
Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 1/12

Developing IoT Artifacts in a MAS Platform
Subjects: Computer Science, Artificial Intelligence

Contributor: Vicente Julian

The Internet of Things (IoT) is a computational paradigm where a massive number (perhaps billions) of ordinary

objects are endowed with interconnection capabilities, making them able to communicate and cooperate with other

(surrounding) devices, generally via the Internet.. The Internet of Things (IoT) is a growing computational paradigm

where all kinds of everyday objects are interconnected, forming a vast cyberphysical environment at the edge

between the virtual and the real world. Since the emergence of the IoT, Multi-Agent Systems (MAS) technology has

been successfully applied in this area, proving itself to be an appropriate paradigm for developing distributed,

intelligent systems containing sets of IoT devices. However, this technology still lacks effective mechanisms to

integrate the enormous diversity of existing IoT devices systematically.

multi-agent systems IoT agent platforms artifacts

1. Introduction

The Internet of Things (IoT) is a computational paradigm where a massive number (perhaps billions) of ordinary

objects are endowed with interconnection capabilities, making them able to communicate and cooperate with other

(surrounding) devices, generally via the Internet. The growing effect of this paradigm is the appearance of a vast,

decentralized, heterogeneous, and dynamic ecosystem where everyday objects (sensors, gadgets, tags,

wearables, etc.) become active participants in processes of all kinds, such as industrial, logistic, domotics, social,

health care, etc.

In this paradigm, the “things” that become interconnected, generally via the Internet, are sometimes called “smart

objects.” However, many objects used currently still lack actual intelligence mainly due to their limited hardware

and software resources. This lack has hindered the development of intelligent end-to-end solutions in the IoT

arena, which can effectively integrate different AI techniques in a simple, transparent, and distributed way. In this

sense, since the emergence of the IoT in 1999 , Multi-Agent-Systems (MAS)-based technology has fostered the

connection of small, commonly used devices to open distributed intelligent systems, enabling these devices to

exchange and transmit knowledge in real time . Furthermore, there is remarkable parallelism between the Agent-

Based Computing (ABC) and Multi-Agent Systems (MAS) paradigms and the smart object and IoT ecosystem

concepts, respectively. Hence, many researchers have extensively used such paradigms methodologically in the

IoT domain, as well as to model, program, or simulate IoT systems .

One class of MAS that fits the requirements of the IoT is open multi-agent systems, which has received significant

interest from the scientific community in recent years. Open multi-agent systems are defined as open systems

[1]

[2]

[3]

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 2/12

consisting of heterogeneous entities with a separation between form and function that explains their behavior ,

and they are particularly suitable for the implementation of virtual organizations. Recent research conducted on the

modeling and implementation of open MAS in complex scenarios includes the works published in . Numerous

proposals have worked on improving the intelligence of IoT systems (e.g., a MAS equipped with swarm

intelligence). However, in most cases, current IoT networks are still incapable of generating cooperative

strategies that make these networks act as ubiquitous and intelligent systems .

In particular, one critical problem of the IoT is its intrinsic heterogeneity. According to , the heterogeneity of

devices and the high technological diversity in the IoT impose an enormous modeling effort for large-scale

systems, where thousands of different devices may coexist. At this moment, multi-agent systems lack mechanisms

to deal with this diversity effectively.

2. The SPADE Platform

SPADE is a multi-agent system platform whose primary purpose is to provide a flexible, simple, and open agent

execution framework. The cornerstone of this platform is the employment of a communication mechanism based

on the XMPP standard for instant messaging, which is the same one typically used in a chat program.

Therefore, humans can interact with software agents as they would with other humans by connecting to XMPP

servers and exchanging “chat messages”.

The two main characteristics of the SPADE platform are the extensive and strategic usage of the XMPP standard

and its proposed agent model, which are now presented in the two following subsections.

2.1. XMPP

The XMPP protocol provides the necessary elements for real-time conversations. In addition to exchanging

messages, which can be used between agents, between humans, and even between agents and humans, XMPP

has a presence notification system, which lets contacts know if their contact list or roster is online or unavailable.

Since the IETF formalized XMPP as the standard for instant messaging and presence notification, it is now an

open standard that offers several compelling features:

Decentralized: XMPP is based on an architecture similar to email. In particular, it features a client–server

architecture in which the clients connect to a private server or a public one. Servers exchange messages

between them (as mail servers do) to deliver each message to its recipient;

Secure: XMPP has a robust security system including a secure transport layer and a secure authentication

system that allows for establishing ciphered communications between entities. In addition, an XMPP server may

be isolated from the Internet if required;

Extensible: XMPP is based on XML, allowing it to easily include new features in the protocol to extend its

capabilities. A set of extensions to the protocol (called XEPs) is continuously improved, but it is also open to

everyone to build their private extensions to fit any particular need;

[4]

[5][6][7]

[8]

[9]

[10]

[11]

[12]

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 3/12

Flexible: Besides instant messaging, there are numerous applications for which XMPP can be used. Agent

communication is just one application, but XMPP is also used for many other purposes, such as network

management, collaboration tools, gaming, file sharing, content syndication, web services, or remote

system monitoring;

Proven: XMPP was initially proposed in 1998 by Jeremie Miller, and currently, it is a very stable and well-tested

standard, with hundreds of developers and tens of thousands of XMPP servers deployed around the world.

Some big companies use XMPP (or a protocol modification) as the core of their services (e.g., WhatsApp,

Google Talk, Facebook Messenger);

Open: The XMPP protocol is free, open, public, and easy to understand. There are no limits for the

implementations and the collaboration in the standard development.

This protocol is the core element of the SPADE platform because agents need an adequate and efficient transport

layer that can be extended to foster new types of interactions (computer-to-human, computer-to-computer, human-

to-human) and tackle new requirements or domains successfully. In this sense, it is worth mentioning that a

working group inside the XMPP Foundation is devoted to studying the application of XMPP to the IoT domain.

The support defined by the XMPP standard perfectly fits the main requirements of the IoT, such as the need for

communication protocols and standards, the usage of communication patterns (publish/subscribe, event

subscription, delayed delivery, etc.), scalability, security, and interoperability, among others. The model of the IoT

artifact presented later in this paper takes advantage of these features to provide appropriate support to artifacts in

this domain, including new functionalities such as presence notification.

2.2. The Agent Model

Agents in SPADE are autonomous entities with a transport layer based on the XMPP protocol. By design,

the activities that agents perform are encapsulated into components called behaviors. Every agent may define one

or more behaviors, and the platform executes them independently. In addition, the agent has a connection

mechanism called the message dispatcher to deliver the agent’s incoming messages to each of its behaviors. This

proposal is similar to those available on other platforms, such as JADE.

The main characteristic of a behavior is its life cycle, which depends on how the behavior runs. SPADE offers

different behaviors, in particular: CyClicBehavior, which runs forever in an infinite loop until the agent is

stopped; OneShotBehavior, which runs just one time and then is destroyed; PeriodicBehavior, which runs

every pre-defined period of time; TimeoutBehavior, which is a subtype of OneShotBehavior, which runs after

a timeout. Finally, a more complex type of behavior allows the agent developer to create finite-state machines,

which gives the developer a more powerful control over the design of the agent. As shown in Figure

1, CyclicBehavior is the base of all the other behaviors.

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 4/12

Figure 1. SPADE’s behavior hierarchy.

In addition, SPADE has recently incorporated BDI behaviors . This new class of behavior allows for the

development of agents that operate on desires and intentions, coded in the AgentSpeak language .

Apart from the agent model, SPADE offers agent developers many functionalities and much flexibility to build their

multi-agent system applications. The main ones are now highlighted. First, designers can easily integrate complex

perception behaviors (such as artificial vision or natural language processing) by using the advantages offered by a

language such as Python. Second, SPADE has been developed by following an asynchronous programming model

to increase the developed applications’ performance and responsiveness. This programming model improves the

scalability of MAS implementations by optimizing the send and receive operations (as well as any other I/O

operation), which is a crucial aspect in IoT environments, where the system may need to interact with hundreds or

thousands of devices. Third, although there is a complete reference implementation of SPADE in Python, the

SPADE framework is, in fact, language-agnostic. As long as the implementation follows the communication

protocols defined by the platform (based on the XMPP standard), agents may be implemented in any language.

For example, implementing SPADE agents in the C language may be appropriate in embedded systems with

[13]

[14]

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 5/12

scarce hardware resources. Fourth, SPADE favors the incorporation of new functionalities as plugins, which makes

it easy for the community to extend the support. Examples of recent plugins are the spade-bdi and spade-pubsub

plugins, which have incorporated the BDI behaviors and the publish–subscribe protocol, respectively.

Regarding the design and implementation of multi-agent systems, SPADE provides the developer with the agent

concept to model the system’s intelligent behavior. However, a much simpler and lighter abstraction was needed to

adequately model the environment, especially in cyberphysical and IoT scenarios. In such scenarios, the system

typically accesses the environment through a series of small devices with scarce computational resources. To this

end, the following section incorporates the concept of the IoT artifact into SPADE to facilitate the development of

SPADE-based MAS in the context of IoT environments.

3. The IoT Artifact

This section presents a specialization of the A&A meta-model described in the previous section, which is called the

IoT artifact. This specialization allows for the modeling of IoT devices and their implementation in the SPADE

platform. The IoT artifact model attempts to maintain the expressiveness of the previously presented theoretical

model while also considering the specific aspects of IoT devices, as their limited computational resources,

and integrating all these characteristics into the programming model of the SPADE platform.

In summary, the IoT artifact specialization model proposes a correspondence between each of the elements and

an entity in the SPADE platform:

IoT artifact. An IoT artifact is a new SPADE computational element that can communicate with agents (through

an XMPP server). IoT artifacts associate with a workspace by registering to the corresponding XMPP server

and present a well-known interface by which SPADE agents may use them, as described below. This interface

includes all the characteristics of the theoretical model, except the so-called linked interface, which SPADE

does not support due to the distinct shortage of the computational resources of IoT devices.

Compared to the theoretical model, an IoT artifact always includes a particular observable property called

presence, which maintains the current state of the associated IoT device. By using this property, agents

interested in a given IoT device may know its availability and any other application-specific status information

that the artifact can express;

Workspace. The theoretical concept of workspace here corresponds to an XMPP server, which is the

component in the SPADE platform that supports the communication among all the SPADE communicating

parties (agents and artifacts). In this model, any IoT artifact must register to an XMPP server before being

accessible to agents. IoT artifacts register (and therefore belong) to a single XMPP server;

Environment. Following the workspace definition above, this concept would be equivalent to the group of all the

XMPP servers involved in a particular multi-agent system;

Agent. This entity corresponds to a SPADE agent. SPADE agents can communicate with other agents and

artifacts, among other features.

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 6/12

Table 1 compares the basic features and properties that are essential for artifacts independent of the

implementation model, according to . The table also includes some relevant implementation considerations,

in each case comparing its availability in the CArtAgO platform and in the IoT artifact framework. The main novelty

of the IoT artifact’s proposal is the consideration of the typical characteristics of IoT devices, to which the model

has been targeted. In particular, the strict limitation of computational resources that is common in such devices has

been especially taken into account. As a result, a minimal artifact model has been proposed, by which artifacts can

be implemented in languages such as Python or C, and be directly executed in small, embedded devices. On the

contrary, the CArtAgO approach requires a Java virtual machine to execute the artifact’s code. However, it is

important to point out that, despite being minimal, the IoT artifact model incorporates all the features of the abstract

model, except the linked interfaces, as they can produce too much computational cost for small devices.

Table 1. Comparison of features between CArtAgO and IoT artifacts.

Regarding communication aspects, SPADE agents may communicate with any IoT artifact registered to any

workspace (XMPP servers) known to the agent. To do so, a SPADE agent needs first to send a focus request to

the XMPP server, expressing an interest in that particular IoT artifact. Once under its focus, the agent will be able

to interact with the IoT artifact by using its interface.

The interface of an IoT artifact defines two types of interactions. The first type permits accessing the artifact’s

observable properties (perceptions), including the presence property mentioned above. The second one allows for

the artifact’s operation, which typically will modify its internal state or make the artifact actuate over the

environment or both. The following subsections explain these interface features in further detail, which are related

to the functionalities of the XMPP protocol adopted by SPADE.

3.1. Perception of Observable Properties

[15]

Features CArtAgO IoT Artifacts

Identity
Full name (including

Workspace)
JID (Jabber ID)

Usage interface and events
Set of operations and

observable events
Op. interface: Jabber-RPC, default

observable property (presence)

Function description and
operating instructions

Yes Not available in the current version

Observable state Yes Presence

Programming language Java Python 3, Python 2.7, C

Virtual machine needed Yes No

Linked interface Yes No

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 7/12

IoT artifacts generally perceive their environment by using physical sensors attached to the corresponding IoT

device and change their internal variables accordingly. Such variables correspond to the observable properties in

the meta-model above. As a result, every time one of these observable properties changes its value, the IoT

artifact should generate the corresponding observable events to communicate the change to the interested agents.

As explained above, agents must focus on an artifact before interacting with it. In order to focus and also to

observe the artifact’s properties, SPADE proposes to use an extension of the XMPP protocol called Publish–

Subscribe (PubSub) https://xmpp.org/extensions/xep-0060.html. This extension enables any individual connected

to an XMPP server to subscribe to the information that any other connected entity may want to share. Once

subscribed, the interested individual automatically receives updates any time the entity publishes new information.

The mechanism works in two steps. First, an agent sends a message to the workspace (the XMPP server) to

subscribe to an IoT artifact. Then, whenever the artifact generates a new observable property value or event, it

publishes the event with the updated information, which all subscribed agents receive. This way, agents may keep

track of the information they are interested in by focusing on the corresponding IoT artifacts. Figure 2 illustrates

these interactions by the dashed lines, where Agent 1 focuses (subscribes) on Artifact 1, which perceives the

environment temperature, and then, it automatically receives the published events corresponding to temperature

changes perceived by the artifact.

Figure 2. Examples of interactions between IoT artifacts and agents in SPADE.

3.2. Presence Notification for Artifacts

Presence notification is a typical feature of SPADE agents that has also been incorporated into IoT artifacts since it

is considered an advantageous property for artifacts in IoT scenarios.

In essence, presence notification enables any entity connected to an XMPP server to know the availability status of

other connected entities (customarily called the former entity’s contacts) and also to notify its own availability status

to these contacts. This simple yet powerful mechanism can be used for many different purposes (e.g., as a

coordination protocol in distributed systems), and it is helpful in many scenarios. The presence notification

mechanism of XMPP offers the possibility of including custom messages related to each entity’s availability (such

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 8/12

as free, busy, or waiting), but it also sets the status as unavailable if the entity’s connection suddenly drops out.

Thus, IoT artifacts can notify their availability (and any other status) to the interested agents in real time through

this handy feature, allowing them to know if the artifacts are ready to communicate or if they are having some

issue. This way, for example, an agent could decide whether or not to request an operation on the artifact or

ascertain why it is not receiving updates from the artifact’s observable properties recently. In the latter case,

the presence notification system could inform the agent of the artifact’s situation: it has been disconnected; it is

experiencing some technical problems; it needs maintenance; it is simply busy performing other tasks. A simple

interaction of this type is shown by the solid lines in Figure 2, where Artifact 2, representing a pressure sensor,

becomes available, and this is automatically published to any interested agents, as Agent 2 in the figure.

3.3. Operation of IoT Artifacts

SPADE employs another standard extension from the XMPP protocol to implement the operation interface over IoT

artifacts. This XMPP Extension Protocol (XEP) is called Jabber-RPC https://xmpp.org/extensions/xep-0009.html,

and it allows any entity connected to an XMPP server to make available its operations to other entities by using a

well-known Remote Procedure Call (RPC) standard: XML-RPC. By incorporating this standard into SPADE, agents

can send a message with the required operation to an artifact and receive a response, both in a structured form

defined by the standard.

In Listing 1, a typical request message is shown. This example illustrates how to request an artifact to open Valve

Number 4 to 50%, which is also graphically represented as dotted lines in Figure 3, where Agent 3 operates the

valve actuator of Artifact 3.

Listing 1. An example of a request message to an artifact.

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 9/12

3.4. Creating an IoT Artifact

A specific library has been developed to allow for the implementation of IoT artifacts in SPADE in a simple way. Its

installation is performed by including the spade_artifact package. Once this package is installed, the developer can

create instances of the artifact class, which is an extension of an abstract class that provides the PubSub protocol

as shown in Figure 3. According to this figure, the main methods offered by the class are the following: the start

method, which is invoked to start the artifact execution; the setup method, which allows an initialization adjusted to

the domain; the run method, which is the method that includes the code to be executed by the artifact. Other

auxiliary methods are the send and receive methods used for sending and receiving messages and the publish

method for publishing information according to the PubSub protocol.

Figure 3. Class diagram of an IoT artifact in SPADE.

According to this structure, Listing 2 shows a simple example of an artifact devoted to the publication of the

temperature of a particular sensor to all the interested (subscribed) agents. The shown code is incomplete, as it

focuses on the overwriting of two methods only. In the setup method, the artifact, using the presence functionality,

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 10/12

makes itself visible and then accepts by default all the agents that may request the subscription. Subsequently,

the run method enters in an infinite loop that first detects if there are any agents in its contact list and then reads

the current temperature value and publishes it. This simple example illustrates how easy integrating artifacts in the

multi-agent system is.

Listing 2. An example of an implementation of an artifact in SPADE.

The spade_artifact package described above includes the Python implementation of the IoT artifact now included

in the reference version of the SPADE middleware. However, a Python implementation may not be appropriate for

many IoT devices. For example, devices based on the ESP32 or the ESP8266 micro-controllers do not support this

language due to their limited architecture. Thanks to the language-agnostic trait of SPADE, it is possible to

implement the IoT artifact model in different programming languages.

The most obvious choice for IoT devices would be the C language since it is still the most widely used language for

programming embedded systems. For this reason, a C implementation of the IoT artifact has also been developed.

As an example, Listing 3 shows a C implementation of an artifact that is equivalent to the one presented in

Listing 2.

In this case, the definition of an artifact starts with the connection to the WiFi network (method wifi_connection()),

which requires the configuration of the WiFi SSID and WiFi password. The second step is the connection to the

XMPP server, which the artifact performs by calling the init_communication_with_xmpp_server() method. The third

step is to determine if this artifact is visible to the agents, for which the presence_show(true) method is used. Then,

the artifact enters its main loop, where it uses the get_num_available_contacts() to obtain the number of available

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 11/12

contacts (agents) that have subscribed to its presence and are currently online. If this value is at least one, the

artifact reads the temperature value and then publishes it to all the contacts subscribed to that observable property.

Listing 3. An example of an implementation of an artifact in C.

This example illustrates the versatility of SPADE in communicating with very-low-powered systems, allowing direct

communication between the agent and the IoT artifact (running in the device), even if they are implemented in

different languages.

References

1. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015,
80, 1–50.

2. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–
2805.

3. Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based
Internet of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020,
102, 1038–1053.

Developing IoT Artifacts in a MAS Platform | Encyclopedia.pub

https://encyclopedia.pub/entry/20500 12/12

4. Foster, I.; Kesselman, C.; Tuecke, S. The anatomy of the grid: Enabling scalable virtual
organizations. High Perform. Comp. Appl. 2001, 15, 200–222.

5. Bajo, J.; Julian, V.; Corchado, J.; Carrascosa, C.; de Paz, Y.; Botti, V.; de Paz, J. An execution
time planner for the ARTIS agent architecture. Eng. Appl. Artif. Intell. 2008, 21, 769–784.

6. Leitao, P.; Karnouskos, S.; Ribeiro, L.; Lee, J.; Strasser, T.; Colombo, A.W. Smart agents in
industrial cyber–physical systems. Proc. IEEE 2016, 104, 1086–1101.

7. Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-
organized multi-agent system with big data based feedback and coordination. Comput. Netw.
2016, 101, 158–168.

8. Giordano, A.; Spezzano, G.; Vinci, A. Smart agents and fog computing for smart city applications.
In Smart Cities, Proceedings of the First International Conference, Smart-CT 2016, Málaga,
Spain, 15–17 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 137–146.

9. Wu, Q.; Ding, G.; Xu, Y.; Feng, S.; Du, Z.; Wang, J.; Long, K. Cognitive internet of things: A new
paradigm beyond connection. IEEE Internet Things J. 2014, 1, 129–143.

10. Ayala, I.; Amor, M.; Horcas, J.M.; Fuentes, L. A goal-driven software product line approach for
evolving multi-agent systems in the Internet of Things. Knowl.-Based Syst. 2019, 184, 104883.

11. Palanca, J.; Terrasa, A.; Julian, V.; Carrascosa, C. SPADE 3: Supporting the New Generation of
Multi-Agent Systems. IEEE Access 2020, 8, 182537–182549.

12. Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 6120, RFC
Editor. 2011. Available online: https://xmpp.org/rfcs/rfc3920.html (accessed on 8 February 2022).

13. Rao, A.S.; Georgeff, M.P. BDI agents: From theory to practice. In Proceedings of the ICMAS, San
Francisco, CA, USA, 12–14 June 1995; Volume 95, pp. 312–319.

14. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak
Using JASON; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 8.

15. Ricci, A.; Viroli, M.; Omicini, A. Construenda est CArtAgO: Toward an Infrastructure for Artifacts in
MAS. Cybern. Syst. 2006, 2, 569–574.

Retrieved from https://encyclopedia.pub/entry/history/show/49148

