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Glucose variability (GV) plays a role in the development of the microvascular and macrovascular complications of

diabetes. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative

stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and

renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be

aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction,

which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes

mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by

reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up-

and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK

(ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The

multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
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1. Introduction

The concept of glucose variability (GV) is gaining increasing attention from scientists and clinicians. In recent decades,

various methodological approaches have been developed to assess fluctuations in glucose levels . Some GV metrics

are implemented in the standardized analysis of continuous glucose monitoring (CGM) data . The minimization of GV is

recognized as a therapeutic target in diabetes management . The growing attention to GV is explained primarily by the

predictive value of this phenomenon. Many observational studies and post hoc analyses of randomized clinical trials have

demonstrated that short-term GV and variability of glycated hemoglobin A1c (HbA1c) are associated with an increased

risk of diabetic microvascular and macrovascular complications . Some studies have also documented the

association between high GV and mortality rates in patients with type 2 diabetes (T2D) . Accumulating data

indicate that ambient hyperglycemia can be even more dangerous for the cells of the cardiovascular and nervous

systems, and renal and pancreatic beta cells than persistently high glucose levels . The molecular

pathways of the GV effect have been partially discovered in recent years and must be systematized.

In this review, we summarize data on GV-related biochemical/pathophysiological, cellular and molecular events in

conditions of high GV, which may be important for the development of diabetic complications. We consequently searched

the relevant articles in Pubmed/MEDLINE, Scopus and the Web of Science with the following keywords: “glucose

variability” or “glycemic variability”, “glucose fluctuation” or “glycemic fluctuation”, “glucose excursion” or “glycemic

excursion”, “glucose oscillations” or “glycemic oscillations”, “intermittent high glucose”, “fluctuating glucose’’. We also

combined these terms with “hypoglycemia”. Reference lists of relevant reviews and articles were thoroughly checked to

ensure all relevant studies were obtained. Both experimental and clinical studies were reviewed.

2. Biochemical and Pathophysiological Abnormalities Induced by
Excessive Glucose Fluctuations

2.1. Oxidative Stress and Non-Enzymatic Glycation

It is generally accepted that hyperglycemia induces the overproduction of reactive oxygen species (ROS) and impairs the

endogenous antioxidant defense, a condition known as oxidative stress. A number of experimental studies have indicated

that intermittently high glucose (IHG) can generate even more severe oxidative stress than a constantly high glucose

(CHG) level. Specifically, this effect was described in cultured endothelial cells , podocytes , adipocytes ,

Schwann cells  and pancreatic beta cells . The effect of IHG was related to the enhanced activation of nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase  and included excessive ROS production, oxidative DNA damage
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and the depletion of superoxide dismutase activity . An increase in plasma levels of malondialdehyde and 8-

isoprostaglandin, well-known oxidative stress markers, as well as the enhanced generation of ROS in vascular endothelial

cells, was demonstrated in rats with blood glucose fluctuations (5.5–20 mmol/L) induced by intermittent intravenous

glucose infusion . In patients with T2D, the levels of 8-iso-prostaglandin F2α, thiobarbituric acid-reactive substances

and 8-hydroxydeoxyguanosine showed positive correlations with the mean amplitude of glucose excursions (MAGE), but

not with the HbA1c level. Long-term GV, estimated by the standard deviation (SD) of HbA1c levels over a 2-year period,

was also correlated with these oxidative stress markers . Meanwhile, in other studies, no association between the

urinary excretion of 8-iso-prostaglandin-F2α and CGM-derived GV parameters was revealed in patients with type 1

diabetes  and well-controlled T2D . Recent research has indicated a correlation between 1,5-anhydroglucitol, an

intermediate-term marker of GV, and ROS metabolites in patients with T2D and HbA1c below 8% .

A growing body of evidence indicates the role of GV as a predictor of hypoglycemia . The alternation of

hyperglycemic and hypoglycemic episodes, a characteristic feature of increased GV, can be a powerful inducer of

oxidative stress. It was demonstrated that an episode of 2 h of hyperglycemia, followed by the recovery from the induced

2 h of hypoglycemia, aggravates oxidative stress in both healthy subjects and patients with type 1 diabetes (T1D) .

In diabetic conditions, hyperglycemia promotes the accumulation of advanced glycation end-products (AGEs). The

activation of AGE receptors can lead to oxidative stress, low-grade inflammation and other events contributing to vascular

complications . However, little is known about the role of GV in the formation of AGEs. It was demonstrated that, among

subjects with prediabetes, the levels of nitrotyrosine, a marker of nitrosative stress, and glyceraldehyde-derived AGEs

were higher in those with increased MAGE . Recent data indicate that acute glucose fluctuations up-regulate the

expression of the receptor for AGEs in rat podocytes .

At present, oxidative stress and non-enzymatic glycation are considered as the mechanisms of “metabolic memory”,

which determine the extent of the effect of glycemic control on metabolism and clinical outcomes in diabetes . It was

shown that the increased production of ROS in cultured human endothelial cells, caused by an excess of glucose (30

mmol/L), persists for at least a week after the normalization of glucose levels . The incubation of human umbilical vein

endothelial cells (HUVECs) in conditions of CHG (25 mmol/L) or IHG (24 h in 5 mmol/L, followed by 24 h in 25 mmol/L) for

2 weeks resulted in the up-regulation of ROS production. The generation of ROS was increased a week after the

normalization of glucose levels, especially in cells that were previously incubated with IHG. Therefore, the memory effect

can be more pronounced in high-GV conditions .

2.2. Chronic Low-Grade Inflammation

The activation of inflammatory pathways plays an important role in the pathogenesis of diabetic complications .

Increased GV contributes to the inflammatory response. As compared to CHG, oscillating glucose was a more potent

inducer of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin and

interleukin 6 (IL-6) expression in HUVECs. This effect was related to the oxidative stress and activation of poly (ADP-

ribose) polymerase and protein kinase C . The exposure to IHG enhanced the secretion of IL-6 and tumor necrosis

factor α (TNF-α), the inflammatory cytokines, by activated monocytes; this effect was partly attributable to the inherent

osmotic stress . The expression and secretion of interleukin 18 (IL-18) in mouse peritoneal macrophages were

increased to a greater extent under the influence of IHG than CHG; this effect was mediated by the c-Jun N-terminal

kinase (JNK) signaling pathway . In rat podocytes, acute glucose fluctuations induced the expression of TNF-α and

interleukin 1 beta (IL-1β) to a greater extent than CHG . In adipocytes, IHG induced a greater increase in the expression

and secretion of IL-18 and monocyte chemoattractant protein 1 (MCP-1) than CHG . An inflammatory response to

fluctuating glucose has also been demonstrated in vivo. In rats, blood glucose fluctuations induced by intermittent glucose

infusions increased the expression of IL-6, TNF-α and ICAM-1 in vascular endothelial cells .

Hypoglycemia may act as an additional trigger of inflammation under oscillating conditions. In cultured macrophages, the

intermittent episodes of hypoglycemia and hyperglycemia (3–15 mmol/L) promoted M1 polarization and an inflammatory

response, estimated by the secretion of integrin alpha X, IL-1β, TNF-α, IL-6 and MCP-1, via a mechanism involving the

Toll-like receptor 4 (TLR4)–interferon regulatory factor 5 (IRF5) pathway . It was found that hypoglycemia promotes the

mobilization of specific leukocyte subsets into the bloodstream and induces proinflammatory changes in the leukocytes in

healthy individuals and patients with T1D . Specifically, the mobilization of cluster of differentiation 8-positive (CD8+) T

cells, cytotoxic natural killers and natural killer T cells, as well as non-classical monocytes, was observed . In patients

with T1D, an episode of two-hour hypoglycemia was followed by an increase in the levels of soluble ICAM-1 (sICAM-1)

and IL-6 . High blood glucose, replacing hypoglycemia, caused a further increase in the concentrations of sICAM-1 and

IL-6 . In T1D patients on pump therapy, the number of hypoglycemic episodes predicted plasma levels of ICAM-1,
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VCAM-1 and E-selectin . In subjects with T1D, acute hyperglycemia was followed by an elevation in urinary excretion of

a number of proinflammatory chemokines and cytokines . In non-diabetic subjects with reactive hypoglycemia, Eik W. et

al. observed a rise in the plasma levels of proinflammatory (IL-2, IL-5 and IL-17) and anti-inflammatory cytokines (IL-4, IL-

1RA, IL-2R, IL-13 and fibroblast growth factor basic) during hypoglycemia after the glucose load . An increase in

adrenaline mediates the inflammatory response associated with hypoglycemia in non-diabetic subjects and patients with

T1D .

Associations between inflammatory markers and GV have been observed in some clinical studies. A correlation between

high-sensitivity C-reactive protein (hsCRP) levels and CGM-derived SD was reported in adolescents with T1D . In

patients with T2D, hsCRP correlated with both short-term (MAGE index) and long-term GV (SD of HbA1c level over two

years) . In another study, acid α -glycoprotein, but not hsCRP, was related to GV indices reflecting hyperglycemic

fluctuations in subjects with T2D . An association between the coefficient of variation (CV), calculated from CGM data,

and blood IL-6 levels was shown in non-diabetic persons with metabolic syndrome .

2.3. Endothelial Dysfunction and Vascular Remodeling

Endothelial dysfunction is considered as an important player in the pathogenesis of diabetic vascular complications.

Hyperglycemia impairs the vascular endothelium function through the polyol and hexosamine pathways, protein kinase C

(PKC) activation and generation of AGEs, all of which lead to ROS overproduction, the dysregulation of growth factors

and cytokines and epigenetic changes . A growing body of evidence indicates a deleterious effect of supraphysiological

glucose fluctuations on endothelial function. When compared to CHG, IHG produced a stronger impairing effect on NO

synthesis in cultured HUVECs . Increased GV, even in the absence of high glucose levels, can suppress the endothelial

defense against hyperglycemia-induced metabolic disorders. Modeling short-term fluctuations similar to those in diabetic

patients changed the synthesis of a number of key enzymes in cultured human endothelial cells. Specifically, a decrease

in the expression of superoxide dismutase 2, heme oxygenase 1, glyoxalase and transketolase was observed . It was

demonstrated that IHG can promote vascular endothelial senescence to a greater extent than CHG, which is partially

dependent on oxidative stress .

Horvath et al. compared the effect of stable and intermittent hyperglycemia on endothelial function in rats with

streptozotocin-induced diabetes. The endothelium-dependent dilation was significantly impaired in rats that were

periodically injected with insulin compared with animals that did not receive treatment, despite the lower mean blood

glucose levels in the insulin-treated group . In patients with T1D, glucose fluctuations in the range of 5–15 mmol/L

induced a more severe impairment of endothelium-dependent arterial dilation compared to that induced by stable

hyperglycemia (10 and 15 mmol/L). The effect of intermittent hyperglycemia on endothelial function has been associated

with oxidative stress . In non-complicated T2D subjects receiving a diet and/or metformin, mean postprandial glucose

excursions correlated negatively with flow-mediated arterial dilation . Similarly, enhanced GV was related to flow-

mediated dilation in patients with T2D and coronary artery disease . In children with T1D, flow-mediated dilation was

related to hypoglycemia, but not MAGE or other GV metrics . It was found that endothelial microparticles, a novel

surrogate marker of endothelial injury and dysfunction, are differentially produced in response to hypoglycemia in subjects

with and without T2D. Insulin-induced hypoglycemia provoked a more dramatic increase in the levels of CD31+ and

CD105+ endothelial microparticles in individuals with T2D compared to controls .

There are some data indicating endothelial dysfunction in individuals with impaired glucose tolerance, which can be

considered as an equivalent to enhanced GV in non-diabetic subjects. It was reported that plasma levels of von

Willebrand factor, and soluble E-selectin, two widely used markers of endothelial damage, are elevated in patients with

impaired glucose tolerance . In the population-based Maastricht Study, which enrolled 2758 participants, the glucose

peak during a glucose tolerance test was independently associated with aortic stiffness and carotid remodeling, as well as

with microvascular function, estimated by retinal arteriolar dilation and heat-induced skin hyperemia . In subjects with

T2D and unstable angina, the SD of blood glucose was an independent predictor for coronary artery calcification .

2.4. Platelet Activation and Hypercoagulability

The interactions between activated vascular cells and vulnerable atheromatous plaques are considered as a cornerstone

in atherothrombotic burden in diabetes . Some data indicate that enhanced GV could be related to platelet reactivity.

Specifically, in patients with T2D, postprandial hyperglycemia was associated with platelet activation, estimated by the

urinary excretion of 11-dehydro-thromboxane B2. The excretion rate was reduced by the treatment with acarbose,

following earlier decreases in postprandial glucose and MAGE . In subjects with well-controlled T2D via clopidogrel

therapy, MAGE and CV provided independent and additional diagnostic significance in identifying patients with high
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platelet reactivity . At the same time, no impact of acute glucose load (75 g) on platelet aggregation was observed in

patients with T2D or acute coronary syndrome .

While the effect of hyperglycemic fluctuations on platelets warrants further research, the role of hypoglycemia in platelet

activation and hypercoagulability is well established. In a study with hyperinsulinemic-hypoglycemic and euglycemic

clamps, hypoglycemia mobilized monocytes, increased platelet reactivity and promoted the interaction between platelets

and proinflammatory monocytes in healthy subjects . In the study of Ceriello et al., hypoglycemia increased plasma

levels of prothrombin fragment 1 + 2, thrombin-antithrombin III complexes and plasminogen activator inhibitor-1 (PAI-1) in

both healthy subjects and people with diabetes. The transition from hypoglycemia to normoglycemia was accompanied by

a significant improvement in coagulation parameters. On the contrary, hyperglycemia following hypoglycemia worsened

coagulation markers; the effect persisted even after an additional 6 h of normoglycemia .

2.5. Impaired Angiogenesis

An angiogenic paradox has been described in diabetes, which refers to the excessive angiogenesis in retinopathy and

nephropathy and suppression of blood vessel growth in limb and myocardial ischemia . It was found that, according to

this pattern, GV causes a bidirectional effect on angiogenesis. Acute glucose fluctuations (in the range of 5–25 mmol/L)

impaired the proliferation of HUVECs and angiogenesis in vitro and delayed wound healing in mice. The effect of IHG on

angiogenesis was more prominent than that of CHG . In agreement with these data, the modeling of increased GV in

mice impaired ischemia-induced angiogenesis in the hind limb by the suppression of vascular endothelial growth factor

(VEGF) production . At the same time, both CHG and IHG up-regulated VEGF in human retinal endothelial cells. The

IHG effect on cell proliferation and VEGF expression was mediated via mitochondrial ROS overproduction .

The dysfunction and count abnormalities of endothelial progenitor cells (EPCs), which are derived from the bone marrow

and involved in endothelial repair and new blood vessel formation, have been observed in diabetes . The direct

influence of IHG on EPCs has not been tested. Nonetheless, in patients with the T1D, the J-index, a GV parameter,

correlated negatively with CD34   EPC count . In turn, reducing GV with continuous subcutaneous insulin infusion

increased the EPC levels in subjects with T1D . In patients with T1D, the levels of hematopoietic stem/progenitor cells

(CD34  CD133 , CD34  CD45 ) were reduced and correlated positively with CV and time in hypoglycemia estimated by

flash glucose monitoring; the relationships were mitigated in long-lasting diabetes .

2.6. Renal Fibrosis

More than half a century ago, it was shown that supraphysiological glucose fluctuations can induce renal lesions

characteristic of diabetic nephropathy in rats . Many years later, the biochemical aspects of this effect were identified. It

was demonstrated that IHG (5–25 mmol/L) increases the production of collagen types I, III and IV in cultured mesangial

cells, and type III collagen synthesis increases to a greater extent when stimulated by oscillatory glucose rather than

CHG . In proximal tubular cells, IHG was found to be a more potent stimulating factor for the secretion of transforming

growth factor beta (TGF-β1), one of the most powerful fibrogenic mediators. In both cortical fibroblasts and proximal

tubular cells, IHG increases collagen synthesis . In cortical fibroblasts, fluctuating glucose enhances the production of

collagen IV and fibronectin. In addition, it increases the synthesis of tissue inhibitor of matrix metalloproteinase, inhibiting

matrix degradation. A short-term (90 min) increase in the glucose concentration stimulates TGF-β1 secretion by

fibroblasts . Thus, excessive glucose fluctuations can cause a more pronounced fibrogenic effect in a diabetic kidney

than persistent hyperglycemia. This fact is consistent with data indicating that high GV is associated with a decline in renal

function in diabetic rats  and patients with T2D .

2.7. Beta Cell Dysfunction

An inverse relationship between beta cell function and GV was observed in subjects with both T1D  and T2D .

Obviously, a compromised insulin response causes an increase in GV. At the same time, excessive GV can contribute to

the progressive deterioration of beta cell function. It was found that IHG induces a more significant impairment of the

glucose-stimulated insulin release response in rat islets and insulinoma cells (INS-1) than CHG, and this effect is related

to the stress of the endoplasmic reticulum and oxidative stress . When incubated under IHG conditions, INS-1

demonstrated a reduction in the response to glucagon-like peptide 1 . In these cells, IHG generated a more toxic effect

than CHG, including both apoptosis-inducing and antiproliferative activity . A deteriorating effect of IHG on apoptosis

and insulin release could be diminished by antioxidant pretreatment . In rats, either continuous or intermittent

hyperglycemia induced beta cell dysfunction and insulin resistance . Chronic oscillating glucose caused beta cell

dedifferentiation and failure in rats . The long-term effect of enhanced GV on beta cell function and plasticity needs

further research.
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Thus, the role of supraphysiological glucose fluctuations in the pathogenesis of vascular complications of diabetes is

realized through non-enzymatic glycation, oxidative stress, chronic low-grade inflammation, endothelial dysfunction,

vascular remodeling, angiogenesis disorders, activation of blood cells (platelets and leukocytes), hypercoagulability and

renal fibrosis (Figure 1). Some of these abnormalities are exacerbated by hypoglycemia, which is at an increased risk in

patients with high GV. Finally, oscillating hyperglycemia contributes to beta cell dysfunction, which further increases GV

and completes the vicious circle.

Figure 1.  GV-related biochemical and pathophysiological abnormalities in the pathogenesis of diabetes complications.

GV, glucose variability. The dotted lines in the GV block illustrate the excessive glucose oscillations. The green dashed

arrow shows supposed relationships between pathophysiological processes, induced by high GV and hypoglycemia, and

diabetic complications.

3. Cell Biology under High-GV Conditions

3.1. Altered Mitochondrial Homeostasis

Abnormalities of mitochondrial biogenesis, fission, fusion and mitophagy are reported to be involved in impaired oxidation,

reduced mitochondrial contents and excessive ROS production in diabetes . Specifically, the signs of altered

mitochondrial homeostasis and mitochondrial dysfunction were observed in the diabetic kidney , retina , heart  and

pancreatic beta cells .

Mitochondrial dysfunction could be considered a cornerstone in the development of GV-related oxidative stress. In

cultured HUVECs, oscillating glucose induced ROS generation and an altered mitochondrial membrane potential .

Similar changes were recorded in INS-1 cells under IHG conditions . In astroglial cells, up and down glucose

fluctuations induced mitochondrial dysfunction, which was accompanied by oxidative/nitrosative stress, impaired

glutamate metabolism and increased proinflammatory cytokine secretion . In hepatic L02 cells incubated with palmitic

acid, IHG induced more pronounced oxidative stress and mitochondrial dysfunction compared to CHG. Treatment with

cyclosporin A, a mitochondrial permeability transition inhibitor, prevented mitochondrial dysfunction, oxidative stress and

hepatocyte apoptosis in a model of high GV in high-fat diet C57BL/6J mice . In a model of ischemia/reperfusion injury

in the diabetic heart, glucose fluctuations increased the levels of miRNA-200c and miRNA-141. These changes were

associated with decreased activities of mitochondrial superoxide dismutase and catalase and enhanced ROS

production .

At present, little is known about the effect of GV on mitochondrial respiration and bioenergetics. It was demonstrated that

in human islet cells, exposure to CHG for 4 days induced an increase in mitochondrial respiration and the

cytosolicATP/ADP ratio . Similarly, glucose fluctuations intensified aerobic glycolysis in cultured mouse mesangial cells.

Oscillating glucose lowered the activity of aconitase, an enzyme of the Krebs cycle, and suppressed mitochondrial
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respiratory chain complex I . At the same time, a reduction in the mitochondrial complex I activity was observed in the

rat brain in a model of T1D . Therefore, this effect may be induced by hyperglycemia per se, rather than increased GV.

The role of glucose fluctuations in altering the mitochondrial respiratory chain requires further research.

3.2. Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) is considered to be important for nutrient sensing in many cell types, including

hepatocytes, adipocytes, muscle cells, neurons and beta cells. An imbalance between the demand and capacity of the ER

for protein folding is referred to as ER stress. Evidence is accumulating on the role of ER stress in the development of

diabetes  and its complications, including retinopathy, nephropathy and neuropathy .

In diabetes, excessive glucose exposure alters ER homeostasis, and high GV may be an additional trigger for ER stress.

It was demonstrated that in human retinal pericytes, IHG, but not CHG, increases the expression of activating

transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), key mediators of ER stress-associated

inflammation and cell death . In cultured rat pericytes, strong unfolded protein response activation leading to apoptosis

was observed when glucose was reduced from high to low levels, or the zero level . High GV turned out to be a more

powerful inductor of ER stress-related apoptosis compared with CHG in cultured rat vascular smooth muscle cells . The

modeling of recurrent short-term hypoglycemia and hyperglycemia induced apoptosis and oxidative stress via the

response to ER stress in mouse Schwann cells . In subjects with metabolic syndrome, the glucose load in the oral

glucose tolerance test enhanced the expression of spliced XBP-1, Grp78 and calreticulin, the ER stress markers, in

mononuclear cells. These changes were accompanied by a significant increase in the expression of inflammatory

cytokines interleukin 1 α/β, IL-6 and interleukin 8 . These data clearly indicate the role of glucose fluctuations in the

generation of ER stress in diabetes.

3.3. Autophagy

Autophagy is a process of self-degradation and reconstruction of damaged organelles and proteins via lysosomes. This

cellular recycling is vital for highly differentiated cells, including neurons, podocytes, cardiomyocytes, retinal cells and beta

cells . The impaired autophagy plays a role in the development of both T1D and T2D , and diabetic

kidney disease .

Glucose seems to be a prominent regulator of autophagy . Glucose levels indirectly affect autophagy in many

cell types through the regulation of glucagon and insulin secretion. Glucagon is known as a potent stimulator of

autophagy, whereas insulin suppresses it by stimulating mammalian target of rapamycin complex 1 (mTORC1) . In

cells, glucose withdrawal causes ATP depletion, which stimulates AMP-activated protein kinase (AMPK) and the AMPK–S-

phase kinase-associated protein 2 (SKP2)–coactivator-associated arginine methyltransferase 1 (CARM1) signaling

pathway, an upstream activator of autophagy . On the other hand, impaired autophagy can influence insulin

sensitivity through the changes in glucose transporter type 4 (GLUT4) degradation and recovery . Moreover, impaired

glycophagy, a selective autophagy in the liver, heart and muscles, could contribute to hyperglycemia .

It was shown that IHG causes enhancement of the autophagic flux in cultured HUVECs  and rat podocytes . Similarly,

in human retinal pigmented epithelial cells, IHG significantly increased the generation of autophagosomes, decreased the

expression of an autophagy receptor, p62, a marker of suppressed autophagy, and induced the conversion of an

autophagosome-associated protein microtubule-associated protein 1A/1B light chain 3B (LC3) I to its active form LC3

II . The role of GV in altering autophagy in vivo requires further research.

3.4. Apoptosis

The metabolic changes and dysfunction of organelles under high-GV conditions ultimately reduce the survival of a number

of cells. Some in vitro studies have demonstrated the pro-apoptotic effect of IHG in endothelial cells , mesangial

cells , cardiomyocytes , neurons , glial cells , Schwann cells  and beta cells . The activation

of GV-related apoptosis was attributed to mitochondrial dysfunction, ER stress and autophagy .

Glucose fluctuations have been validated to be more harmful than CHG in exacerbating the apoptosis of beta cells. In

cultured INS-1, IHG induced apoptosis by the significant up-regulation of pro-apoptotic proteins caspase-3 and 9, and by

down-regulation of the antiapoptotic protein Bcl-2 .

Wu N. et al. performed in vivo experiments demonstrating the effect of acute glucose fluctuations on the levels of

apoptosis regulators in aorta endothelial cells in rats. Animals with glucose fluctuations induced by intermittent glucose

infusions demonstrated reduced Bcl-2 and pro-caspase-3 levels, and enhanced Bax mitochondrial translocation and
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caspase-3 p17 protein levels, in comparison with those with persistent hyperglycemia . In the high-GV model

established by insulin and glucose injections in rats with diet- and streptozotocin-induced diabetes, the predominance of

pro-apoptotic regulators with an increased Bax/Bcl-2 ratio was found . Interestingly, sodium-glucose cotransporter 1

(SGLT1) knockdown down-regulated Bax expression, up-regulated Bcl-2 expression and reduced caspase-3 activation

induced by high GV in cultured rat H9c2 cardiomyocytes .

The activation of apoptosis is among the most important mechanisms of neurodegeneration in diabetes. It was shown that

IHG induces the oxidative stress-related apoptosis of Schwann cells by both caspase-dependent and caspase-

independent pathways. The cytotoxic effect of IHG was significantly more potent than that of CHG . The central

nervous system, being highly dependent on the glucose supply, becomes especially vulnerable in conditions of high GV.

In diabetic rats, intermittent hyperglycemia turned out to be a more critical factor, promoting neuron apoptosis and

inducing inflammation in the hippocampus, than CHG . At the same time, acute glucose fluctuations affect microglial

activity. It was demonstrated that a sharp increase in the glucose level (from 5.5 to 25 mmol/L) promotes cell growth,

induces oxidative and inflammatory stress and activates microglial cells. The reverse shift from hyperglycemia to

normoglycemia trapped microglia in a state of metabolic stress, which triggered apoptosis and autophagy .

3.5. Cell Proliferation

Enhanced GV can modulate the proliferative response. It was found that either CHG or IHG induces the proliferation of

vascular smooth muscle cells (VSMCs) in vitro . Fluctuating glucose increased the proliferation and migration of

VSMCs in an OLETF rat T2D model . Earlier research demonstrated that IHG enhances cell proliferation and VEGF

expression in retinal endothelial cells. These changes were associated with ROS overproduction at the mitochondrial

transport chain .

At the same time, GV can suppress the proliferation of endothelial cells, podocytes and beta cells. Both IHG and CHG

decreased the proliferation of cultured HUVECs . It was revealed in INS-1 culture that IHG decreases beta cell viability

and induces G0/G1 cell cycle arrest. INS-1 demonstrated a decreased expression of mitogen factors cyclin D1 and S-

phase kinase-associated protein 2, whereas the expression of cyclin-dependent kinase inhibitors 1A and 1B, two

antiproliferative factors, was increased .

Thus, high GV can promote many events in the targeted cells, including mitochondrial dysfunction, ER stress, changes in

the intensity of autophagic flux, apoptosis activation and abnormalities in the proliferative response (Figure 2).

Figure 2.  Cellular events promoting the high GV effects on target organs in diabetes. GV, glucose variability; ER,

endoplasmic reticulum. The dotted lines in the GV block illustrate the high glucose excursions. The thick arrows show the

cellular events induced by high GV, the thin arrows demonstrate the relationships between these events.
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4. Molecular Mechanisms of the High GV Effects in the Target Cells

4.1. Gene Expression

Although there are scarce data on changes in gene expression induced by excessive GV, there is a large pool of studies

on gene profiling related to hyperglycemia. Using high-throughput technologies, differential gene expression was

measured under hyperglycemic conditions in beta cells , pancreatic cells , hepatic cells , endothelial

cells , myotubes , cardiomyocytes , vascular smooth muscle cells , adipose progenitor cells , kidney

cells , renal tubular epithelial cells , retina , immune cells  and others. The genes that demonstrate an

altered expression in hyperglycemia are mostly involved in glucose metabolism, inflammation and immune processes,

endothelial dysfunction, angiogenesis, oxidative stress, mitochondrial dysfunction, hypoxia and cell death.

Transcriptomic studies have revealed the effect of hyperglycemia on the expression profile of a large number of genes.

More than 80 genes involved in hepatic lipid metabolism were differentially expressed in hyperglycemic rats with a model

of T1D . With the use of high-throughput RNA sequencing, it was demonstrated that hyperglycemia has a strong effect

on HepG2 cells, with 4259 genes showing a differential expression. These genes participate in cholesterol metabolism,

DNA replication, complement and clotting cascades . Maier et al. hypothesized that hyperglycemia amplified the

expression of genes induced by thrombospondin-1 in vascular smooth muscle cells. Microarray analysis revealed that

hyperglycemia altered the expression of 30 genes, while hyperglycemia combined with thrombospondin-1 altered the

expression of 2822 genes. These findings suggest that hyperglycemia may significantly enhance the thrombospondin-1

effect on atherosclerosis progression .

Fewer studies have focused on gene expression in hypoglycemia. In sirtuin 6-deficient mice that developed a lethal early-

life hypoglycemia, the microarray revealed nearly 200 genes with an altered expression. These genes were involved in

glucose metabolism, nutrient stress responses, glycolysis and mitochondrial function . A gene response to insulin-

induced hypoglycemia was estimated in the mouse retina by an array. Genes whose expression was modified by low

glucose were enriched in lysosomal function, glutathione metabolism and apoptotic pathways and potentially involved in

retinal cell death . A set of genes specifically activated by recurrent hypoglycemia was revealed in a study of whole

genome expression profiling after recurrent hypoglycemia and acute hypoglycemia in the adrenal medulla of normal

Sprague Dawley rats. These genes were related to the activation of the unfolded protein response, impaired epinephrine

secretion, increased neuropeptide signaling, altered ion homeostasis and down-regulation of genes involved in Ca -

dependent exocytosis of secretory vesicles .

It was found that even short-term enhanced GV could adversely affect gene expression in the arterial wall. In the study of

Zervou et al., pIns-c-MycER(TaM) transgenic mice were successively exposed to hypo- and hyperglycemia, after which

they recovered for up to 3 months. The expression of 95 genes was significantly affected by hypoglycemia, and 769

genes were affected by hyperglycemia. These genes were involved in atherogenic processes, including inflammation and

arterial calcification. Although the expression of many genes returned to its initial level after 3 months, in one in four

genes, recovery was not observed . These data indicate that non-physiological glucose fluctuations may have a

prolonged effect on gene expression. Further research in this direction is urgently needed.

Recently, we performed the bioinformatic reconstruction and analysis of the gene network of GV. The network consisted of

37 genes/proteins associated with both hyperglycemia and hypoglycemia. GV-related molecules were involved in glucose

metabolism, intracellular signaling, cell proliferation and other biochemical/physiological processes; they were identified in

the central positions of the gene networks of diabetic vascular complications .

4.2. Epigenetic Modifications

Glucose can induce a number of epigenetic modifications that significantly alter the functioning and vital activity of various

cell types. In a pivotal work in this field, El-Osta et al. demonstrated that transient elevation in the glucose level causes

long-lasting epigenetic changes in the NF-κB subunit p65 promoter in aortic endothelial cells in vitro and in non-diabetic

mice. These changes were associated with an increased p65 gene expression that persisted for at least 6 days of

subsequent normal glucose levels, and NF-κB-induced increases in MCP-1 and VCAM-1 expression . These data

clearly indicate that epigenetic modifications may be an important mechanism in GV-induced vascular inflammation and

dysfunction.

Costantino S. et al. found DNA hypomethylation and histone 3 acetylation on the p66   promoter of the SHC-

transforming protein 1 gene  (SHC1), resulting in gene overexpression, in patients with T2D. CGM-derived MAGE and

postprandial glucose, but not HbA1c, were associated with the epigenetic profile. The intensification of glycemic control
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over 6 months did not eliminate the changes . The mechanism of p66 -reduced CpG methylation could be related to

methyltransferase DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3b), an enzyme playing an important role in the

maintenance of DNA methylation. Sirtuin 1 (SIRT1) could be involved in H3 deacetylation of p66 . In patients

with T2D, the expression of DNMT3b and SIRT1 was inhibited compared to the control .

Recently, the effect of glucose on whole genome DNA methylation was studied in human retinal endothelial cells and

HUVECs . The lines were exposed to basal (5 mmol/L) or high (25 mmol/L) glucose-containing media for variable

lengths of time. When comparing the endothelial cells, incubated for 2 days versus 7 days, 17,354 and 128 differentially

methylated CpGs in 88 and 8 differentially methylated regions were identified for HUVECs and retinal endothelial cells,

respectively. Pathway enrichment analyses highlighted the involvement of regulators of embryonic development (i.e., HOX

genes), TGF-β signaling, bone morphogenetic protein (BMP) signaling, runt-related transcription factor 2 (RUNX2)

transcriptional regulation and the complement cascade.

It was demonstrated that fluctuating glucose significantly decreased the phosphorylation of the endothelial nitric oxide

synthase (eNOS) at Ser-1177 and increased the phosphorylation of JNK and p38, leading to the damage of vascular

endothelial cells . IHG lowered the phosphorylation levels of protein kinase B (v-akt murine thymoma viral oncogene

homologue, Akt), AMPK and glycogen synthase kinase 3 beta (GSK3β), influencing the function of endothelial cells and

beta cells .

Small single-stranded non-coding RNAs (miRNAs) have been discussed as another method of epigenetic regulation.

Aberrant miRNA expression is implicated in the pathogenesis of numerous diseases, including diabetes and its

complications . In HUVECs cultured under IHG conditions, 13 miRNAs were differentially expressed. miR-1273g-3p

partially mediated the effect of IHG on the autophagy, migration and proliferation of HUVECs . Another example of GV-

induced miRNA-dependent changes is a phenotype polarization switch of microglia. In microglial cells, glucose

fluctuations induce polarization transitions from M2 to M1. The M1 phenotype has proinflammatory effects and can be

responsible for neuronal damage; in contrast, M2-polarized microglia can inhibit the inflammatory response and promote

nerve repair. It was found that miR-124, miR-145, miR-146a and miR-711 are implicated in the M2 phenotype polarization

of microglia, while miR-689 and miR-155 are involved in M1 polarization. In macrophages, miR-124 and miR-146a

induced M2 phenotype polarization . In the glucose fluctuation cell model, miR-129-3p suppressed glucose-mediated

hippocampal neuronal damage. Specifically, miR-129-3p overexpression produced a dramatic reduction in calcium

overload, ROS generation and an increase in antioxidant activity . In cultured HUVECs, miR-1273g-3p mediates the

effect of GV on autophagy and endothelial dysfunction . In human endothelial cells, miR-185 and miR-21 were induced

by oscillating glucose, leading to an impaired antioxidant response by the dysregulation of glutathione peroxidase 1 and

superoxide dismutase 2 . It was demonstrated that IHG induces the up-regulation of HIF-1α and miR-210 in

glomerular mesangial cells, which might play a pivotal role in the series of molecular events triggered by GV .

Thus, the effects of glucose fluctuations on gene expression can be exacerbated and prolonged by epigenetic

modifications. At present, glucose-induced epigenetic modifications and related changes in the activity of signaling

pathways are considered as an important mechanism of “metabolic memory” or “metabolic karma” in diabetes .

4.3. Signaling Pathways

The cellular and molecular effects of GV are realized through a variety of signaling pathways. The activation of PKC is

among the initial molecular events under high-glucose conditions. PKC is a driver of numerous signal transduction

cascades that regulate cell metabolism and plasticity. Among the downstream targets of PKC is NADPH oxidase that

activates superoxide production and thus exacerbates oxidative damage .

A number of molecular effects of oxidative stress are mediated via NF-κB-dependent signaling pathways. NF-κB is a

universal transcription factor that controls the expression of genes for the immune response, apoptosis and cell cycle. In

diabetes, ROS, AGEs and angiotensin II induce an inflammatory response, endothelial dysfunction and renal fibrosis via

the activation of NF-κB. Accordingly, NF-κB is considered as a potential target in diabetic vascular complications . As it

has previously been mentioned, transient high glucose induces prolonged NF-κB activation in vascular endothelial

cells . The IHG-stimulated activation of NF-κB in cultured HUVECs down-regulated the expression of Bcl-2, an

antiapoptotic protein . In vascular cells, glucose fluctuations promote the dysfunction of large-conductance, calcium-

activated potassium channels via the overproduction of ROS and activation of PKCα/NF-κB/MuRF1 signaling . ROS-

mediated NF-κB activation under high-GV conditions up-regulates the receptor for AGEs in podocytes .

The dysregulation of the phosphoinositide-3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and AMPK

pathways is considered to be involved in altered glucose metabolism and related biochemical abnormalities in diabetes
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and high GV . The PI3K/Akt signaling pathway, which is essential for cell survival and growth, plays an important

role in preventing endothelial cell injury induced by high glucose. It was shown that IHG induces a more severe decrease

in the phosphorylation of Akt and GSK-3β than CHG in cultured HUVECs; this effect is associated with reduced cell

viability . In agreement with these data, it was demonstrated that IHG suppresses NO synthesis in cultured HUVECs to

a greater extent than CHG via the inhibition of PI3K/Akt and eNOS activity . The pro-apoptotic effect of IHG in cultured

neuronal cells (PC12 cell line) also involves the PI3K/Akt pathway . The oxidative and inflammatory stress and

microglial activation induced by acute glucose fluctuation in the mouse microglial BV-2 cell line were mediated through the

PI3K/Akt, NF-κB and MAPK cascades .

MAPK families play an important role in cell proliferation, differentiation and apoptosis. The MAPK families include

extracellular signal-regulated kinase (ERK), JNK and p38 MAPK . Some data point to the role of these signaling

molecules in the realization of the effects of GV in the target organs. It was demonstrated that MAPK (ERK1/2), as well as

the PI3K and NF-κB signaling pathways, is involved in the proliferative effect of IHG in VSMCs .

In vascular endothelial cells, IHG increased the phosphorylation of JNK . The JNK pathway plays a central role in the

cell response to hyperglycemia, oxidative stress, proinflammatory cytokines and other stress-inducing stimuli. The JNK-

dependent effects include the regulation of gene expression, cell death and cellular senescence . In patients with

diabetes, JNK contributes to vascular insulin resistance and endothelial dysfunction . It was demonstrated both in vivo

and in vitro that the PKC/JNK pathway mediates the pro-apoptotic effect of glucose fluctuations in endothelial cells

.

In diabetes, high glucose activates p38 MAPK signaling ; high GV may be an additional trigger of the event . It was

shown that GV generates the more severe up-regulation of type I collagen synthesis and fibrosis of aorta via the activation

of the ROS/p38 MAPK/Runx2 pathway in Sprague Dawley rats with streptozotocin-induced diabetes . In astroglial

cells, glucose fluctuations induce toxicity with oxidative and inflammatory stress by activating p38 MAPK and NF-κB .

The interactions among the MAPK, NF-κB and TGF-β/Smad signaling pathways are essential for fibrogenesis. It is well

known that TGF-β’s biological effects were realized by activating downstream mediators Smad2 and Smad3, which is

negatively regulated by an inhibitory Smad7 . The activation of the MAPK/ERK and TGF-β/Smad signaling pathways is

considered as a cornerstone in the pathogenesis of renal fibrosis in diabetic kidney disease . As it was demonstrated in

mice with alloxan diabetes, excessive blood glucose fluctuations cause the more pronounced activation of the TGF-

β/Smad2 and ERK/MAPK pathways in the kidney compared to stable hyperglycemia. These changes in signal

transduction were accompanied by the marked increase in type I collagen synthesis and suppression of collagen

degradation . The inhibition of skin collagen synthesis and increase in collagen degradation under high GV is also

attributed to both the MAPK and Smad signaling pathways .

AMPK is a master regulator of metabolism which acts as an intracellular sensor of energy availability . The glucose

shortage promotes AMPK activity; meanwhile, overnutrition inhibits it. In many cell types, AMPK stimulates glucose uptake

via trafficking glucose transporters GLUT1 and GLUT4; acutely stimulates glycolysis; and, in the longer term, tends to

promote oxidative metabolism. The activation of autophagic flux via ULK1 is considered as an important AMPK-dependent

mechanism of cellular metabolic adaptation . Recently, it has been demonstrated that high glucose represses

AMPK signaling via MG53 E3 ubiquitin ligase-mediated AMPKα degradation and deactivation . Currently, little is known

about the effect of GV, which is characterized by intermittent glucose excess and deprivation, on AMPK activity in

diabetes. It was found that the activation of AMPK by globular adiponectin can inhibit, at least partially, the IHG-induced

apoptosis of HUVECs .

mTORC1 is another protein kinase that is regulated by glucose availability; however, unlike AMPK, mTORC1 is activated

in high-glucose conditions. When it is activated, mTORC1 shifts the metabolic paradigm towards anabolic processes,

promotes cell growth and suppresses autophagic flux . It was demonstrated that the inhibition of AMPK by high

glucose inversely correlates with the activation of the mechanistic target of rapamycin (mTOR) pathway in beta cells . It

is currently known that upon glucose depletion, mTORC1 is inhibited by AMPK-dependent and AMPK-independent

mechanisms . Recent data indicate that aldolase could be a sensor for both low and high glucose levels, linking to the

AMPK and mTORC1 pathways . In cancer, diabetes and other diseases characterized by abnormal glucose

metabolism, mTORC1 is deregulated . In diabetes, hyperactivated mTORC1 is involved in the pathogenesis of

cardiomyopathy , diabetic retinopathy  and diabetic kidney disease . Unfortunately, the role of mTORC1

signaling in GV-related vascular effects has not been studied to date.
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Thus, the deteriorative effects of high GV in the target cells are realized through the PI3K/Akt, NF-κB, MAPK (ERK), JNK,

TGF-β/Smad and other signaling pathways (Table 1). Elucidating the pathophysiological role of AMPK and mTORC1

under fluctuating glucose conditions is a promising challenge for future research.

Table 1. The principal signaling pathways mediating the pathophysiological effects of high GV in diabetic complications.

Effect Pathways Refs.

Oxidative stress in endothelial and neural cells PKC/NF-κB, PI3K/Akt, p38MAPK

Endothelial dysfunction and apoptosis PI3K/Akt, NF-κB, PKC/JNK

Proliferation of VSMCs MAPK (ERK1/2), PI3K/Akt, NF-κB

Vascular low-grade inflammation NF-κB and p38 MAPK

Renal fibrosis MAPK (ERK1/2) and TGF- β/Smad

Aortic fibrosis TGF-β/Smad, NF-κB, p38 MAPK and Runx2

Neuronal apoptosis and neurodegeneration PI3K/Akt, NF-κB

5. Conclusions

Current data indicate that the deteriorating effect of high GV on the targeted cells may be realized through a number of

molecular abnormalities. Fluctuations in glucose levels alter the expression profile of a large number of genes and

modulate the activity of intracellular signaling pathways. Epigenetic modifications prolong the effects of GV. These

changes cause the dysfunction of cell organelles and disrupt the life cycle and synthetic function of endothelial cells and

other cells of the vascular wall, the nervous system, the kidneys, the liver and other organs. These changes are

manifested by biochemical and pathophysiological abnormalities underlying diabetic complications. The multiple

deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes. Treatment

modalities focused on reducing GV may have an advantage in diabetes management. Further study of the cellular and

molecular effects of high GV is needed to develop targeted methods for the treatment and prevention of diabetic vascular

and neural complications.

Abbreviations

AGEs Advanced glycation end-products

AMPK AMP-activated protein kinase

ATF4 Activating transcription factor 4

BMP Bone morphogenetic protein

CARM1 Coactivator-associated arginine methyltransferase 1

CGM Continuous glucose monitoring

CHOP C/EBP homologous protein

CHG Constantly high glucose

DNMT3b DNA (cytosine-5-)-methyltransferase 3 beta

eNOS Endothelial nitric oxide synthase

EPCs Endothelial progenitor cells

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

GLUT4 Glucose transporter type 4

GSK3β Glycogen synthase kinase 3 beta

GV Glucose variability

HbA1c Glycated hemoglobin A1c
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hsCRP High-sensitivity C-reactive protein

HMGB1 High-mobility group box 1

HUVECs Human umbilical vein endothelial cells

ICAM-1 Intercellular adhesion molecules 1

IHG Intermittently high glucose

INS-1 Insulinoma cells

IRF5 Interferon regulatory factor 5

JNK c-Jun N-terminal kinase

LAMP Lysosomal-associated membrane protein

LC3 Microtubule-associated proteins 1A/1B light chain 3B

MAGE Mean amplitude of glucose excursions

MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemoattractant protein 1

miRNAs small single-stranded non-coding RNAs

mTOR Mechanistic target of rapamycin

mTORC1 Mammalian target of rapamycin complex 1

NADPH Nicotinamide adenine dinucleotide phosphate

NF-κB Nuclear factor kB

PAI-1 Plasminogen activator inhibitor-1

PI3K Phosphoinositide-3-kinase

PKC Protein kinase C

ROS Reactive oxygen species

RUNX2 Runt-related transcription factor 2

SHC1 SHC-transforming protein 1

SKP2 S-phase kinase-associated protein 2

SD Standard deviation

sICAM-1 Soluble intercellular adhesion molecules 1

SIRT1 Sirtuin 1

SGLT1 Sodium-glucose cotransporter 1

SOD2 Superoxide dismutase 2

T1D Type 1 diabetes

T2D Type 2 diabetes

TGF-β1 Transforming growth factor beta 1

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor α

TSP-1 Thrombospondin-1

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling

VCAM-1 Vascular cell adhesion molecules 1

VEGF Vascular endothelial growth factor

VSMCs Vascular smooth muscle cells
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