
Lysine Acetylation | Encyclopedia.pub

https://encyclopedia.pub/entry/2656 1/13

Lysine Acetylation
Subjects: Biochemistry & Molecular Biology

Contributor: Rui Wang , Hongyang Sun , Guanghui Wang , Haigang Ren

Acetylation of lysine residues is a key post-translational modification for protein functions in all eukaryotic

organisms. Acetylation of lysine residues can be catalyzed by lysine acetyltransferases (KATs) or modified by

abundant Ac-CoA through nonenzymatic mechanisms. Conversely, lysine deacetylation is catalyzed by lysine

deacetylases (KDACs).

Lysine Acetylation  lysine acetyltransferases  lysine deacetylases

1. Introduction

Acetylation of lysine residues originally discovered in 1964 as a unique post-translational modification of histones,

modifications of lysine acetylation and deacetylation are now found in thousands of nonhistone proteins which are

located in virtually every cellular compartment and have essential roles in various cellular processes including gene

regulation, cell signaling, and metabolism, as well as contribute to the progression of multiple diseases.

2. Lysine Acetylation and Its Regulatory Mechanism and
Functions

2.1. Lysine Acetylation and Its Functions

Lysine acetylation in histones was first described by Vincent Allfrey and his colleagues in 1964 . Lysine acetylation

is an evolutionarily conserved and reversible posttranslational modification (PTM) in eukaryotes that precisely

governs protein functions and involves transfer of an acetyl group donated by acetyl coenzyme A (Ac-CoA) to the ε-

amino side chain of a protein lysine residue. Lysine acetylation occurs in both histones and nonhistone proteins.

Lysine acetylation of histones such as Histone 2A (H2A), Histone 2B (H2B), Histone 3 (H3), and Histone 4 (H4)

generally results in transcriptional activation due to destabilization of DNA-histone binding, as acetylation of lysine

neutralizes its positive charge, which prevents the formation of salt bridges with the negatively charged phosphate

backbone of DNA . In addition to histones, many nonhistone proteins in the cytoplasm and organelles are also

dynamically acetylated and deacetylated; these changes are closely implicated in the regulation of various cellular

processes, including gene transcription; cell cycle progression; DNA damage repair; cellular signal transduction;

protein folding stability and aggregation; cytoskeleton organization; RNA processing and stability; and autophagy

regulation .
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Acetylation of lysine residues can be catalyzed by KATs or modified by abundant Ac-CoA through nonenzymatic

mechanisms. Conversely, lysine deacetylation is catalyzed by KDACs, which comprise two major groups with

distinct catalytic mechanisms: NAD -dependent Sirtuins (SIRTs) and Zn -dependent histone deacetylases

(HDACs) (Figure 1). The acetylation levels of lysines are highly dynamic, and the balance between lysine

acetylation and deacetylation is precisely controlled by KATs and KDACs as well as by the concentration of Ac-CoA

in organellar compartments such as mitochondria .

Figure 1. Schematic overview of lysine acetylation and deacetylation. Lysine acetylation, which is catalyzed by

KATs, involves transfer of an acetyl group from Ac-CoA to the ε-amino side chain of lysine or occurs

nonenzymatically. Deacetylation of lysine residues is catalyzed by Zn2 -dependent HDACs or by NAD -dependent

SIRTs. NAD , nicotinamide adenine dinucleotide.

2.2. KATs and KDACs in Humans and Their Involvement in PD

To date, at least 22 human KATs have been identified to display acetyltransferase activity; these KATs can be

divided into three major families: the MYST family, the GNAT family, and the p300/CBP family  (Table 1). The

substrate specificity of KATs is primarily determined by their subcellular distribution or interacting partners or by the

availability of lysine in substrates . Most KATs are localized mainly in the nucleus, where they mediate processes

including but not limited to histone acetylation, and some KATs also located in the cytoplasm are responsible for

cytoplasmic substrate acetylation . Recently, GCN5-like 1 (GCN5L1) and Ac-CoA Acetyltransferase 1 (ACAT1)

+ 2+
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were identified as mitochondrial KATs that regulate mitochondrial functions by acetylating several mitochondrial

substrates . In addition, the well-known nuclear KAT8/MOF is also found to localize to mitochondria and affect

mitochondrial functions . The classifications, subcellular localization, involvement in PD models, and relevant

substrates of these KATs are presented in Table 1. However, to date, only a small proportion of KATs have been

identified to be related to PD (Table 1).

Table 1. Human KATs and their involvement in PD.

Family Name Subcellular Localization

PD Model/KAT

Change/Substrate Acetylation

Changes

GNAT KAT1/HAT1 Nucleus
Mn/expression ↓/H3 and H4 ↓

.

GNAT KAT2A/GCN5 Nucleus MPP /activity ↑/PGC-1α ↑ .

GNAT KAT2B/PCAF Nucleus NA

GNAT KAT9/ELP3 Nucleus/cytoplasm NA

GNAT αTAT1/ATAT1 Cytoplasm/membrane

LRRK2 knockout/NA/α-tubulin ↑;

LRKK2 R1441C or Y1699C/NA/

α-tubulin ↓ .

p300/CBP KAT3A/CBP Nucleus/cytoplasm
Dieldrin/expression ↑/H3 and H4

↑ .

p300/CBP KAT3B/p300 Nucleus/cytoplasm
α-syn/expression and activity

↓/NF-κB-p65 or H3 ↓ .

MYST KAT5/TIP60/PLIP Nucleus/cytoplasm NA

MYST KAT6A/MOZ/MYST3 Nucleus NA

[8][9]
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MYST KAT6A/MORF/MYST4 Nucleus NA

MYST KAT7/HBO1/MYST2 Nucleus NA

MYST KAT8/MOF/MYST1 Nucleus/mitochondria NA

Other KAT4/TAF1/TAFII250 Nucleus NA

Other KAT12/TFIIC90 Nucleus NA

Other KAT13A/SRC-1/NCOA1 Nucleus NA

Other KAT13B/SRC-3/NCOA3 Nucleus/cytoplasm NA

Other KAT13C/SRC-2/NCOA2 Nucleus NA

Other KAT13D/CLOCK Nucleus/cytoplasm NA

Other ATF-2/CREB2 Nucleus/cytoplasm NA

Other NAT10 Nucleus NA

Other ACAT1 Mitochondria NA

Other GCN5L1 Mitochondria NA

↑, upregulation; ↓, downregulated; NA, not available; PGC-1α, peroxisome proliferator-activated receptor γ

coactivator-1α; NF-κB, nuclear factor Kappa-B.

KDACs, originally referred to HDACs, were initially discovered to deacetylate histones in 1995 . Later, they were

also found to regulate nonhistone protein acetylation and cellular functions . Currently, KDACs are grouped into

[18]
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two major types: NAD -dependent SIRTs (SIRT1-7) and Zn -dependent HDACs (HDAC1-11). They can also be

divided into four categories according to phylogeny and sequence similarities: Class I, Class IIa, Class IIb, and

Class IV (Table 2). Recently, lymphoid enhancer-binding factor 1 (LEF1) and T cell-specific transcription factor 1

(TCF1) were identified as novel KDACs that are not related to the abovementioned types of KDACs . Zn -

dependent HDACs are primarily distributed in the nucleus or cytoplasm, although HDAC1 and HDAC7 are also

found in mitochondria in some types of cells or under certain conditions . In contrast, some SIRTs, including

SIRT3-5, are restricted to the mitochondria, indicating their unique and crucial roles in mitochondria. However, it

should be noted that several KDACs, such as that of SIRT4-6 and some class IIa HDACs, display weak or no

deacetylase activity or target other types of acylation . For example, SIRT5 exerts the activity of desuccinylase,

demalonylase, and deglutarylase ; SIRT4 removes the acyl moieties from lysine residues such as

methylglutaryl-, hydroxymethylglutaryl- and 3-methylglutaconyl-lysine ; SIRT6 functions to deacetylate long-chain

fatty acyl groups rather than protein deacetylation ; The classifications, subcellular localization of KDACs, as well

as their involvement in PD and the relevant acetylation of substrates are presented in Table 2.

Interestingly, the activity or expression levels of nuclear SIRT1 and mitochondrial SIRT3 are consistently decreased

in PD tissues and different PD models. The activity or expression levels of nuclear HDAC2 and HDAC3 are

increased in most PD models, but the expression levels of HDAC2 are decreased in tissues of PD patients.

Furthermore, the activity or expression levels of two main cytoplasmic KDACs, HDAC6 and SIRT2, are

downregulated and upregulated in most PD models, respectively (Table 3). Of note, beyond acetylation, several

KATs/KDACs have activity of other acylation modifications including propionyl, butyryl, 2-hydroxyisobutyryl,

crotonyl, malonyl, succinyl, or glutaryl modification. For example, p300 has crotonyltransferase activity , while

KAT2A/GCN5 has both crotonyltransferase and uccinyltransferase activity , whereas HDAC1/2/3/8 and

SIRT1-3 possess decrotonylating activity . Whether these changes in KATs or KDACs in PD patients or

models also cause variation of other acylation modifications, and the roles of these acylation variations in PD

pathology, deserve further research.

Table 2. Human KDACs and their involvement in PD.

Class Name Subcellular Localization
PD Model/KDAC Change/Substrate Acetylation

Level Change

I HDAC1 Nucleus
Patient tissues, MPTP or MPP /expression ↓/H2A,

H2B, H3 and H4 ↑ .

I HDAC2 Nucleus Patient tissues, MPTP or MPP /expression ↓/H2A,

H2B, H3 and H4 ↑ ; MPP /expression ↑/NA ;

idiopathic PD fibroblasts/expression ↑/H3 ↓; LRRK2

G2109S PD fibroblasts/expression ↑/H3 ↓ .
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I HDAC3 Nucleus

Idiopathic PD fibroblasts/expression ↑/H3 ↓ ;

Mn/expression ↑/H3 and H4 ↓ ; LRRK2 or

mutation/phosphorylation ↑, nuclear translocation ↑

and activity ↑/H4 ↓ ; PINK1

mutation/phosphorylation ↓ and activity ↓/p53 ↑ .

I HDAC8 Nucleus/cytoplasm NA

IIa HDAC4 Nucleus/cytoplasm

Patient tissues, MPTP or MPP /expression ↓/H2A,

H2B, H3 and H4 ↑ ; paraquat/expression ↓/H3 ↑

; idiopathic PD fibroblasts/expression ↑/H3 ↓,

LRRK2 G2109S PD fibroblasts/expression ↑/H3 ↓ [48];

Mn/expression ↑/H3 and H4 ↓ .

IIa HDAC5 Nucleus/cytoplasm NA

IIa HDAC7 Nucleus/cytoplasm Paraquat/expression ↓/H3 ↑ .

IIa HDAC9 Nucleus/cytoplasm NA

IIb HDAC6 Primarily cytoplasm

Patient tissues, MPTP or MPP /expression ↓ ;

idiopathic PD fibroblasts/expression ↓, LRRK2

G2109S PD fibroblasts/expression ↓ ; Parkin

absence/NA/α-tubulin ↑ ; ATP13A absence/activity

↓/α-tubulin ↑ ; 6-OHDA/expression ↑/peroxiredoxin

1/2 ↓ .

IIb HDAC10 Primarily cytoplasm NA

III SIRT1 Nucleus Patient tissues, MPTP or MPP /expression ↓/H2A,

H2B, H3 and H4 ↑ ; patient tissues/activity ↓ ;

MPTP/expression ↓/LC3 ↑ ; MPTP/S-nitrosylation ↑

and activity ↓/p53 and NFκB-p65 ↑ ;

MPP /expression ↓/H3 and PGC-1α ↑ ;
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rotenone/expression ↓/H3 ↑ ; 6-OHDA/expression

↓/BMAL1 ↑ ; LRRK2 G2019S iPSC-derived

dopaminergic cultures/activity ↓/p53 ↑ .

III SIRT2 Cytoplasm

MPTP/activity ↑/α-syn ↓  [64]; α-syn/activity ↑/α-

tubulin ↓ ; MPTP or MPP /activity ↑/Foxo3a ↓ ; 6-

OHDA/activity ↓/α-tubulin ↑ .

III SIRT3 Mitochondria

Patients/NA/MnSOD ↑ ; MPTP/expression ↓/SOD2

and ATP5B ↑ ; MPP /expression ↓/citrate synthase

and isocitrate dehydrogenase 2 ↑ ; α-syn/expression

↓/SOD2 ↑ ; LRRK2 G2019S iPSC-derived

dopaminergic cultures/activity ↓/SOD2 ↑ .

III SIRT4 Mitochondria NA

III SIRT5 Mitochondria NA

III SIRT6 Nucleus NA

III SIRT7 Nucleolus NA

IV HDAC11 Primarily nucleus NA

Other TCF1 Nucleus NA

Other LEF1 Nucleus NA

↑, upregulation; ↓, downregulated; NA, not available, Mn, manganese; BMAL1, brain and muscle arnt-like 1; iPSC,

induced pluripotent stem cells, Foxo3a, Forkhead box O3; ATP5B, ATP synthase subunit β; SOD2, superoxide

dismutase.
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