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Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two
decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new
bone formation within the inner space, which further guarantee rapid osteointegration and bone—implant stability in
the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and
mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it
to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly,
the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent
biological and mechanical properties.

porous tantalum clinical application additive manufacturing surface modification

bone tissue engineering

| 1. Introduction

Named after the Greek mythological figure Tantalus W, tantalum or Ta is a rare, rigid and ductile metal element with
an extremely high melting point (3017 °C) [& and density (16.6 g/cm?3) B4l Ta has excellent biocompatibility and
corrosion resistance, has been used in pacemaker electrodes, suture wire, cranioplasty plates, radiopaque
markers, foil and mesh for nerve repair since the 1940s [, In addition, Ta has been used as single or composite
coating material to modify the biological and mechanical properties of pure titanium(Ti) EIE Tj alloy (Ti6Al4V) £,
polyetheretherketone (PEEK) 19, cobalt-chromium (CoCr) alloy 112 magnesium-based alloy 13, pure Fe [14]
and 316 L stainless steel [121. Recently, the advent of Ti-Ta alloy with different Ta element contents indicates a novel
means to fabricate implants for bone defect restoration with improved mechanical strength, and satisfactory elastic

modulus and biological properties, compared to pure Ti and Ti alloy [ZI[L68IL7],

Though lacking intrinsic antibacterial properties (18, Ta has a lower bacterial adhesion level and colonization
compared to titanium (Ti) and stainless steel due to the spontaneously formed oxide surface layer (Ta205) 1718l
The Ta205 layer also has been proven to facilitate the deposition of bone-like apatite coating in simulated body
fluid (SBF) 12, and further accelerate the adherence of osseous and soft tissues 29, Moreover, nanoparticles
released from Ta implants have been certified to stimulate the proliferation of osteoblasts via autophagy, and the
osteogenic process can further be enhanced by autophagy inducer 2. Although the osteogenic signaling
pathways of Ta have yet been fully explicated, several studies have focused on the TGF-p/Smad3 [22],
BMP2/Smad1 23, wnt/B-catenin 2224 |ntegrin a5B1/ERK1/2 22281 and MAPK/ERK pathways 24 that may be

https://encyclopedia.pub/entry/9980 1/38



Porous Tantalum | Encyclopedia.pub

involved in the osteogenic effects of Ta. It is also reported that Ta can enhance the osteogenesis of diabetic rabbits
by suppressing the activation of ROS-mediated P38 MAPK signaling pathway [28. Furthermore, Ta upregulates the
expression level of osteoprotegrin (OPG) and reduces that of RANKL, which means Ta also can inhibit the activity
of osteoclasts [23]. The relative molecular mechanism for the osteogenic effects of Ta has been illustrated in Figure
1.
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Figure 1. Schematic representation of the relative signaling pathway that may be involved in the osteogenic effect
of Ta.

Compared to its solid counterpart, currently commercialized porous Ta possesses modified physical properties
including high porosity (range from 75% to 85%), dodecahedral cell structure and pore sizes ranging from 400 to
600 pm. It has been reported that scaffolds with an average pore size of up to 400 um and porosity of up to 70%
can facilitate cell migration, proliferation, osteogenic differentiation, and blood vessel and bone tissue formation 22
[30I311(32] | this regard, the higher pore size and porosity of porous Ta can also contribute to bone and soft tissue
ingrowth due to its extensively three-dimensional inner space and high pore interconnectivity B2I34. Meanwhile, the
high porosity of porous Ta ensures desirable permeability for vascularization and nutrient flow, which can
guarantee rapid osteointegration at an early stage 3. Combined with the inherent high wettability and surface
energy, porous Ta can further facilitate the adhesion, differentiation and spread of stem cells 28], osteoblasts [E7I38]
and chondrocytes 39 as well as vascularized fibrous tissues 42 and tendon 4. Furthermore, bone ingrowth can

be found within the pores of porous Ta as early as 4 weeks after implantation B8 (Eigure 2). Many in vivo studies
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also have highlighted its early osteointegration and evidenced bone ingrowth within the inner pores with Haversian
remodeling in the long term [22I41142143] | vitro, after being cultured on the porous Ta, osteoblasts obtained from
old female patients (>60 years) showed better proliferation and osteogenesis than those cultured on Ti fiber mesh

[44] "indicating the potential efficacy of porous Ta for the treatment of patients suffering from osteoporosis.

Bone
implant

™ _—
implant

Figure 2. The microstructure of porous Ta presented as honeycomb structure (a), and cells that partially cover the
cavity with many calcium nodules (indicated with white arrow) can be detected (b). Reprinted from ref. [38],
Abundant bone ingrowth can be found in the pores of porous Ta implant (c). Reprinted with permission from 22!,

Copyright © 2021 by American Academy of Orthopaedic Surgeons.

As shown in Table 1, the mechanical properties of porous Ta can be modified to be more suitable for bone-tissue
regeneration, especially for load-bearing parts of the body, via various technology due to its elastic modulus and
compressive strength being much more comparable to either cortical or cancellous bones 22331, The satisfactory
elastic modulus of porous Ta is of great importance to proportionally distribute load stress to adjacent osseous
tissues, minimize stress shield effect, prevent bone resorption, and further preserve the adjacent bone stock 281, In
addition, the high friction coefficient of porous Ta also promises primary stability for the porous Ta-based implants

or prostheses 2. |t is worth noting that higher pore size and porosity are associated with fine biological
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performance, but the mechanical strength is the opposite 43, Therefore, attaining a balance between biological

and mechanical properties of porous Ta by adjusting a rational pore size/porosity ratio is a critical challenge for

future manufacturing and application.

Table 1. The mechanical properties of osseous tissues and porous Ta produced by different techniques.

Osseous Manufacturing Porosity P(_)re
Tissues Technique (%) Sl
(hm)
Cortical 3.5
bone
Trabecular 50-90
bone
CvD
(porous 400—
carbon 7585 600
scaffold)
CVvD
(porous SiC 70-85 145005
scaffold)
Foam 400—
impregnation 65-80 600
Powder 100-
metallurgy 400
55
LENS 45
27
SLM 80 500
75
SEBM 80
85

Strut Elastic Compressive Yield

Size Modulus

(um)

60

40—
60

150

540

392

386

(GPa)
7-30

0.01-
3.0

2.5-3.9

10-30

2.0-4.6

20+
0.3

15+
0.3

1.22 +
0.07

Strength  Strength

(MPa)

100-230

2-12

4278

35-100

100-170

50.3+0.5

283+1.2

(MPa)

12.7 £
0.6

23.98
1.72

19.48
1.45

6.78 =
0.85

0.2%
Proof
Strength i
(MPa)
[47]
[33]
[48]
[4_9]
[50]
100 +
10
192+7 Bl
746 +
27
[52]
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present, additive manufacturing (AM), also known as 3-Dimensional printing or rapid prototyping, has been
exiRiesd GY PalrhemicabManptdrearsiidtaio NS, dasapRngnerieddnst thapin @ Sl iSeieeivey-asginl elituide
electron beam melting (EBM), laser eR5RMerirR]efdtvenalfatqn BeeN Adeltiidective laser melting (SLM). Compared
with CVD or other traditional subtractive manufacturing, AM exhibits superior performance with satisfactory cost-
efficiency, less time and material consumption 231, With the help of AM technology, both the macrostructure and
microstructure of porous Ta can be precisely controlled, during the producing process, according to the design
parameters. The Additive manufactured porous Ta scaffolds also show satisfactory fatigue strength and load-
bearing capacity 8. Moreover, many modification methods have been employed to enhance the bioactivity and

antibacterial property of porous Ta for its future application in bone tissue engineering.

So far, porous Ta-based implants or prostheses have been extensively applied in orthopedics and dentistry (Figure
3, and typical products are shown in Figure 4). Therefore, the aim of this research is to review the clinical
application of porous Ta-based implants or prostheses which have been implemented in orthopedics and dentistry,

and summarize new manufacturing and modification methods for this promising porous biomaterial.
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Figure 4. The typical products of porous Ta-based implants manufactured by Zimmer Biomet Inc. Acetabular cup
with porous Ta coating (a). Reprinted with permission from [“2. Copyright © 2021 by American Academy of
Orthopaedic Surgeons. Porous Ta lumbar interbody fusion cage (b) Reprinted from ref. BZ, porous Ta rod (c)
Reprinted from ref. 8 and dental implant (d) Reprinted from ref. B2, The porous Ta cones were used to

reconstruct femoral metaphyseal defect (e—g). Reprinted from ref. 69,

2. Clinical Application of Porous Ta in Orthopedics and
Dentistry

2.1. Femoral Head Osteonecrosis

Osteonecrosis of the femoral head can be an extremely harmful disease for young and middle-aged patients who
are physically active (162 Therefore, appropriate measures should be taken at an early stage to preserve the

femoral head before the final collapse of the femoral head and subchondral plate.

Core decompression has been applied in the salvage of the femoral head for many years, but the lack of
mechanical support to the subchondral bone after debridement of the necrotic bone may further result in the
collapse of the head 83, Meanwhile, in their histopathology study, Gonzalez Del Pino et al. 4 found that the new
bone formation originated mainly from the host bones rather than the vascularized grafts. In this regard, as a
reasonable substitute for vascularized fibular autografts, porous Ta rod has been used as a supplementary

approach to sustain the bony defect portion after core decompression 621,

Primarily designed to sustain the structure of the subchondral plate and stimulate osteogenesis of the host bone,
porous Ta rod has been proven to alleviate the deterioration of femoral head necrosis and postpone the final
conversion to total hip arthroplasty, in the majority of publications, for early or intermediate stage patients [3166167]
[68] Although the efficacy of this tantalum rod remains controversial in the long-term €2 removal of the rod would
be an obstacle during conversion to total hip arthroplasty Z9. The survival rates after porous Ta rod insertion is
impacted by multiple factors including the stage of the disease, corticosteroid usage, osteonecrosis lesion volume
and location, bone marrow edema, and joint effusion U2 The presence of bone marrow edema has been
proven to be a poor prognostic factor of femoral head osteonecrosis and also a predictor of conversion to total hip
arthroplasty (THA). Furthermore, patients with bone marrow edema had a significantly higher likelihood of

eventually resorting to THA [22],

It should be noted that the diameter of a porous Ta rod is only 10 mm, which confines the supporting area of the
rod; if the lesion size was larger than that diameter, collapse would occur at other areas [Z3]. Moreover, the
histopathological analysis of 15 retrieved porous Ta rods revealed 1.9% bone ingrowth, and mechanical support for
the subchondral bone was proven to be insufficient 4. Thus, improvements in implant design and surgical
technique are needed, and the patients’ necrotic stages should also be scrutinized before the surgical procedure is
undertaken 3l Accordingly, many modified surgical techniques have been introduced to enhance the

osteogenesis ability of porous Ta rod, including a combined technique involving bone marrow aspired from iliac
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crest 28 combination with vascularized bone grafting alone 8, or with bone marrow mesenchymal stem cells
(BMMSCs) and vascularized autografts 4. However, longer-term follow-up clinical trials are still desired to verify

the efficacy of these modified methods.

2.2. Hip Arthroplasty

The porous Ta acetabular cup for primary THA is fabricated by directly compressing the ultra-high molecular
polyethylene into an elliptical porous Ta shell. This kind of monoblock acetabular component design has
theoretically diminished the occurrence of backside wear, and the absence of screw holes prevents the access of
polyethylene wear debris, which can infiltrate the bone—implant interface, and which has long been regarded as an
initiating factor resulting in aseptic loosening of the cup 8. The porous Ta shell with low elastic modulus, high
friction coefficient and excellent osteoconductivity can help to preserve or even increase the bone stock of adjacent

acetabulum and, if necessary, facilitate the revision surgery 2,

In a preclinical research, 22 porous Ta acetabular components were exploited in a canine model BZ. The results
revealed that the bone ingrowth depth of the 22 cups ranged from 0.2 to 2 mm after 6 months. Furthermore, the
average bone ingrowth was 16.8% in all sections and 25.1% in the periphery; both were better than the results of
another canine model study in which bone ingrowth in titanium fiber and Co-Cr was 21.5% and 13.4%, respectively
(9 Clinically, 151 hips were followed up for 8-10 years post primary THA in a prospective study Bl Although
periacetabular gaps with lengths ranging from 1 to 5 mm could be found in 25 hips at early stage, those gaps
disappeared after 24 weeks. The follow-up radiograph verified the absence of radiolucency, osteolysis of the
adjacent bone, polyethylene wear debris and cup loosening. All these indicated the design advantages of the
porous Ta cup. Substantial bone deposition could be found on the surface of a retrieved acetabular component
after 50 months due to dislocation in this study. However, the lack of screw holes of the cup may have hampered
the direct observation of dome contact during surgery and the final seating of the cup into acetabular socket could

not be accurately ensured 81,

As for revision THA, it is a surgical challenge to reconstruct acetabulum with huge bone defects and to restore the
primary stability, rotational center and maximal bone—implant contact B2, Porous Ta acetabular prostheses has
been revealed as an optimal option to cope with these formidable challenges [B3IB4I83I88IE7] The modular design
of the porous Ta revision prosthesis provides augmented or buttressed sections to be screwed onto the supra-
acetabulum for bone defect reconstruction; subsequently, the elliptical cup is implanted in the acetabular socket
against the section with cement laying at the interface of the two components 8. Many short and medium-term
studies have shown promising results of the modular porous Ta acetabular shell and augmentation in the treatment
of acetabular dome defects with or without osteolysis of ischium, teardrop and Kohler line disruption (Paprosky
type Il or [11) [B2B7IEALOIOLI2I[3N[94] A ten-year follow-up after revision surgery with porous Ta shell and augmented
implantation was conducted by Léchel et al. 3], The survival rate of 51 patients (53 hips) who had completed the
follow-up was 92.5%, with a significant increase in Harris Hip Score (55 before surgery vs. 81 post surgery) after
the revision surgery. Meanwhile, the authors strongly recommended the application of screws toward the load

transferring and inferior direction in every patient with acetabular defects to stabilize the shell and augmentation,
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diminish the fretting at the interface of shell-host bone or shell-augmentation and guarantee the primary stability of
the long-term survival rate 93l In addition, porous Ta acetabular implants and augmentations were suggested in
the reconstruction of the hip joint after resection of peri-acetabular tumors, in order to ensure satisfactory clinical
results at early stage 28, The irradiated pelvis was reported to always be associated with high aseptic loosening
rates of acetabular components 27839 Even so, porous Ta cups still obtained satisfactory results in THA
treatment of irradiated pelvis owing to their high friction coefficient and porous microstructure, as well as rapid bone
ingrowth rate [BZ98I91 However, it is imperative to note that transverse acetabulum fracture may occur during or

after the revision surgery if excessive reaming is performed to insert large cups (average 58 mm) during the
operation [100[101]

2.3. Knee Arthroplasty

Porous Ta prosthesis for keen primary and revision reconstruction comprises the monoblock tibial component, the
tibial or femoral cone and augmentation, as well as the patella prosthesis. The design of the monoblock tibial
component for primary arthroplasty is similar to that of the monoblock acetabular component, with the polyethylene
directly compressed into a porous Ta baseplate, which also eliminates the potential occurrence of wear debris
infiltrating into bone—implant interface. The mechanical and biological properties of porous Ta guarantee the
primary stability of the tibial component and ensure its long-term survival rate 192, Several short and long term
results have shown encouraging efficacy of this cemented or uncemented monoblock tibial component for the
treatment of relatively young and active patients [193I[104][105][106][107][108] A hijstological analysis of a retrieved
porous Ta tibial component from a chronically infected knee prosthesis revealed significant bone ingrowth in the
posts and post—baseplate interface rather than baseplate, suggesting that fine bone—implant integration could still
be obtained even in the infected environment 222, However, caution should be taken with patients who have heavy
weight (average 241.9 Ibs) and tall height (average 71.8 inch) and have previously received total knee arthroplasty
(TKA) with cementless porous Ta tibial prostheses, as this patient group may easily encounter early medial

collapse due to the overload cyclically posed on the medial portion of the tibial prosthesis 119,

Severe distal femoral and proximal tibial bone defects are the greatest challenge in revision total knee arthroplasty.
Without adequate bony support and inferior bony structure, the collapse of the tibial or femoral component will
inevitably occur. Therefore, porous Ta cones for substitution of tibial and femoral metaphyseal bone defects have
been introduced to function as structural grafts, to enhance bone stock, and to regain normal articular alignment
with multiple flexibilities for different sizes and positions of bone loss 192111l The results of a 5-year study reported
by Potter et al. 222 indicated that porous Ta femoral cones could effectively fill the metaphyseal defects of the
distal femur and sustain the femoral component after revision TKA. Another five to nine year follow-up study
supported the efficient application of porous Ta tibial cones for the restoration of huge osseous loss and facilitated
early weight-bearing 22, However, long-term and comparative analysis is still needed to further verify the viability
of these porous cones for massive metaphysis defect reconstruction, and the high price per cone

(approximately $4.000) would impede their clinical application at a large scale 1141,
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Restoring the normal function and structure of the patellofemoral joint will be an integral portion in TKA or revision
TKA if the extensor mechanism has been impaired due to patellar resection or severe osseous deficiency. Owing to
its capability to favor soft tissue and bone ingrowth B840 porous Ta patellar prosthesis has been used to
reconstruct the fulcrum role of patella 122!, However, the stability of this novel patellar prosthesis depends mainly
on the residual bone stock of patella, rather than soft tissue (1161 Moreover, abundant bone—implant contact and
blood supply to the residual patella are critical factors for the long term success of porous Ta patellar prosthesis
(1171 Therefore, prudent selection of proper patients should be the prior step before definite surgery is performed,
so as to avoid the recurrence of complications such as persistent pain, weakened extensor mechanism, and

patellar shell fracture.

2.4. Ankle Arthrodesis and Arthroplasty

As with femoral head osteonecrosis, the end-stage ankle arthritis can also be a very severe and debilitating
disease for younger and active patients L1819 Therefore, surgical intervention, e.g., ankle arthrodesis and total

ankle arthroplasty, should be taken into consideration when conservative methods have failed.

Regarded as a promising alternative to traditional bone autograft or allograft, porous Ta spacer has been applied in
ankle arthrodesis without the limits of size, volume and source 129[121]122|123] Fyrthermore, the cost of a single
porous Ta spacer (approximately $989.5-1000) has been reported to be approximately comparable to that of an
iliac crest autograft (approximately $600—700) and an allograft (approximately $850); however, the latter two may
take more time for preparation during the surgery [1201121l[122] The porous Ta spacer is an optimal choice for
reconstruction surgery, and is especially suitable for huge bone defects [1241125] Thjs is the case because it has
adequate structural strength to maintain the restored height and angular correction of the ankle joint until the
appearance of osseous fusion between the porous Ta spacer and adjacent bony tissues B312 \which is
significantly different from bone autografts or allografts, either of which may collapse due to absorption after
implantation [#2l122][126] \oreover, as with cancellous bone, the porous Ta spacer provides the necessary space
and osteoconductive environment for vascularized bone tissue ingrowth, obviating autograft-related harvest lesions

[1271[128] and allograft-related infectious diseases 123!,

The clinical results of porous Ta spacers used for the salvage of failed total ankle arthroplasty are also favorable
(121][122][125] More often, accompanied by nonunion, leg shortening, infection or even severe bone defect after
debridement, failed total ankle arthroplasty can be difficult reasonably address (123130 To enhance the fusion
efficiency of porous Ta spacer, Sundet et al. 131l combined the use of retrograde nailing, a porous Ta spacer and
an osteoinductive pad augmented with autologous bone marrow concentrate for revision surgery of 30 patients (31
ankles) with failed total ankle arthroplasty. The mean fusion rate at the average 23-month follow-up was 93.5%,
and the vast majority of patients were satisfied with the surgery in terms of pain relief and improved activity, though
additional expenditure were entailed in this clinic trail 132, Similarly, Kreulen et al. 123 introduced a new surgical
strategy for reconstruction surgery of two patients with failed total ankle arthroplasty and four patients with ankle
collapse post infection. In this study, porous Ta spacers were also augmented with autologous bone marrow

obtained through the Reamer/Irrigator/Aspirator technique from the femoral marrow cavity and fixed with
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tibiotalocalcaneal nail, and the bone morphogenetic protein 2 (BMP-2) or platelet derived growth factor was further
supplemented to boost bony fusion. With the help of this novel method, thorough osseous fusion at the implant—
bone interface appeared at the early stage of 4—6 weeks post-surgery and no failure cases were observed 123, |n
contrast, Aubret et al. 139 reported disappointing outcomes after the insertion of porous Ta spacers. Even
augmented with iliac crest autograft and allograft bone chips for revision of failed total ankle arthroplasty in 10
patients, two patients had failed integration of porous Ta spacers, one patient presented with talocrural joint
nonunion and three patients needed secondary revision surgery due to severe pain. However, the main reason for
these failed cases was supposed to be the weak fixation strength provided by nails compared with 6.5 mm screws

(221 or reconstruction plates 129,

Despite being reported as having a lower survival rate than hip and knee arthroplasty [132I133]134] tota| ankle
arthroplasty (TAA) has been suggested to preserve the mobility of ankle joint and normal gait instead of being
fused with triple arthrodesis which has long been considered as the gold standard for the treatment of end-stage

ankle arthritis.

A newly designed porous Ta-based total ankle prosthesis was approved by the Food and Drug Administration in
2012 and marketed by Zimmer Biomet Inc. (133136 Combined with the use of porous Ta-based ankle prosthesis in
TAA, promising prognosis can be foreseeable in terms of pain relief and functional improvement in the short-term,
even without supplementation with cement augmentation, due to the fact that the stability of tibial and talar
components mainly depends on bony interlocking between the porous Ta base and the host bone [135][136][137][138]
(139][140]1141] ' Moreover, the pattern of porous Ta bases of the two components resembles that of the subchondral
bone of tibia and talus and can distribute loading stress rationally and diminish the occurrence of peri-implant
osteolysis, which often resulted in aseptic loosening of the implants (13811421 This novel ankle prosthesis is
implanted through the lateral approach, associated with distal fibular osteotomy, which theoretically offers direct
exposure to both the sagittal and coronal plane of the tibiotalar joint and obviates surgery-related neurovascular
injuries 1421 Incorporated with an extramedullary alignment frame, the innovate surgery approach can minimize the
amount of bony resection, optimize tibial and talar components positioning and preserve the bone—implant contact

area, all of which finally guarantee the survival rate of porous Ta ankle prosthesis 135,

The histological analysis of this porous Ta-based ankle prosthesis retrieved from a 50-year old female patient
revealed that the bone ingrowth percentage in tibial and talar components was more than those found in the
retrieved porous Ta hip and knee components 1431, Meanwhile, active bone remolding was found within the porous
Ta layer even at 3 years post-surgery. However, regional osteolysis and metal wear debris could not be avoided,
both of which did not jeopardize the stability of the prosthesis. Nevertheless, decreased bone density of distal tibia
adjacent to the tibial component still presented in this patient, indicating that the stress shielding effect and related

bone resorption could not thoroughly be eradicated through the use of porous Ta-based ankle prosthesis 1431,

2.5. Dental Implants
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Aimed to increase surface energy, extend the bone—implant contact area, improve surface hydrophilicity and
facilitate mesenchymal cells’ or osteoblast progenitor cells’ adherence, the surface roughness design of dental
implants has now become very widely used and has been proven to enhance the progress of osteointegration and
angiogenesis 144111451 Therefore, the spongy bone like structure of porous Ta could be one explanation for its
superior biological and mechanical property to many other metal materials in terms of rapid osseous ingrowth and
bone-to-implant contact, both of which directly influence the survival rate of dental implants in the long run 48], The
histological and histomorphometric analysis has validated the osseoincorporation property of porous Ta implants
derived from the rapid formation of vascularized bone tissues not only on the surface but also in the inner pores,
which further reinforced the interlocking force between the implants and human jaws 147, The canine model test
revealed that the porous Ta section could provide a more rapid new bone formation and stronger stability for the

porous Ta enhanced titanium implants compared to its conventional screwed titanium counterparts [248l,

The porous Ta-enhanced tianium dental implant is now considered to be an effective therapeutic method for
implanting treatment of certain patients associated with periodontitis 1491 alveolar bone defects 129 and even
maxillofacial tumors 1311521 The porous Ta segment can provide an expanded three-dimensional space for the
infiltration and differentiation of osteoblasts as well as the accumulation of vascular endothelial cells 491531 |n
addition, this novel implant has also been used in immediate revision surgery for previously failed dental
implantation based on the superior osteointegration of porous Ta 124, The immediate loading tests of porous Ta
enhanced implants demonstrated significantly less marginal bone loss than that of threaded implants (0.43 + 0.41
mm vs. 0.98 + 0.67 mm) after 1-year of functional loading 222 This result was then further corroborated in a
retrospective study in which an average of 0.28 mm bone gain could be found in the porous Ta enhanced group,

but the Ti group showed an average of 0.2 mm marginal bone loss after 1-year of implant loading 126!,

However, mechanical flaw of this porous Ta enhanced dental implants may be located at the junction of the middle
and distal third portion, for the middle portion is produced as slender sharp in order to accommodate the porous Ta
sleeve and is welded to the distal apex portion 227, Accordingly, potential fragile fracture may occur at this facet
when the implant is to be inserted in the socket of maxilla or mandible with high bone density. Meanwhile, the
unsterile oral cavity, where more than 500 kinds of bacteria are harbored, can be a challenge for the dental
application of porous Ta 227, Therefore, in-depth studies that can enhance the antibacterial property of porous Ta

are still needed because the microbial environment of oral cavity and orthopedic sites is obviously different.

3. New Development of Porous Ta for Bone Tissue
Engineering

3.1. Additive Manufactured Porous Ta

Except for conventional techniques including CVD (2348l foam impregnation ¥ and powder metallurgy 39,
various additive manufacturing methods have been introduced to produce novel porous Ta scaffolds with different
pore size and porosity, but comparable mechanical properties with human cortical and trabecular bones 44 (Table

1). Comparison tests performed with cellular and animal models have revealed similar or even better biological and
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mechanical performance of printed porous Ta scaffolds than their porous Ti counterparts with the same porosity

and pore diameter (Table 2) BLU2B54I551[158] \oreover, as a high-end technique, additive manufacturing can help

manufacturers to produce porous Ta implants with tailored pore size and porosity to resist different biomechanical

loading stress in different parts of the human body. Incorporated with Computer Aided Design (CAD) software,

additive manufacturing thus makes personalized porous Ta implants or prostheses for individual patient possible.

Recently, several printed porous Ta products have successfully been applied in clinical settings.

Table 2. The biological properties of additive manufactured porous Ta scaffolds.

Porosity%/Samples In Vitro Tests Results

Cytotoxicity test (L929 mammalian
cells)

0,
80% Ta + No cytotoxicity

Cell morphologies (hBMSCs)
o Cells’ adhesion, proliferation and

vitality were similar.

Cell differentiation

e ALP and mineralized nodule

70% Ta vs. 70% Ti o
staining levels were comparable.

Quantitative RT-PCR Analysis
e Sp7 and OCN genes levels were

comparable.

In Vivo Tests Results Ref.

Histological evaluation (rat
femur defect model)

e The bone defect can be
bridged by the new bone
with the help of printed

porous Ta scaffold. 52]

Torsion test
« Rigid bone—implant
connection can be obtained.

Histological
evaluations (rabbit distal
femoral defect model)

» Bone ingrowth rate and
depth were similar in the two

groups.

e Ti group showed a quick-
slow-quick new bone

formation pattern. (4]

» Ta group showed a gradual
slowdown style of new bone

formation.

Push out test
e The two groups had similar

push out force.
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Porosity%/Samples

80% Ta vs. 80% Ti

30% Ta vs. 30% Ti
modified with
TiO2 nanotubes, 30% Ti
and solid Ti

In Vitro Tests Results
Cell morphologies (hBMSCs)
o Ta group showed better cell

viability than Ti group.

Cell proliferation
e Ta group was higher than Ti group

after 5-7 days.

Cell differentiation
o Ta group had superior ALP levels

and calcium nodule numbers.

Quantitative RT-PCR Analysis
+ Levels of Runx2, ALP, Col-1, OCN

and OPN genes were higher in Ta

group.

Not mentioned

In Vivo Tests Results Ref.

Histological evaluationsand
fluorescence labeling (rabbit
distal femoral defect model)

o Ta could stimulate new bone [55]
formation as early as 4

weeks.

Histological analysis (rats
distal femur model)

e Ta group had the most
significant bone formation

after 12 weeks.

Push out test
o Four groups had similar

bone—implant interlocking

strength.

FESEM micrographs
« Ta groups had persistent

bone ingrown in the pores at

12 weeks.

 Ti modified with
TiO2 nanotubes groups
showed comparable
seamless bone—implant

interface with Ta groups.

e The other two Ti groups had

inferior bone—implant
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Porosity%/Samples In Vitro Tests Results In Vivo Tests Results Ref.
contact.

Cell morphologies (hFOB CRL-
11372)

e Ta groups presented more
flattened cell morphologies,
filopodia extensions and

mineralization than Ti group.

27% Ta and 45% Ta vs. Cell proliferation . o 2lls.
i . . Not mentioned (51]
27% Ti « Cells proliferated rapidly on Ta
160 samples instead of Ti samples. ‘or an 83-
\ previous
Immunochemistry
. au, varus
+ Porous Ta facilitated cells’
. . L es to be
adhesion and differentiation via a J
porosity-dependent pattern. anatomic
the bone

aeiecCtL diead 101 Uie aelrie revisiorn surgery. rweive Mmoriuis dailer uie nrial revisiorn surgery, uie pauerit recovered to
normal activity with no more complaints about the affected limb. After that, the same team fabricated personalized
porous Ta fibular and femur implants for reconstruction surgery following the same design and manufacturing

process 531,
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L

Figure 5. The printed personalized porous Ta knee prosthesis (a), distal femoral component (b) and proximal tibial
component (¢). The porous Ta prosthesis was inserted into distal femur and proximal tibia, respectively, during the
surgery (d,e). Reprinted from ref. (160,

Developmental dysplasia of the hip (DDH) can lead to degenerative osteoarthritis of the hip in adults due to the
malposition of acetabulum and femoral head 261, In order to restore normal acetabular coverage of the femoral
head and acetabulum index, the additive manufactured porous Ta acetabular patch was introduced in the treatment
of eight adult DDH patients with Crowe type | 182 Each individualized porous Ta acetabular patch was designed
by Mimics 17.0 and 3-matic 9.0 software (Materialise, Leuven, Belgium) before surgery. Then, the loading stress
distribution between the acetabulum restored by porous Ta patch and the femoral head was analyzed by Ansys
17.0 software (Ansys, Canonsburg, PA, USA). If the stress distribution was uniform, the designed porous Ta
acetabular patch would be printed for the final surgery. After an average follow-up of 8.2 months, the VAS scores of
eight patients were drastically decreased (2.92 + 0.79 before surgery vs. 0.83 £ 0.72 after surgery). Meanwhile, the
Harris scores (69.67 + 4.62 before surgery vs. 84.25 = 4.14 after surgery) and the results of gait analysis were

greatly improved after the implantation of the porous Ta patch.

A printed porous Ta osteosynthesis plate has been used for the treatment of a 30-year old male patient with tibial
nonunion 183 The patient had undergone intramedullary nail fixation three times previously, but failed to attain

healing even associated with the iliac crest autograft. Owing to its biological and biomechanical advantages, this
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novel porous Ta plate (80% porosity, 1.5-10 GPa elastic modulus) reunited the tibial shaft fracture uneventfully 5

months after the fourth surgery, and the patient regained normal mobility (Figure 6).

Figure 6. The AP (a) and lateral view (b) of X-ray examination at 5-month follow-up showed that the fracture

healed after the implantation of the printed porous Ta osteosynthesis plate. Reprinted from ref. [63],

Nevertheless, the high demand and high price of the medically applicable tantalum powder used to produce porous
Ta products are the main negative factors that hinder the extensive clinical implementation of novel porous Ta

implants or prostheses.

3.2. Surface Modification

The critical drawbacks that may impede the further application, in bone tissue engineering, of porous Ta are its
inertness and low level of bioactivity. Therefore, various methods have been introduced to modify porous Ta for
further clinical application (Table 3). These methods can mainly be cataloged into biomaterial coating and surface
treatment, all of which are aimed to endow porous Ta-based implants or prosthesis with improved

osteoconductivity, osteoinductivity and antibacterial properties (Eigure 7).
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Figure 7. Schematic diagram of the surface modification for porous Ta. Amorphous calcium phosphate (ACP)
nanospheres and HA nanorods coating on the surface of Ta scaffold (a). Reprinted from ref. 1841, ZnO nanoslices
and ZnO nanorods coating on Ta substrate (b), the ZnO nanoslices will be released at an early stage—within 48 h
(c), while the ZnO nanorods are released in a slow pattern over 2 weeks (d). Reprinted with permission from [63],

Copyright © 2021 by American Chemical Society.

Table 3. The biological performance of different methods for Ta modification.

Surface Modification In Vitro Test Results In Vivo Test Results Ref.
ACP nanospheres—PLA Mineralization in SBF Subchondral bone defect repair [166]
coating o Abundant mineral deposition could  Significant new bone formation
HA r?anorods—PLA be formed in 1 week. could be found in samples
coating

modified by two coatings.
Hydrophilicity

 After being soaked in SBF for 1 « By contrast, new bone tissues

day, the hydrophilicity of the two were lacking in the unmodified

coatings was improved. samples.

Protein adsorption and release
» The two nanostructures

possessed satisfactory VEGF-

FITC adsorption.

e The amount of BSA release from
ACP nanospheres—PLA coating

was faster and larger.
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Surface Modification

CaP nanospheres—PLA
coating

BMP-7 coating

In Vitro Test Results

Cell viability and
morphology (MG63 cells)

The two nano-coatings showed no

toxic effects on cells.

Cells’ adhesion, interconnecting
and spreading were better than
those cultured on unmodified

samples.

Mineralization in SBF

CaP nanospheres coating
transformed into HA nanosheet
which could continuously

accumulate on the surface of Ta.

Hydrophilicity

CaP nanosheres—PLA coating

showed satisfactory hydrophilicity.

BSA release

The transformation from
amorphous CaP to HA induced the
rapid release of BSA at an early

stage.

Cell viability (MG63 cells)

Cells established fine adhesion to

CaP nanosheres—PLA coating.

Not mentioned

In Vivo Test Results

Subchondral bone defect repair
« The modified porous Ta

scaffold effectively repaired the

defect after 12 weeks.

Cartilage defect
restoration (rabbit model)

« Modified porous Ta significantly
facilitated cartilage restoration
at 4, 8 and 16 weeks.

Microscopic and histological
analyses

« Modified porous Ta groups

facilitated calcium salt

Ref.

167

168
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Surface Modification In Vitro Test Results In Vivo Test Results Ref.
deposition, as well as
formation and maturity of bone

and cartilage tissues.
Micro-CT analyses
» Sixteen weeks post-surgery,

new bone formation could be
found around the modified

porous Ta.

e The amount of new bone
formation was more than those

of unmodified samples.

Push out tests
« The modified groups

possessed higher maximum

push out force.

Ta205 nanotubes films Anticorrosion test Not mentioned [169]
 Ta205 nanotube films had

excellent biocompatibility and

prevented the release of ions.

Contact angle and surface energy
* Wettability and surface energy of

Ta were enhanced by

Ta205 nanotube films.

Protein adsorption
e Adsorption of BSA and Fn were

significantly more on
Ta205 nanotube films than bare

surface,

Cell adhesion and
proliferation (rBMSCs)

« Adhesion and proliferation of
rBMSCs were highly enhanced on

Ta205 nanotube films.
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Surface Modification In Vitro Test Results In Vivo Test Results
Osteogenesis-related genes
expression

o Levels of Osterix, ALP, Collagen-I
and Osteocalcin were significantly
high on the Ta205 nanotubes

films.

Fluorescence microscopy image

e Cells cultured on Ta205 films
presented as polygonal
morphology and had more
filopodia than those on bare

surface.

Cell proliferation and
morphology (L929 mouse
fibroblasts)
. « Nanoporous Ta oxide layers with
Nanoporous Ta oxide .
layers 25 nm pore size greatly enhanced ~ NOt mentioned
adhesion, proliferation and

extension of fibroblasts.

Mineralization in SBF

« Substantial mineral deposition can
be found on the surface of porous Bone ingrowth (rabbit cranial
Ta treated with MAO and NaOH defect model)

. e New bone formation could be
etching.

found around the modified
Cell proliferation (3T3-EL1 cells) samples at 4 weeks.
« Cell proliferation on the modified
AG e samples was better than the + Bone remolding and
NaOH treatment untreated ones at 24, 48 and 72 h. neovascularization were also

found within the pores.
Cell morphology

» Cells spread over the surface and « The cranial defect could be
migrated into the pores of the filled by new bone at 12
modified samples, with weeks.

increasingly filiform protrusions

and calcium crystals presented.

Ref.

170
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Surface Modification In Vitro Test Results In Vivo Test Results Ref.

Cytotoxicity and cell
adhesion (Sa0S-2 cells)

+ PHAs coating showed no toxicity

to the cells.
id; PHASs:
Antibacterial properties (S. he serum
PHAs (PHB, PHBV and aureus and E. coli) Not mentioned 172
PHB4HB)-Genta coating  « The concentration of Genta >: calcium
released from PHAs coating
effectively inhibited the
proliferation of S. aureus and E.  but have
coli. (174][175][176 thermore,
1 average
[174] ;
Antibacterial Properties (S. oration of
aureus and E. coli) activity of
e The novel ZnO coating showed a et s il (9
mice subcutaneous implantation) Jorous Ta
e SER FEEEEE Peiiem Eng e The ZnO nanorods—nanoslices ler space
Zn0 effective antibacterial properties. : A : .
e Ly e [1€blting modified Ta foils had e B calcium
i i ideal anti erial performance
zge;;‘;;h'ca' structure Cytotoxicity (MC3T3-E1 cells) al antipmaierial p F, the two
o The ZnO nanorods—nanoslices e e :umulated
coating had no toxic effect on BRI e ue to the
cells. fter being
2r protein

release rates 18411771 |n vivo, both kinds of modified porous Ta scaffolds repaired the subchondral bone defects

with substantial new bone formation, indicating a promising clinical prospect for bone defect restoration.

Bone morphogenetic protein 7 (BMP-7) has been applied in bone and cartilage repair since 2001 due to its
powerful osteoinductivity 7817911180l BMP-7 can act as a bone stimulating agent that induces differentiation of
mesenchymal stem cells into osteoblasts and chondroblasts 181, By soaking porous Ta in the solution of BMP-7,
Wang et al. 182 coated BMP-7 on the surface of porous Ta rods. Subsequently, the BMP-7 modified porous Ta
rods obtained satisfactory results of subchondral bone and cartilage repairing in rabbit models with substantial
chondroid-like tissues recovering in the defect areas within 16 weeks. Furthermore, bone ingrowth depth was found

to be 0.2-1.2 mm in the modified samples, which finally resulted in rigid bone—implant interlocking.

Fabrication of Ta205 nanotube layers on the surface by anodization [183184] or micro-arc oxidation (MAO) 183 js
another approach to ameliorate the bioactivity of Ta. With the formation of nanotubes, the Ca and P elements
contained in electrolytes can be incorporated into the oxide nanotubes by either of the aforementioned methods
(1861 However, MAO may result in toxic effects on cell viability due to the by-products, i.e., reactive oxygen species
(ROS) and reactive nitrogen species (RNS). Combined with alkali pretreatment, these toxic elements produced by
the process of MAO were dissolved and the newly formed sodium tantalate layer and could further facilitate the

deposition of apatite in SBF. It is well defined that the substantial apatite layer formed on the surface of implants is
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the prerequisite for bone—implant integration 22259 |n this regard, the combination of MAO and alkali treatment

will be an effective way to modify porous Ta to boost its osteoconductivity.

Implant-associated infection has long been a thorny problem in clinical settings, which always results in
catastrophic failure and additional expenditure 18711881 |t js imperative to find rational methods to endow porous Ta
with antibacterial property. Polyhydroxyalkanoates (PHAS) are biodegradable and biocompatible materials which
can be used as natural carrier for drug delivery and scaffold for tissue replacement 189, | oading PHAs coating
containing antibiotics on the surface of porous Ta and obtaining a controlled antibiotics release will be an optimal
choice to avoid implant-associated infection 199 Rodriguez-Contreras et al. [188] coated the PHA-Genta composite
layer both on the outer and inner surface of porous Ta cervical fusion cages. The continuously released Genta from
PHA coating with homogeneous concentration protected these porous Ta cages from infection of Gram* and
Gram™ bacteria. On the other hand, a ZnO nanorod—nanoslice hierarchical coating was proposed by Liao et al.
(1631 |n vitro, the ZnO nanoslice was first released from the superficial layer to kill bacteria during the early stage,
and the antibacterial efficacy lasted for 24 h. By contrast, the release of ZnO nanorod showed a slow but stable
pattern. Therefore, the combined ZnO nanorod-nanoslice coating possessed a two-stage release pattern and
could last for over 2 weeks in vivo, avoiding the implant-associated infection which commonly occurred within 1
week post-surgery 1631,
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