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Diet analysis is a critical content of animal ecology and the diet analysis methods have been constantly improving

and updating. Traditional diet analysis methods include direct observation of foraging behavior, the cafeteria diet,

microscopic identification of prey remains in fecal and stomach contents. The molecular-based analysis of animal

diets has recently become popular, as they confer high resolution and accuracy, which is mainly achieved through

the cloning sequencing or the next generation sequencing (NGS) on the amplification of prey DNA in dietary

samples.

next generation sequencing (NGS)  diet analysis  DNA metabarcoding  trophic link

1. Introduction to Diet Analysis

What an animal eats is perhaps the most ecologically important background information we can understand the

species’ nutrition ecology , and diet analysis is one of the important contents of animal ecology . It is the

prerequisite for evaluating the host health, understanding the relationship between animal and environment,

exploring predator-prey dynamics, uncovering trophic interactions, explaining behavioral plasticity and even

faciliating pest management . It also benefits constructing habitat selection and utilization models,

determining foraging strategies and nutrient flows, assessing species’ survival status and ecosystem function,

discovering the mechanistic processes behind complex food web dynamics and other hot issues . How to

accurately and precisely identify the diet compositions and proportions of different prey items remains a challenge

before introducing molecular techniques. It is very important to have reliable dietary data before exploring biological

and evolutionary questions involved with food intake .

Dietary intake is relatively very difficult to be measured reliably in humans because approaches of diet analysis

typically rely on self-reporting, which can be incomplete and biased . Traditional diet analysis methods include

direct observation of foraging behavior, the cafeteria diet, microscopic identification of prey remains in fecal and

stomach contents . The operation of field behavior observation is poor and the results are qualitatively

descriptive , and the cafeteria diet method is more suitable for studying animal diet preferences in captive

environment . The stomach contents analysis is a destructive approach and clearly less acceptable in

mammalian studies . Microscopic analysis has a high requirement on the microscopic identification technology

and the work is labor intensive, and it has low resolution on diet items with similar micro-morphological tissues .

Both methods of plant alkane fingerprint and near-infrared reflectance spectroscopy are mainly used in the nutrient

research of herbivores, but cannot determine the diet composition . Stable isotope analysis has advantages in
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determining the structure of food webs and analyzing energy flows, however, it still is difficult to investigate the fine-

scale diet patterns often sought in food web studies .

The molecular-based analysis of animal diets has recently become popular, as they confer high resolution and

accuracy, which is mainly achieved through the cloning sequencing or the next generation sequencing (NGS) on

the amplification of prey DNA in dietary samples . Both approaches need to be combined with DNA

metabarcoding using general or group-specific primers. The cloning approach has more obvious advantages than

non-DNA based diet analysis methods, but has its own limitations, for example, sequencing more clones will

greatly increase the workload and the cost, but the effect may not necessarily be improved . With the

development of NGS, this technology is gradually extended to diet analysis, and its unique advantages make

relevant dietary studies emerge, covering mammals, birds, amphibians, fish and even invertebrates .

However, applying NGS into diet analysis has not been paid more attention as conservation genomics and

ecological metagenomics, and it is still not as widely used as might be expected .

2. Conceptual Framework of Diet Analysis Using NGS

The overall framework of analyzing animals’ diet based on NGS is: Collect samples (faeces or gut contents) used

for prey DNA extraction; Extract prey DNA in animal pellets and remains; Select the corresponding DNA barcodes

with both high universality and high resolution; Construct reference databases from potential dietary species;

Conduct PCR amplification on extracted DNA; Sequence the PCR products using NGS platforms; Blast NGS

generated DNA sequences with the constructed DNA barcode database consisting of local potential food resources

and/or the public database; Identify food taxa according to the sequence coverage and similarity (Figure 1).
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Figure 1. An overview of conceptual framework of diet analysis using next-generation sequencing (NGS).

2.1. Sample Collection and DNA Extraction

At present, the vast majority of dietary studies applying NGS use feces as the sample, because fecal samples

contain the undigested feed materials, and are easily collected. However, stomach contents are applied for

studying the diet of rodents, locust and fish . In some avian studies, pellets are also used as

complementary samples . Non-invasive sampling of feces is particularly suitable for studying animals, especially

when monitoring the diet for a long time. The freshness of feces is the key to determine the quality of fecal DNA,

which can directly affect the performance of DNA extraction, PCR and sequencing. The quality of fecal DNA is also

related to the sampling part of feces. Sampling and mixing the center, the middle and the out layer of feces can

significantly improve the detection rate of prey DNA, especially for the rare item that animals consume less

frequently .

The effects of sample preservation methods and DNA extraction methods on DNA quality have been well studied in

conservation genetics , but its effect on diet analysis has rarely explored. In NGS diet analysis, common

preservation methods include silica-gel drying (rodents ; brown bear ), buffer solution (lizard ), ethanol (bat

), freezing (bat ; lizard ; seal ; great bustard ), etc. There are also two-step preservation methods,

such as ethanol and cryopreservation (bat ) and ethanol and silica-gel preservation (leopard cat ).

Researchers also need to consider the feasibility of conservation methods and the convenience of transporting into

consideration.

The DNA extraction method mostly adopts the more commonly commercial kit, and also some researchers select

the tissue DNA kit according to the feeding habits difference of the targeted species . Most studies use QIAamp

DNA Stool Mini Kit, but there are exceptions. The inhibitex in QIAamp DNA Stool Mini Kit contains the potato

adsorbent, which may be mixed in DNA extraction, and it may make potato appear in the diet . MoBio,

Epicentre, and Qiagen’s fecal DNA extraction kits have a poorer effect than CTAB extraction method in analyzing

diet of Corvus corone , but it may depend on the predator. For some species, the extraction effectiveness of

QIAamp DNA Stool Mini Kit is significantly lower than Zymo Soil/Fecal DNA MiniPrep Kit . Therefore, it is crucial

to optimize the key step of fecal DNA extraction, to efficiently yield trace amounts of prey DNA while simultaneously

minimizing potential PCR inhibitors.

2.2. PCR Amplification and NGS Processing

The greatest advantage of applying NGS into diet analysis is that it can mix several PCR products, thus a large

amount of data can be obtained in one NGS reaction. Multiple samples at a large scale can be analyzed in one

NGS run, and as a consequence costs of diet analyses will diminish dramatically. To separate and identify samples

after NGS sequencing, NGS uses incorporated tags in synthesized primers, and these tags often called MIDs can

play a role to identify the individual sample . The tagging process is completed while synthesizing the primer,

which is respectively adding bases to the 5 ‘end of the forward primer and the reversed primer. The base number
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depends on the individual number of mixed samples, and the more samples are, the more base numbers are. But

too much base numbers will affect PCR efficiency. Octamer are generally used, and the difference between

octamers should be bigger than 5, which can meet the common requirement . Adopting multiplex PCR can

improve the efficiency of experiment, but PCR conditions need to be optimized. How to choose the DNA barcoding

primers depends on the feeding habits of animals, and we summarize the frequently used primers in NGS dietary

studies to facilitate the readers. In order to suppress amplification of DNA fragments derived from the predator, a

predator-specific blocking oligonucleotide is designed when preparing libraries, which can effectively improve the

sensitivity in rare prey detection . However, blocking probes can potentially block other prey species,

particularly if predators and preys are phylogenetically close .

2.3. Building a Local Reference Database

Sequences generated by the NGS platforms need to be blasted with the public and local database, and the prey

species corresponding to the sequence in the database can be identified . Because animals and plants vary due

to geographical distributions, the public database (NCBI, EMBL, and DDBJ) just include part of DNA barcodes

uploaded by local researchers, which may result into a low resolution taxa assignation . In addition, there are

various types of DNA barcodes, and the resolution is also different. Different DNA barcodes or DNA barcode

combination can be selected according to the diet habit. But if the public database lacks of this kind of DNA

barcode data, the classification accuracy of diet analysis will be reduced. This means that the local DNA barcodes

database of all local potential diet resource, where animals potentially eat, should be collected and identified by

both morphological and molecular methods.

The process of constructing local DNA barcode database is as follows: (1) Collecting the specimen potentially

consumed by predators in the predator’s distribution, and morphologically determining the species with the

assistance from the taxonomic experts; (2) Extracting the DNA and amplifying them in terms of each DNA

metabarcoding marker. (3) Constructing the local reference database through Sanger sequencing. Taking

analyzing diets of herbivores as an example, constructing a rbcL library can make the proportion of identification to

species level reach to 72% . However, if the local database is not constructed, the proportion of identification to

species will be significantly reduced. For example, just 4–20% of sequences are able to be identified to species or

genus level while blasting NGS data of bats . The enormous DNA extracts obtained locally are therefore also

considered as a resource, as new DNA barcoding regions can be amplified and sequenced based on the same

DNA extracts. More importantly, the local DNA barcode database itself can be directly used in the assessment and

monitoring of biodiversity .

2.4. Data Filtering and Analysis

When blasted with the established local reference database and the public database, taxon assignation of the prey

can be achieved using the sequence similarity and a unique taxon will be assigned to a unique sequence, but the

setting of threshold value is still controversial now. Some studies adopt the relaxed similarity threshold value to

determine the taxonomic category of species, such as adopting 97% , or they may adopt more rigorous
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thresholds value, such as using 99%  and 100% . Some researchers recommended that different

threshold values should be used according to different DNA barcodes and the questions addressed . For some

studies that do not construct a local database, though they can adopt the clustering method to complete the

differential analysis of diet composition through the Molecular operational taxonomic units (MOTU) in subsequent

classification and difference analysis. Generally speaking, constructing the local database will help to improve the

more accurate taxonomic assignation, with clear reference to what food resources are actually available in the

habitat and ecologically meaningful to the predator . For related species living in different habitats or

biogeographical regions, they may share the same barcode sequence, and it may be identified to a higher

taxonomic level (i.e., genus, family, phylum) when blasting a database constructed at the worldwide level.

NGS technologies have the ability to generate millions of sequence reads per sequencing run and as a

consequence enormous sequence reads per sample . However during this process, a variable number of

erroneous sequences may originate from DNA degradation, contamination, PCR bias, primer dimers, sequencing

errors, chimeras, etc. Ineffective controlling and filtering of such erroneous data can produce an overestimation of

the number of molecular operational taxon units (MOTUs), and inaccurate diet assessments will interfere with the

application. Generally, it is suggested to use internal controls, PCR replication and sequence distribution patterns

across samples to objectively guide and choose the data filtering criteria and parameters in post-sequencing

dietary data analysis.
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