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Unsupervised domain adaptation (UDA) is a transfer learning technique utilized in deep learning. UDA aims to

reduce the distribution gap between labeled source and unlabeled target domains by adapting a model through

fine-tuning. To reduce the domain divergence between the source and target domain, there are mainly two main

types of UDA methods that have gained significant attention: discrepancy-based UDA methods and adversarial-

based UDA methods.

domain adaptation  Image Classification  Object Detection

1. Introduction

Deep learning has achieved significant success in the field of computer vision in recent years, particularly in image

classification and object detection using Convolutional Neural Networks (CNNs). Typically, CNNs are trained with

supervised learning using large amounts of labeled data, drawn from an identical distribution for both training and

testing the model. However, collecting and labeling data can be very time-consuming, labor-intensive, and

expensive, especially for new tasks in various domains. In addition, adequate training samples do not always exist.

Furthermore, the training of deep CNNs is domain-specific. The existing models show promising results on the

dataset used for training. However, they often fail to generalize well to new, similar domains due to the problem of

domain shift . Domain shift arises when the distribution of data in the target domain differs from the source

domain, posing a significant challenge for image classification and object detection tasks. This discrepancy can

occur due to variations in the visual appearance of the data, which leads to several practical implications for real-

world applications in the field of image classification and object detection. For instance, consider an intelligent

system to detect objects on the road using CCTV (Closed-Circuit Television) footage captured from various camera

sensors. If the training data from each of the camera sensors do not encompass variations in noise characteristics,

image resolutions, and different weather conditions, the system’s performance may degrade in the presence of

adverse conditions. Similarly, if people train an image classification model on data downloaded from e-commerce

websites and test it on real camera images, the model’s performance is likely to be compromised due to

differences in image characteristics across different domains, such as intra-class variations, camera angles,

lighting conditions, and complex backgrounds. Therefore, there is a need to develop algorithms that can address

both label scarcity and domain shift problems. The objective of domain adaptation approaches is to overcome

these challenges by learning domain-invariant features to align the data distributions of the source and target

domains.
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Domain adaptation is a type of transfer learning utilized to train a model with unseen data in the target domain by

acquiring knowledge from a related source domain . The source domain refers to the data distribution used to

train the model with labeled data for the source task, while the target domain refers to data from another related

domain used to fine-tune the pre-trained model to learn the target task. There are three types of domain adaptation

approaches: supervised, semi-supervised, and unsupervised . Significant progress has been seen in supervised

and semi-supervised domain adaptation, while unsupervised domain adaptation (UDA) has recently gained

attention. UDA methods aim to learn a domain-invariant feature space by bridging the labeled source domain and

unlabeled target domain, as shown in Figure 1. UDA methods can be divided into two main categories: (i) domain

discrepancy-based methods, where domain-invariant features are found by fine-tuning the model and minimizing

domain shift using statistical measures, and (ii) adversarial-based methods using a generative model, where

domain-invariant features are learned by encouraging domain confusion using a discriminator network. This

method is more complex, as the discriminator needs to be trained from scratch, and hence it takes more training

time.

Figure 1. Example of unsupervised domain adaptation; Source domain and the target domain (left) are classified

through a source-only classifier with source labeled data and target unlabeled data; Source and target domain

(right) are classified after domain adaptation, which aligns the feature distributions of both domains.

Although deep transfer learning-based UDA approaches have seen a lot of success so far, they still face

challenges that need to be overcome to improve their performance. The present study mainly focuses on aligning

the marginal or conditional distributions and utilizing the pre-trained model for transferability. Transferability

depends on the relatedness and size of the source dataset and target dataset. Transferability plays a significant

role in fine-tuning the network to improve the performance of the target task; otherwise, negative transfer or

overfitting may occur and degrade performance . In domain adaptation, it is unclear how to efficiently fine-tune

the model using the feature transferability across the domains. Moreover, the size of the dataset is also not

balanced to improve the marginal probability of the task. Additionally, the present study uses various asymmetric

statistical distribution measures . Furthermore, the majority of current research in object detection utilizes

the de-facto object detection model, Faster R-CNN , which is a two-stage network.

2. Unsupervised Domain Adaptive Image Classification and
Object Detection
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The problem of transferring knowledge from a labeled source domain to an unlabeled target domain is said to be

solved by unsupervised domain adaptation. Significant research contributions have been put into supervised and

semi-supervised domain adaptation methods. In recent years, increasing research efforts are focused on

unsupervised domain adaptation methods that use deep learning architectures to improve the performance of

image classifiers and object detectors. To reduce the domain divergence between the source and target domain,

there are mainly two main types of UDA methods that have gained significant attention: discrepancy-based UDA

methods and adversarial-based UDA methods. In this section, it describes recent works on these approaches for

domain adaptive image classification and object detection.

2.1. Unsupervised Domain Adaptive Image Classification

2.1.1. Discrepancy-Based Approaches

In discrepancy-based methods, domain adaptation is achieved by minimizing the distance between domain

distributions using statistical measures to find domain invariance features.

Ghifary et al.  introduced the maximum mean discrepancy (MMD) metric for feedforward neural networks with

one hidden layer. The MMD measure reduces the mismatch in the latent space distribution between domain

representations. Tzeng et al.  employed two AlexNet  CNNs in the deep domain confusion network (DDC) for

source and target domains with shared weights. An adaptation layer with the MMD metric measures domain

difference and optimizes the network for classification loss in the source domain. Long et al.  developed the

deep adaptation network (DAN) to match marginal distributions across domains by adding adaptation layers and

evaluating different kernels. A joint adaptation network (JAN)  introduced a joint maximum mean discrepancy

(JMMD) and applied it in various domain-specific layers of ResNet-50  to find domain invariance features. Yoo et

al.  recently presented a weighted MMD model that includes an additional weight for each class in the source

domain when the target domain class weights are different. In contrast to MMD, Sun et al.  proposed a

CORrelation ALignment (CORAL) loss function for deep neural networks, which aligns the second-order statistics

across domains and minimizes the domain shift. The Contrastive Adaptation Network (CAN)  utilized a new

metric contrastive domain discrepancy (CCD), which optimizes the intra- and inter-class discrepancy across the

domains and trains the CAN in an end-to-end manner. Lee et al.  used the task-specific decision boundary in

unsupervised domain adaptation to align feature distributions across domains using sliced Wasserstein

discrepancy (SWD). Deng et al.  proposed a similarity-guided constraint (SGC) in the form of a triplet loss, which

is integrated into the network as an additional objective term to optimize the network. Ref.  introduced the

balanced weight joint geometrical and statistical alignment (BW-JGSA) for UDA to minimize the distribution

divergence between marginal and conditional distributions across domains. In order to discover domain-invariant

feature representations, Xie et al.  used the Wasserstein distance between the two distributions collaboratively

and presented the collaborative alignment framework (CAF) to minimize the global domain discrepancy and retain

the local semantic consistency. Wang et al.  proposed the manifold dynamic distribution adaptation (MDDA) to

learn the domain-invariant transfer classifier in the target domain using the Grassmann manifold.
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2.1.2. Adversarial-Based Approaches

Adversarial-based methods train discriminator networks to confuse the domain distributions. The domain-

adversarial neural network (DANN) was first introduced in  for use in adversarial training by a gradient reversal

layer (GRL). DANN uses shared feature extraction layers to reduce label prediction loss and GRL to maximize

domain confusion loss. Adversarial discriminative domain adaptation (ADDA)  unties the weights and initializes

the target model parameters with the pre-trained source model. Learning domain-specific feature extractions

makes ADDA more adaptable. ADDA minimizes source and target representation distances by iteratively reducing

the generative adversarial network (GAN)-based loss function. Cao et al. presented the selective adversarial

network (SAN)  to handle transfer learning for small domains by filtering outlier source classes and matching

data distributions in the common label space by separating the domain discriminator into several class-wise

domain discriminators, which reduces negative transfer and promotes positive transfer. In , the feature generator

is learned by augmenting the source domain data, and the minimax algorithm is employed to find the domain

invariant feature. Wasserstein distance is used to measure domain distance in the discriminator by Shen et al. .

and improved the feature extractor network to find the invariant features in an adversarial manner. In , a feature

extractor generates target features that are similar to the source, while discriminators are trained to increase the

discrepancy to recognize target samples outside the source’s support. Zhang et al.  introduced Domain-

Symmetric Networks (SymNets) for domain adaptation. SymNet was built on the symmetric source and target task

classifiers and an extra classifier that shares layer neurons. They proposed a unique adversarial learning method

based on a two-level domain confusion method to train the SymNet. The category-level confusion loss tried to

reduce the object-level loss by forcing intermediate network features to be invariant. The Hierarchical Gradient

Synchronization Domain Adaptation (GSDA)  method was presented to align the domain hierarchically including

global alignment and local alignment. Local alignment is performed using class-wise alignment. In , the authors

employed a Hybrid Adversarial Network (HAN) with a classification loss to train the discriminative classifier using

adversarial training to find the transferable features across domains. To improve target discrimination, structural

regularization deep clustering (SRDC)  combines the clustering of features of an intermediate network with

structural regularisation and a soft selection of less dissimilar source samples. Na et al.  provided a solution by

augmenting several intermediate domains using a fixed ratio-based mixup approach to bridge the source and

target domains (FixBi). They trained the source-leading and target-leading models that shared common

characteristics. Pei et al.  introduced a multi-adversarial domain adaptation (MADA) technique to leverage

multiple domain discriminators to capture the fine-grained alignment of multimodal structures of the source and

target domains. Pinheiro et al.  presented an end-to-end similarity learning network (SimNets) method to learn a

pairwise similarity function for evaluating the similarity between prototype representations of each class. Long et al.

 proposed a conditional domain adversarial network (CDAN) that uses multilinear conditioning to capture the

cross-covariance between feature representations for discriminability and classifier predictions for classification.

Chen et al.  introduced the discriminator-free adversarial learning network (DALN), which can use the predicted

discriminative information for feature alignment and employs nuclear-norm Wasserstein discrepancy (NWD) for

performing discrimination. Table 1 presents a comparative summary of the existing state-of-the-art methods of

domain adaptation for image classification.
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Table 1. Comparative summary of the existing domain adaptive image classification methods.

Method
Type of
Domain

Adaptation

Base
Network Loss

Datasets

YearOffice-
31 

Office-
Home

Digits
(MNIST

/USPS
)

DDC 
Discrepancy-

based
AlexNet MMD ✓ - - 2014

DAN 
Discrepancy-

based
AlexNet MK-MMD ✓ - - 2015

DANN Adversarial-
based

AlexNet
GAN-based

Discriminator
✓ - ✓ 2015

CORAL Discrepancy-
based

AlexNet CORAL ✓ - - 2016

ADDA 
Adversarial-

based

AlexNet
&

ResNet-
50

GAN-based
Discriminator

✓ - ✓ 2017

JAN 
Discrepancy-

based
ResNet-

50
JMMD ✓ - - 2017

CDAN Discrepancy-
based

ResNet-
50

Conditional-
based

Discriminator
✓ ✓ ✓ 2018

MADA Adversarial-
based

ResNet-
50

GAN-based
Discriminator

✓ - - 2018

SimNets Adversarial-
based

ResNet-
50

GAN-based
Discriminator

✓ - ✓ 2018

CAN 
Discrepancy-

based
ResNet-

50
CCD ✓ - - 2019

SymNets Adversarial-
based

ResNet-
50

GAN-based
domain confusion

✓ ✓ - 2019

SGC 
Discrepancy-

based
ResNet-

50
JMMD ✓ ✓ ✓ 2020

MDDA Discrepancy-
based

ResNet-
50

MMD ✓ ✓ ✓ 2020
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2.2. Unsupervised Domain Adaptive Object Detection

In past decades, CNN-based object detection methods have shown significant improvements applied to various

datasets and have been successfully utilized in many computer vision applications. Object detection algorithms are

categorized into two-stage  and one-stage  object detectors. These object detection algorithms

require the annotated datasets and obtain marginal reductions in performance when applied to another domain

with the same label space. Recently, research efforts have been focused on aligning domains for object detection

tasks.

Chen et al.  proposed the first-of-its-kind domain-adaptive object detection algorithm using Faster R-CNN with

adversarial feature adaptation to minimize distribution divergence at the image and instance levels. Saito et al. 

employed strong local and weak global alignments to propose strong-weak distribution alignment (SWDA) for

shallow receptive fields and image-level features on deep convolutional layers respectively.

Zhu et al.  aligned the region proposal generated by the Faster R-CNN detectors from the source and target

domain by applying the k-means clustering algorithm using selective cross-domain alignment (SCDA). Zheng et al.

 performed adversarial feature learning with the coarse-to-fine adaptation (CFA) approach by proposing the

attention-based region transfer (ART) and prototype-based semantic alignment (PSA) to learn domain invariant

features. In , the authors applied image-level alignment at multiple layers of the backbone network and trained it

using an adversarial manner with the multi-adversarial Faster R-CNN (MAF) framework. Kim et al.  trained the

domain adaptive object detector by augmenting the samples from both domains and learned the domain invariant

features across the domains. Conditional Domain Normalization (CDN) is introduced to reduce the domain

divergence between the domains in . CDN encodes characteristics from different domains into a latent space

with the same domain attribute. It is applied in multiple convolutional layers of the detection model to align the

domains. A Hierarchical Transferability Calibration Network (HTCN) is employed by Chen et al.  to learn the

transferability and discriminability of feature representations hierarchically. They proposed three components

consisting of Weighted Adversarial Training, Context-aware Instance-Level Alignment, and local feature masks.

Rodriguez et al.  proposed domain adaptive object detection using the style consistency (ODSC) framework

based on SSD  and trained the framework with the style transfer method for pixel-level adaptation and pseudo

HAN 
Discrepancy &

Adversarial-
based

ResNet-
50

CORAL and GAN-
based

Discriminator
✓ ✓ - 2020

GSDA 
Adversarial-

based
ResNet-

50

Global and local
Adversarial

Discriminator
✓ ✓ - 2020

SRDC Adversarial-
based

ResNet-
50

Clustering-based
Discriminator

✓ ✓ - 2020

FixBi 
Adversarial-

based
ResNet-

50
Augmentation ✓ ✓ - 2021

CAF 
Discrepancy-

based
ResNet-

50
Wasserstein

distance
✓ - - 2022

DALN 
Adversarial-

based
ResNet-

50
NWD-based
Discriminator

✓ ✓ - 2022
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labeling to reduce the negative samples from the unlabeled target domain. Wang et al.  introduced the sequence

feature alignment (SFA) technique on the deformable detection transformer (DefDETR) network  to adapt the

domain discriminative features. The SFA comprises two distinct modules: a token-wise feature alignment (TDA)

module and a domain query-based feature alignment (DQFA) module. Zhou et al.  utilized the multi-granularity

alignment (MGA) with three-level domain alignment losses to learn the domain-invariant features between the

domains including pixel-level, instance-level, and category-level. The MGA method has been developed based on

faster R-CNN and fully convolutional one-stage (FCOS)  backbone detectors. Gong et al.  introduced the

O net method with the object-aware alignment (OAA) and optimal transport-based alignment (OTA) modules to

apply pixel and instance levels domain alignment loss. Table 2 summarizes the existing state-of-the-art methods

for domain adaptation in object detection.

Table 2. Comparative summary of the existing domain adaptive object detection methods.
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Method Detection
Network Loss

Datasets

YearCityscapes Foggy
Cityscapes KITTI

DA-
Faster

Faster R-
CNN

H-divergence based
Discriminator

✓ ✓ ✓ 2018

SWDA Faster R-
CNN

Weak Global and Strong
local Feature Alignment

✓ ✓ ✓ 2019

SCDA 
Faster R-

CNN
Region-Level Adversarial

Alignment
✓ ✓ - 2019

CFA 
Faster R-

CNN
Prototype-based Semantic

Alignment
✓ ✓ ✓ 2020

MAF 
Faster R-

CNN
Adversarial domain

alignment loss
✓ ✓ ✓ 2019

CDN 
Faster R-

CNN
CDN-based adversarial loss ✓ ✓ ✓ 2020

HTCN 
Faster R-

CNN
Pixel-wise adversarial loss ✓ ✓ - 2020

ODSC
SSD

Pseudo Labels and Style
Transfer alignment

✓ ✓ - 2020

SFA DefDETR
Token-wise and

Hierarchical Sequence
Feature Alignment loss

✓ ✓ - 2021
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