
Comparative Study of Keccak SHA-3 Implementations
Subjects: Computer Science, Hardware & Architecture | Engineering, Electrical & Electronic

Contributor: Alessandra Dolmeta, Maurizio Martina, Guido Masera

SHA-3, a pivotal component in modern cryptography, has spawned numerous implementations across diverse platforms

and technologies. This text aims to provide valuable insights into selecting and optimizing Keccak SHA-3

implementations. It encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid) solutions.

Researchers assess the strengths, weaknesses, and performance metrics of each approach. Critical factors, including

computational efficiency, scalability, and flexibility, are evaluated across different use cases. Researchers investigate how

each implementation performs in terms of speed and resource utilization. This text aims to improve the knowledge of

cryptographic systems, aiding in the informed design and deployment of efficient cryptographic solutions. By providing a

comprehensive overview of SHA-3 implementations, it offers a clear understanding of the available options and equips

professionals and researchers with the necessary insights to make informed decisions in their cryptographic endeavors.
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1. Introduction

Open contests have become a preferred method for selecting cryptographic standards in the U.S. and worldwide,

beginning with the Advanced Encryption Standard (AES) contest organized by the NIST in 1997–2000. Four typical

criteria taken into account in the evaluation of candidates in such contests are security, performance in software,

performance in hardware, and flexibility . Security, though crucial, is complex to assess quickly in contests. Hardware

performance often serves as a tiebreaker when other criteria fail to declare a clear winner among cryptographic

algorithms. 

Among the contenders, Keccak, designed by Guido Bertoni, Joan Daemen,  Michaël Peeters, and Gilles Van Assche,

stood out for its innovative design and strong security properties, ultimately earning its place as the foundation of SHA-3.

This achievement marked a significant milestone in modern cryptography, ensuring robust and efficient hash functions for

various security applications. While it currently stands as the leader in resisting recent cryptanalysis attacks and excels in

hardware performance, there is a continuous demand for developing an efficient implementation, be it software, e.g.,

Central Processing Unit (CPU), or hardware, e.g., Field-Programmable Gate Array (FPGA) and Application-Specific

Integrated Circuit (ASIC). Common software implementations on a microcontroller offer high flexibility, but they may not

provide the required performance for cryptographic algorithms with high computational demands. Microcontrollers are

versatile and programmable, making them suitable for a wide range of applications, but they may struggle with the

computational intensity of modern cryptographic algorithms. Moving up the spectrum, an extensible processor, such as an

application microprocessor, co-processors (i.e., ), or a Digital Signal Processor (DSP), offers more significant

performance potential than fixed ones. These processors can be optimized for specific cryptographic operations, providing

better throughput and efficiency than a generic microcontroller. However, they are still limited by their general-purpose

architecture, which may not match the specialized requirements of specific cryptographic algorithms. A programmable

datapath takes the customization a step further by allowing users to design custom hardware accelerators for

cryptographic tasks. This approach offers a balance between flexibility and performance. Programmable datapaths enable

the efficient execution of cryptographic algorithms through parallel processing and custom hardware instructions (i.e., ).

Finally, the least flexible but most efficient solution is the hardwired datapath, typically implemented in ASICs (Application-

Specific Integrated Circuits). ASICs are designed specifically for a particular cryptographic algorithm or set of algorithms,

making them highly efficient in terms of speed and power consumption. However, their lack of flexibility means that any

changes or updates to cryptographic algorithms require a new hardware design.

In summary, the choice of implementation approach for cryptographic algorithms depends on the trade-off between

flexibility and efficiency, as shown in Figure 1. Selecting the most suitable implementation space depends on the specific

cryptographic requirements and application constraints.
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Figure 1. Space of solutions.

2. SHA-3

SHA-3 is a subset of the Keccak family standardized by the NIST. The standard lists four specific instances of SHA-3 and

two extendable-output functions (SHAKE128 and SHAKE256). While the SHA-3 functions have a specified output length,

the two SHAKE variants permit extraction of a variable length of output data, which makes SHA-3 a suitable candidate for

pseudo-random bit generation . All SHA-3 functions operate within a shared foundational framework known as the

sponge construction (as shown in Figure 2a). This framework is highly adaptable and allows for the generation of hash

values with variable length, making it well suited for diverse applications.

Figure 2. (a) Sponge Function. (b) Keccak State.

The NIST standard defines four versions of the Keccak sponge function  for a message M and an output length d, as

shown in Table 1. The algorithm uses two parameters for the sponge construction: the bitrate with r-bits, which

determines the number of bits absorbed in each step, and the capacity with c-bits, which determines the attainable

security level (Figure 2a).

Table 1. SHA3 instances.

Instance Output Size d Rate r Capacity c

SHA3-224 224 1152 448

SHA3-256 256 1088 512

SHA3-384 384 832 768

SHA3-512 512 576 1024

The flow of a sponge function can be understood through the following steps:

Initialization: the sponge function is initialized depending on r and c parameters.

Padding: The input message is padded to ensure that length is a multiple of r. Most of the architectures utilize a

software scheduler for preparing the input by splitting and padding long messages into blocks of 1600 bits (multi-block

messages) for truncating, if necessary, the output of the hash computation in the appropriate size of the selected mode

of operation and for updating the state matrix in the case of multi-block messages. As an example, in  the input

to the SHA-3 block is assumed to be already padded.
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In other works, i.e., , the hardware block is not performing only the f-transform, but it also has a Versioning and XOR-

iring module (VSX) that is responsible for forming the appropriate state per algorithm version.

There are some implementations in which all the steps of the sponge function are supported (padding, mapping, and

truncation), but, generally, these architectures assume that the input can only be of a certain length (i.e.,  considers

input messages whose length is fixed to 64 bits), or have a precise application (i.e.,  considers only the CRYSTALS-

Kyber 768 algorithm).

Absorbing Phase: Here, the padded message is divided into blocks of a size of r bits each, and each block is XORed

with the current state of the sponge function. The resulting state is then processed through a series of bitwise

operations, typically using a permutation function, to mix the input data with the current state. The function f acts on the

state, with a width of 𝑏=𝑟+𝑐.

Squeezing Phase: After all of the message blocks have been absorbed, the function produces the hash output by

repeatedly extracting r bits from the state. These bits are concatenated to form the final hash value. The squeezing

phase continues until the desired hash length is achieved.

Finalization: in the end, the sponge function may perform additional operations to finalize the hash value, such as

truncating it to the desired length or applying additional cryptographic transformations.

Central to the sponge construction is the concept of state. The state has a length of 1600 bits and consists of a three-

dimensional 5×5×645×5×64 table, as shown in Figure 2b. Each bit of this cube can be addressed with 𝐴[𝑥,𝑦,𝑧]. In order to

facilitate the description of the applied functions, the following conventions are used: the part of the state that presents the

word is also called a lane, a two-dimensional part of the state with a fixed z is called a slice, and all lanes with the same x-

coordinate form a sheet.

3. Keccak

The most important part of the SHA-3 and SHAKE primitives is the Keccak permutation function, which calls for 24 rounds

of the f-1600 function. Each round is characterized by the five consecutive steps 𝜃,𝜌,𝜋,𝜒, and 𝜄. These steps have a state

array A as input and an output B, which is a processed new state array. As shown in Equation (1), 𝜃 consists of a parity

computation, a rotation of one position, and a bitwise XOR.

 

(1)

In Equation (2), 𝜌 is a rotation by an offset that depends on the word position, and 𝜋 is a permutation.

 

(2)

In Equation (3), 𝜒 consists of bitwise XOR, NOT, and AND gates.

 

(3)

Lastly, 𝜄, in Equation (4) is a constant round addition.

 

(4)

When these five are completed, a round is completed. Table 2 reports the round constant function RC[i], which is a 24-

value permutation that assigns 64-bit data to the Keccak function. Table 3 reports the cyclic shift offset r[x,y].
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θ : C[x] = A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕ A[x, 4] 0 ≤ x ≤ 4

D[x] = C[x − 1] ⊕ ROT (C[x + 1], 1) 0 ≤ x ≤ 4

A[x, y] = A[x, y] ⊕ D[x] 0 ≤ x, y ≤ 4

ρ − π : B[y, 2x + 3y] = ROT (A[x, y], r[x, y]) 0 ≤ x, y ≤ 4

χ : A [x, y] = B [x, y] ⊕ (( B[x + 1, y]) ⋅ (B [x + 2, y])) 0 ≤ x, y ≤ 4̄

ι : A[0, 0] = A[0, 0] ⊕ RC 0 ≤ x, y ≤ 4



Table 2. Values RC[i] constants.

RC[0] 0x0000000000000001 RC[8] 0x000000000000008a RC[16] 0x8000000000008002

RC[1] 0x0000000000008082 RC[9] 0x0000000000000088 RC[17] 0x8000000000000080

RC[2] 0x800000000000808a RC[10] 0x0000000080008009 RC[18] 0x000000000000800a

RC[3] 0x8000000080008000 RC[11] 0x000000008000000a RC[19] 0x800000008000000a

RC[4] 0x000000000000808b RC[12] 0x000000008000808b RC[20] 0x8000000080008081

RC[5] 0x0000000080000001 RC[13] 0x800000000000008b RC[21] 0x8000000000008080

RC[6] 0x8000000080008081 RC[14] 0x8000000000008089 RC[22] 0x0000000080000001

RC[7] 0x8000000000008009 RC[15] 0x8000000000008003 RC[23] 0x8000000080008008

Table 3. Values r[x,y] constants.

 X = 3 X = 4 X = 0 X = 1 X = 2

Y = 2 25 39 3 10 43

Y = 1 55 20 36 44 6

Y = 0 28 27 0 1 62

Y = 4 56 14 18 2 61

Y = 5 21 8 41 45 15

More information about the Keccak algorithm can be found in .

4. Implementation

When developing a real implementation, a diverse array of possibilities within the design space is available. These options

encompass entirely hardware-based solutions, pure software implementations, and hybrid approaches, such as

Integrated Software Environments (ISE) or Application-Specific Instruction Processor (ASIP). Strictly hardware-based

solutions involve dedicated IP cores, while pure software implementations rely solely on software resources. ISEs

(Integrated Software Environment) or ASIP, representing a hybrid solution, enhance general-purpose processor cores with

specialized hardware and instructions.

Figure 3 shows the different aspects covered in the next sections and proposes for each implementation approach a

choice of proper references. Let us now delve into the intricacies of each conceivable approach.

Figure 3. Implementation possibilities scheme.

4.1. Hardware Solutions

Hardware implementations of Keccak demand careful consideration of trade-offs. When implementing Keccak in

hardware, the choice of design parameters and strategies heavily depends on the specific goals and constraints of the

target application. These objectives typically revolve around factors such as speed, power efficiency, and area utilization.
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This section will explore the various aspects that can be considered during the hardware implementation of Keccak, with a

focus on these key parameters.

Unrolling. Unrolling is particularly efficient in improving the throughput for single-message hashing. Considering Keccak,

the f-permutation block can be replicated and unrolled in the SHA-3 hash function. As an example, Refs.  implement

SHA-3 considering an unrolling factor of two, while, in , an even higher degree of unrolling has been analyzed. Moumni

et al.  and Nannipieri et al.  have made several attempts, instantiating from a single instance to twelve, going from 24

clock cycles to 2; however, this resulted in an onerous increase in area.

Pipelining. Pipelining brings the advantages of combined data throughput enhancement in multi-message hashing, where

the function processes more than one message concurrently. In addition, two different types of pipelining can be

distinguished:

Classic pipelining, generally used between one round and another;

Sub-pipelining, inserted instead between two steps of the same round.

For instance, in , the pipeline is inserted between the 𝜋 and 𝜒 steps, while, in , it is inserted between the 𝜃 and

𝜌 steps.

Folding. Towards a more compact SHA-3 structure, folding of the round computation can be considered. In the case of

, each round is computed over multiple clock cycles, depending on the folding factor.

Cutting the Keccak state. The efficient management of the Keccak state is of paramount importance . There are

multiple alternatives, namely using slice-wise, plane-wise, and bit-interleaving techniques. Jungk et al.  propose a very

compact slice-oriented Keccak hardware, based on the observation that all Keccak steps except 𝜌 can be performed

efficiently with slice-wise processing. However, since input messages for absorption generally arrive in a lane-oriented

fashion, the plane-wise partitioning is favorable (adjacent bits in a register belong to the same lane).

Interleaved lanes. Bit-interleaving is a technique that can be used to break large 64-bit lanes of Keccak into smaller

chunks .

Resource Sharing. Resource area sharing is a crucial optimization technique employed in hardware design, particularly in

the context of FPGAs and ASICs. It aims to maximize the efficient utilization of available resources while minimizing the

overall hardware footprint, which can lead to cost savings, improved performance, and reduced power consumption. An

interesting example is the co-processor presented in , named AE$HA-3, which combines two of the NIST’s standardized

algorithms, i.e., Advance Encryption Standard (AES) and SHA-3. Maache et al.  also present a multi-purpose

cryptographic system performing both AES and SHA-3, implementing it on the IntelFPGA Cyclone-V device.

To sum up, the hardware implementation of Keccak is a multifaceted task that necessitates careful consideration of

various trade-offs and objectives. The specific design choices will be heavily influenced by the unique demands of the

target application, whether it be a high-performance cryptographic accelerator, a low-power embedded system, or any

other use case in which Keccak is employed. Each implementation will strike a balance between speed, power efficiency,

area utilization, and security to meet its intended purpose effectively.

4.2. Software Solutions

Enhancing the software implementation of an algorithm holds the key to unlocking superior performance. By optimizing

code, leveraging hardware-specific features, and minimizing resource overhead, software improvements can significantly

boost algorithmic efficiency, resulting in faster execution and better utilization of available hardware resources.

Accelerating the SHA-3 algorithm on FPGA devices, RISC-V, or ARM without dedicated hardware accelerators involves

optimizing the software implementation to maximize performance. Here are some techniques to achieve this.

Parallelization. Using parallelization for implementing multi-threading or multi-processing when having multiple CPU cores

can significantly improve performances. Each core can work on a separate chunk of data, improving overall throughput.

Pereira et al.  present a technique for parallel processing on Graphics Processing Units (GPUs) of the Keccak hash

algorithm. They provide the core functionality, and the evaluation is performed on a Xilinx Virtex 5 FPGA.

Vectorization (SIMD). Utilize the SIMD (Single Instruction, Multiple Data) instructions available in modern processors (e.g.,

ARM NEON, RISC-V RVV) to process multiple data elements in parallel. This can significantly speed up the hashing
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process, especially when dealing with large datasets. For example, Ref.  proposes a set of six custom instructions for

Keccak-𝑓,𝑝 [1600, 800, 400, 200] primitives, and, similarly to other crypto-instructions (e.g., Intel AES-NI and SHA), they

exploit the wide SIMD (Single Instruction, Multiple Data) registers. Li et al.  explore the full potential of parallelization of

Keccak-f[1600] in RISC-V-based processors through custom vector extensions on 32-bit and 64-bit architectures.

Loop Unrolling. Unroll loops in the SHA-3 algorithm code to reduce loop overhead and enable the compiler to optimize the

code more effectively. This can result in faster execution, especially on CPUs with pipelined execution units. Ref. 

reports several analyses about security versus area versus the timing of PQC decapsulation algorithms, after loop

unrolling, showing how, in most cases, this brings a significant reduction in latency.

Instruction-Level Optimization. Hand-tune critical sections of the code to use processor-specific instructions and features.

This may include using assembly language or intrinsic to access specialized instructions for SHA-3 operations. Ref. 

presents two new techniques for the fast implementation of the Keccak permutation on the A-profile of the Arm

architecture: the elimination of explicit rotations in the Keccak permutation through barrel shifting, and the construction of

hybrid implementations concurrently leveraging both the scalar and the Neon instruction sets of AArch64.

Optimized Compiler Flags. Use compiler optimization flags (-O2, -O3, i.e., in ) to instruct the compiler to apply various

optimizations, including loop unrolling, inline function expansion, and instruction scheduling. Ref.  uses -On command

line flags during GCC compilation to improve performance at the cost of increased compilation times.

Memory Access Optimization. Minimize memory access latency by optimizing data structures and memory access

patterns. Cache-friendly data structures and efficient memory layouts can reduce the number of cache misses. Choi et al.

 discuss optimizations, memory management strategies, and parallelization schemes, aiming to enhance the

performance and throughput of SHA-3 operations on graphics processing units (GPUs).

Prefetching. Use prefetching techniques to load data into the cache before it is actually needed, reducing memory access

stalls and improving data processing speed. Lee et al. , using NVIDIA GPU, exploit the feature for which arithmetic

instructions and memory load/store instructions can be executed concurrently, as long as there is no dependency

between the executing instruction and data being loaded/stored. They prefetch the input data of Keccak before XORing it

into the state, so that address calculation and bitwise XOR operation can run in parallel with the memory copy operation.

The effectiveness of these techniques will depend on the specific platform, compiler, and workload, so thorough testing

and profiling are essential to achieve optimal results. Continuously profiling and benchmarking the software

implementation will help identify performance bottlenecks and areas for improvement. This iterative process can lead to

significant performance gains.

4.3. Hybrid Solutions

Hybrid solutions, which combine both software and hardware components, represent a versatile approach to solving

complex problems by harnessing the strengths of each domain. These solutions essentially encompass all of the

techniques discussed in the previous section and merge them into a cohesive, integrated system.

In the realm of technology and problem-solving, software and hardware have traditionally been seen as separate entities.

Software provides flexibility and adaptability, while hardware offers raw processing power and efficiency. A hybrid solution

brings together the computational capabilities of hardware and the logic and adaptability of software to create a powerful

and agile system. It allows optimization of the performance by distributing tasks between software and hardware

according to their respective strengths. This means that computationally intensive tasks can be offloaded to dedicated

hardware accelerators, while software can handle tasks that require flexibility and frequent updates. This balance ensures

that the system operates efficiently without bottlenecks. Moreover, being that software is inherently adaptable, it is easier

to implement changes and updates to meet evolving requirements. Fritzmann et al.  present RISQ-V, an enhanced

RISC-V architecture that integrates a set of powerfully coupled accelerators. Here, hardware/software co-design

techniques have been combined to develop complex and highly customized solutions, designing tightly and loosely

coupled accelerators and Instruction Set Architecture (ISA) extensions. This is an example of how combining the

hardware and software provides the flexibility to adjust algorithms, logic, or functionality in response to changing needs

while maintaining the stability and speed of the hardware.
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