced by

web browsers, which restricts the flow of information between web pages from different origins.

Memory. Unlike native binaries, which have access to the entire memory space allocated to the process, WebAssembly

modules only have access to a contiguous region of memory known as linear memory. This memory is untyped and byte-

addressable, and its size is determined by the data present in the binary. The size of linear memory is a multiple of a

WebAssembly page, each being 64 KiB in size. When a WebAssembly module is instantiated, it uses the appropriate API call

to allocate the memory that is needed for its execution. The host environment then creates a managed buffer, typically an

ArrayBuffer, to store the linear memory. This means that the WebAssembly module accesses the physical memory

indirectly through the managed buffer, which ensures that it can only read and write data within a limited area of the memory.

Control Flow Integrity. WebAssembly enforces structured control flow, organizing instructions into well-nested blocks within

functions. It restricts branches to the end of surrounding blocks or within the current function, with multi-way branches

targeting only pre-defined blocks. This prevents unrestricted go-tos or executing data as bytecode, eliminating attacks like

shellcode injection or the misuse of indirect jumps. Additionally, execution semantics ensure safety for direct function calls

through explicit indexing and protected returns with a call stack. Indirect function calls undergo runtime checks for type
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signatures, establishing coarse-grained, type-based control-flow integrity. Additionally, the LLVM compiler infrastructure has

been adapted to include a fine-grained control flow integrity feature, specifically designed to support WebAssembly .

3. Vulnerabilities

Inherent vulnerabilities in the source code can lead to subsequent vulnerabilities in WebAssembly modules . Specifically,

buffer overflows in memory-unsafe languages like C and C++ can overwrite constant data or the heap in WebAssembly

modules. Despite WebAssembly’s sandboxing, these vulnerabilities allow malicious script injection into the module’s data

section, which is accessible via JavaScript APIs. An example of this is the Emscripten API , which allows developers to

access data from WebAssembly modules and inject these into the DOM, which can lead to Cross Site Scripting (XSS) attacks

. Notably, two-thirds of WebAssembly binaries are compiled from memory-unsafe languages , and these attacks have

been shown to be practical in real-world scenarios . For instance, Fastly, a cloud platform that offers edge computing

services, experienced a 45 min disruption on 8 June 2021, when a WebAssembly binary with a vulnerability was deployed 

4. Smart Contracts

Smart contracts are computer programs that are stored on a blockchain, designed to automatically execute once

predetermined conditions are met, eliminating the need for intermediaries. As initially proposed by Nick Szabo in 1994 ,

long before the advent of Bitcoin, they have since gained widespread popularity alongside the rise of blockchain technology

and cryptocurrencies. The inherent properties of blockchain, such as transparency, security, and immutability, make smart

contracts particularly appealing for cryptocurrency transactions. This ensures that once the terms of the contract are agreed

upon and coded into the blockchain, they can be executed without the possibility of fraud or third-party interference. Smart

contracts can facilitate a variety of transactions, from the transfer of cryptocurrency between parties to the automation of

complex processes in finance, real estate, and beyond. Due to its near-native performance, WebAssembly has been adopted

by blockchain platforms, such as EOSIO  and NEAR , as their smart contract runtime. Ethereum has included

WebAssembly in the roadmap for Ethereum 2.0, positioning it as the successor to the Ethereum Virtual Machine (EVM) .

However, as with any technology, smart contracts are not without their challenges and vulnerabilities. The immutable nature of

blockchain means that once a smart contract is deployed, it cannot be modified, making the correction of vulnerabilities in its

code challenging. Several incidents have highlighted the potential financial and security risks associated with vulnerabilities in

WebAssembly smart contracts. For instance, random number generation vulnerabilities led to the theft of approximately

170,000 EOS tokens . Similarly, the fake EOS transfer vulnerability in the EOSCast smart contract has led to the theft of

approximately 60,000 EOS tokens . The forged transfer notification vulnerability in EOSBet has resulted in the loss of

140,000 EOS tokens . Based on the average price of EOS tokens at the time of the attacks, the combined financial impact

of these three vulnerabilities amounted to roughly USD 1.9 million. Additionally, around 25% of WebAssembly smart contracts

have been found to be vulnerable .

5. Cryptojacking

Cryptojacking, also known as drive-by mining, involves using a website visitor’s hardware resources for mining

cryptocurrencies without their consent. Previously, cryptojacking was implemented using JavaScript. However, in recent years

WebAssembly has been utilized due to its computational efficiency. The year after WebAssembly was released, there was a

459% increase in cryptojacking . The following year, researchers found that over 50% of all sites using WebAssembly were

using it for cryptojacking . To counter this trend, researchers developed several static and dynamic detection methods for

identifying WebAssembly-based cryptojacking.

While there are theories suggesting that WebAssembly can be used for other malicious purposes, like tech support scams,

browser exploits, and script-based keyloggers , evidence of such misuse in real-world scenarios has not been

documented. As a result, there are no analysis techniques for detecting such malicious WebAssembly binaries. Consequently,

discussions about malicious WebAssembly binaries in this research mainly refer to crypto mining binaries.
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