Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

Developing IoT Artifacts in a MAS Platform

Subjects: Computer Science, Artificial Intelligence

Contributor: Vicente Julian

The Internet of Things (IoT) is a computational paradigm where a massive number (perhaps billions) of ordinary
objects are endowed with interconnection capabilities, making them able to communicate and cooperate with other
(surrounding) devices, generally via the Internet.. The Internet of Things (loT) is a growing computational paradigm
where all kinds of everyday objects are interconnected, forming a vast cyberphysical environment at the edge
between the virtual and the real world. Since the emergence of the 10T, Multi-Agent Systems (MAS) technology has
been successfully applied in this area, proving itself to be an appropriate paradigm for developing distributed,
intelligent systems containing sets of 10T devices. However, this technology still lacks effective mechanisms to

integrate the enormous diversity of existing 0T devices systematically.

multi-agent systems loT agent platforms artifacts

| 1. Introduction

The Internet of Things (loT) is a computational paradigm where a massive number (perhaps billions) of ordinary
objects are endowed with interconnection capabilities, making them able to communicate and cooperate with other
(surrounding) devices, generally via the Internet. The growing effect of this paradigm is the appearance of a vast,
decentralized, heterogeneous, and dynamic ecosystem where everyday objects (sensors, gadgets, tags,
wearables, etc.) become active participants in processes of all kinds, such as industrial, logistic, domotics, social,

health care, etc.

In this paradigm, the “things” that become interconnected, generally via the Internet, are sometimes called “smart
objects.” However, many objects used currently still lack actual intelligence mainly due to their limited hardware
and software resources. This lack has hindered the development of intelligent end-to-end solutions in the IoT
arena, which can effectively integrate different Al techniques in a simple, transparent, and distributed way. In this
sense, since the emergence of the 10T in 1999 W, Multi-Agent-Systems (MAS)-based technology has fostered the
connection of small, commonly used devices to open distributed intelligent systems, enabling these devices to
exchange and transmit knowledge in real time 2. Furthermore, there is remarkable parallelism between the Agent-
Based Computing (ABC) and Multi-Agent Systems (MAS) paradigms and the smart object and loT ecosystem
concepts, respectively. Hence, many researchers have extensively used such paradigms methodologically in the

loT domain, as well as to model, program, or simulate 10T systems [,

One class of MAS that fits the requirements of the 10T is open multi-agent systems, which has received significant

interest from the scientific community in recent years. Open multi-agent systems are defined as open systems

https://encyclopedia.pub/entry/20500 1/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

consisting of heterogeneous entities with a separation between form and function that explains their behavior 4!,
and they are particularly suitable for the implementation of virtual organizations. Recent research conducted on the
modeling and implementation of open MAS in complex scenarios includes the works published in €I, Numerous
proposals have worked on improving the intelligence of loT systems (e.g., a MAS equipped with swarm
intelligence [&)). However, in most cases, current 10T networks are still incapable of generating cooperative

strategies that make these networks act as ubiquitous and intelligent systems 2.

In particular, one critical problem of the 10T is its intrinsic heterogeneity. According to 29, the heterogeneity of
devices and the high technological diversity in the loT impose an enormous modeling effort for large-scale
systems, where thousands of different devices may coexist. At this moment, multi-agent systems lack mechanisms

to deal with this diversity effectively.

| 2. The SPADE Platform

SPADE [js a multi-agent system platform whose primary purpose is to provide a flexible, simple, and open agent
execution framework. The cornerstone of this platform is the employment of a communication mechanism based
on the XMPP standard 12 for instant messaging, which is the same one typically used in a chat program.
Therefore, humans can interact with software agents as they would with other humans by connecting to XMPP

servers and exchanging “chat messages”.

The two main characteristics of the SPADE platform are the extensive and strategic usage of the XMPP standard

and its proposed agent model, which are now presented in the two following subsections.

2.1. XMPP

The XMPP protocol provides the necessary elements for real-time conversations. In addition to exchanging
messages, which can be used between agents, between humans, and even between agents and humans, XMPP
has a presence natification system, which lets contacts know if their contact list or roster is online or unavailable.
Since the IETF formalized XMPP as the standard for instant messaging and presence notification, it is now an

open standard that offers several compelling features:

o Decentralized: XMPP is based on an architecture similar to email. In particular, it features a client—server
architecture in which the clients connect to a private server or a public one. Servers exchange messages
between them (as mail servers do) to deliver each message to its recipient;

» Secure: XMPP has a robust security system including a secure transport layer and a secure authentication
system that allows for establishing ciphered communications between entities. In addition, an XMPP server may
be isolated from the Internet if required;

» Extensible: XMPP is based on XML, allowing it to easily include new features in the protocol to extend its
capabilities. A set of extensions to the protocol (called XEPSs) is continuously improved, but it is also open to

everyone to build their private extensions to fit any particular need,;

https://encyclopedia.pub/entry/20500 2/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

» Flexible: Besides instant messaging, there are numerous applications for which XMPP can be used. Agent
communication is just one application, but XMPP is also used for many other purposes, such as network
management, collaboration tools, gaming, file sharing, content syndication, web services, or remote
system monitoring;

» Proven: XMPP was initially proposed in 1998 by Jeremie Miller, and currently, it is a very stable and well-tested
standard, with hundreds of developers and tens of thousands of XMPP servers deployed around the world.
Some big companies use XMPP (or a protocol modification) as the core of their services (e.g., WhatsApp,
Google Talk, Facebook Messenger);

e Open: The XMPP protocol is free, open, public, and easy to understand. There are no limits for the

implementations and the collaboration in the standard development.

This protocol is the core element of the SPADE platform because agents need an adequate and efficient transport
layer that can be extended to foster new types of interactions (computer-to-human, computer-to-computer, human-
to-human) and tackle new requirements or domains successfully. In this sense, it is worth mentioning that a
working group inside the XMPP Foundation is devoted to studying the application of XMPP to the I0oT domain.
The support defined by the XMPP standard perfectly fits the main requirements of the 0T, such as the need for
communication protocols and standards, the usage of communication patterns (publish/subscribe, event
subscription, delayed delivery, etc.), scalability, security, and interoperability, among others. The model of the IoT
artifact presented later in this paper takes advantage of these features to provide appropriate support to artifacts in

this domain, including new functionalities such as presence notification.
2.2. The Agent Model

Agents in SPADE are autonomous entities with a transport layer based on the XMPP protocol. By design,
the activities that agents perform are encapsulated into components called behaviors. Every agent may define one
or more behaviors, and the platform executes them independently. In addition, the agent has a connection
mechanism called the message dispatcher to deliver the agent’s incoming messages to each of its behaviors. This

proposal is similar to those available on other platforms, such as JADE.

The main characteristic of a behavior is its life cycle, which depends on how the behavior runs. SPADE offers
different behaviors, in particular: CyClicBehavior, which runs forever in an infinite loop until the agent is
stopped; OneShotBehavior, which runs just one time and then is destroyed; PeriodicBehavior, which runs
every pre-defined period of time; TimeoutBehavior, which is a subtype of OneShotBehavior, which runs after
a timeout. Finally, a more complex type of behavior allows the agent developer to create finite-state machines,
which gives the developer a more powerful control over the design of the agent. As shown in Figure

1, CyclicBehavior is the base of all the other behaviors.

https://encyclopedia.pub/entry/20500 3/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

Figure 1. SPADE’s behavior hierarchy.

In addition, SPADE has recently incorporated BDI behaviors 2. This new class of behavior allows for the

development of agents that operate on desires and intentions, coded in the AgentSpeak language 141,

Apart from the agent model, SPADE offers agent developers many functionalities and much flexibility to build their
multi-agent system applications. The main ones are now highlighted. First, designers can easily integrate complex
perception behaviors (such as artificial vision or natural language processing) by using the advantages offered by a
language such as Python. Second, SPADE has been developed by following an asynchronous programming model
to increase the developed applications’ performance and responsiveness. This programming model improves the
scalability of MAS implementations by optimizing the send and receive operations (as well as any other 1/O
operation), which is a crucial aspect in 10T environments, where the system may need to interact with hundreds or
thousands of devices. Third, although there is a complete reference implementation of SPADE in Python, the
SPADE framework is, in fact, language-agnostic. As long as the implementation follows the communication
protocols defined by the platform (based on the XMPP standard), agents may be implemented in any language.

For example, implementing SPADE agents in the C language may be appropriate in embedded systems with

https://encyclopedia.pub/entry/20500 4/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

scarce hardware resources. Fourth, SPADE favors the incorporation of new functionalities as plugins, which makes
it easy for the community to extend the support. Examples of recent plugins are the spade-bdi and spade-pubsub

plugins, which have incorporated the BDI behaviors and the publish—subscribe protocol, respectively.

Regarding the design and implementation of multi-agent systems, SPADE provides the developer with the agent
concept to model the system’s intelligent behavior. However, a much simpler and lighter abstraction was needed to
adequately model the environment, especially in cyberphysical and 10T scenarios. In such scenarios, the system
typically accesses the environment through a series of small devices with scarce computational resources. To this
end, the following section incorporates the concept of the IoT artifact into SPADE to facilitate the development of

SPADE-based MAS in the context of lIoT environments.

| 3. The 10T Artifact

This section presents a specialization of the A&A meta-model described in the previous section, which is called the
loT artifact. This specialization allows for the modeling of I0T devices and their implementation in the SPADE
platform. The loT artifact model attempts to maintain the expressiveness of the previously presented theoretical
model while also considering the specific aspects of I0T devices, as their limited computational resources,

and integrating all these characteristics into the programming model of the SPADE platform.

In summary, the IoT artifact specialization model proposes a correspondence between each of the elements and

an entity in the SPADE platform:

o |oT artifact. An IoT artifact is a new SPADE computational element that can communicate with agents (through
an XMPP server). 0T artifacts associate with a workspace by registering to the corresponding XMPP server
and present a well-known interface by which SPADE agents may use them, as described below. This interface
includes all the characteristics of the theoretical model, except the so-called linked interface, which SPADE
does not support due to the distinct shortage of the computational resources of IoT devices.

o Compared to the theoretical model, an IoT artifact always includes a particular observable property called
presence, which maintains the current state of the associated loT device. By using this property, agents
interested in a given loT device may know its availability and any other application-specific status information
that the artifact can express;

» Workspace. The theoretical concept of workspace here corresponds to an XMPP server, which is the
component in the SPADE platform that supports the communication among all the SPADE communicating
parties (agents and artifacts). In this model, any IoT artifact must register to an XMPP server before being
accessible to agents. |oT artifacts register (and therefore belong) to a single XMPP server;

» Environment. Following the workspace definition above, this concept would be equivalent to the group of all the
XMPP servers involved in a particular multi-agent system;

e Agent. This entity corresponds to a SPADE agent. SPADE agents can communicate with other agents and

artifacts, among other features.

https://encyclopedia.pub/entry/20500 5/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

Table 1 compares the basic features and properties that are essential for artifacts independent of the
implementation model, according to 3. The table also includes some relevant implementation considerations,
in each case comparing its availability in the CArtAgO platform and in the /oT artifact framework. The main novelty
of the loT artifact’'s proposal is the consideration of the typical characteristics of 10T devices, to which the model
has been targeted. In particular, the strict limitation of computational resources that is common in such devices has
been especially taken into account. As a result, a minimal artifact model has been proposed, by which artifacts can
be implemented in languages such as Python or C, and be directly executed in small, embedded devices. On the
contrary, the CArtAgO approach requires a Java virtual machine to execute the artifact's code. However, it is
important to point out that, despite being minimal, the 10T artifact model incorporates all the features of the abstract

model, except the linked interfaces, as they can produce too much computational cost for small devices.

Table 1. Comparison of features between CArtAgO and loT artifacts.

Features CArtAgo loT Artifacts

Full name (including

Identity Workspace) JID (Jabber ID)
. Set of operations and Op. interface: Jabber-RPC, default
Usage interface and events
observable events observable property (presence)
Funcuop de§cr|pt|or1 and Yes Not available in the current version
operating instructions

Observable state Yes Presence
Programming language Java Python 3, Python 2.7, C
Virtual machine needed Yes No

Linked interface Yes No

Regarding communication aspects, SPADE agents may communicate with any loT artifact registered to any
workspace (XMPP servers) known to the agent. To do so, a SPADE agent needs first to send a focus request to
the XMPP server, expressing an interest in that particular 10T artifact. Once under its focus, the agent will be able

to interact with the IoT artifact by using its interface.

The interface of an loT artifact defines two types of interactions. The first type permits accessing the artifact's
observable properties (perceptions), including the presence property mentioned above. The second one allows for
the artifact's operation, which typically will modify its internal state or make the artifact actuate over the
environment or both. The following subsections explain these interface features in further detail, which are related
to the functionalities of the XMPP protocol adopted by SPADE.

3.1. Perception of Observable Properties

https://encyclopedia.pub/entry/20500 6/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

IoT artifacts generally perceive their environment by using physical sensors attached to the corresponding loT
device and change their internal variables accordingly. Such variables correspond to the observable properties in
the meta-model above. As a result, every time one of these observable properties changes its value, the 10T

artifact should generate the corresponding observable events to communicate the change to the interested agents.

As explained above, agents must focus on an artifact before interacting with it. In order to focus and also to
observe the artifact's properties, SPADE proposes to use an extension of the XMPP protocol called Publish—

Subscribe (PubSub) https://xmpp.org/extensions/xep-0060.html. This extension enables any individual connected

to an XMPP server to subscribe to the information that any other connected entity may want to share. Once

subscribed, the interested individual automatically receives updates any time the entity publishes new information.

The mechanism works in two steps. First, an agent sends a message to the workspace (the XMPP server) to
subscribe to an IoT artifact. Then, whenever the artifact generates a new observable property value or event, it
publishes the event with the updated information, which all subscribed agents receive. This way, agents may keep
track of the information they are interested in by focusing on the corresponding IoT artifacts. Figure 2 illustrates
these interactions by the dashed lines, where Agent 1 focuses (subscribes) on Artifact 1, which perceives the
environment temperature, and then, it automatically receives the published events corresponding to temperature

changes perceived by the artifact.

Subscribe Artifactoy
Agenty ~ lshEvent

ot — .
fﬁw Artifact 1

L _
-— Artifact 2 Available

; " Pera,, Artifact 2
Agent 2 L Workspace "+ Penvay,
e o XMPP
0@6"“’0 Server)
Artifact 3

Agent 3
Figure 2. Examples of interactions between |0T artifacts and agents in SPADE.
3.2. Presence Notification for Artifacts

Presence notification is a typical feature of SPADE agents that has also been incorporated into 10T artifacts since it

is considered an advantageous property for artifacts in 0T scenarios.

In essence, presence notification enables any entity connected to an XMPP server to know the availability status of
other connected entities (customarily called the former entity’s contacts) and also to notify its own availability status
to these contacts. This simple yet powerful mechanism can be used for many different purposes (e.g., as a
coordination protocol in distributed systems), and it is helpful in many scenarios. The presence notification

mechanism of XMPP offers the possibility of including custom messages related to each entity’s availability (such

https://encyclopedia.pub/entry/20500 7/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

as free, busy, or waiting), but it also sets the status as unavailable if the entity’s connection suddenly drops out.
Thus, loT artifacts can notify their availability (and any other status) to the interested agents in real time through
this handy feature, allowing them to know if the artifacts are ready to communicate or if they are having some
issue. This way, for example, an agent could decide whether or not to request an operation on the artifact or
ascertain why it is not receiving updates from the artifact's observable properties recently. In the latter case,
the presence notification system could inform the agent of the artifact’s situation: it has been disconnected; it is
experiencing some technical problems; it needs maintenance; it is simply busy performing other tasks. A simple
interaction of this type is shown by the solid lines in Figure 2, where Artifact 2, representing a pressure sensor,

becomes available, and this is automatically published to any interested agents, as Agent 2 in the figure.
3.3. Operation of 10T Artifacts

SPADE employs another standard extension from the XMPP protocol to implement the operation interface over 0T
artifacts. This XMPP Extension Protocol (XEP) is called Jabber-RPC https://xmpp.org/extensions/xep-0009.html,

and it allows any entity connected to an XMPP server to make available its operations to other entities by using a
well-known Remote Procedure Call (RPC) standard: XML-RPC. By incorporating this standard into SPADE, agents
can send a message with the required operation to an artifact and receive a response, both in a structured form

defined by the standard.

In Listing 1, a typical request message is shown. This example illustrates how to request an artifact to open Valve
Number 4 to 50%, which is also graphically represented as dotted lines in Figure 3, where Agent 3 operates the

valve actuator of Artifact 3.

Listing 1. An example of a request message to an artifact.

<iq type='set’® id='rpecl’
from=’agent@workspace.com/jrpc-client’
to=’artifact@uorkspace.com/jrpc-server’>
<query xmlns=’jabber:iq:rpc’>
<methodCall>
<methodName>operation.openValve</methodName>
<params>
<param><value><i4>4</id></value></param>
<param><value><i4>50</i4></value></param>
</params>

</methodCall>

</query>

</fiq>

https://encyclopedia.pub/entry/20500 8/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

3.4. Creating an loT Artifact

A specific library has been developed to allow for the implementation of loT artifacts in SPADE in a simple way. Its
installation is performed by including the spade_artifact package. Once this package is installed, the developer can
create instances of the artifact class, which is an extension of an abstract class that provides the PubSub protocol
as shown in Figure 3. According to this figure, the main methods offered by the class are the following: the start
method, which is invoked to start the artifact execution; the setup method, which allows an initialization adjusted to
the domain; the run method, which is the method that includes the code to be executed by the artifact. Other
auxiliary methods are the send and receive methods used for sending and receiving messages and the publish
method for publishing information according to the PubSub protocol.

PubSubMixin PubSubComponent
hook_plugin_after_conn() ot
K_plugin_before_conng) [~~~ Usg ------->| Pubsub
create()
delete()
AP subscribe()
Em[nds unsubscribe()
Arifact
" Agent
password i
pubsub_server .
start() Behaviors
"

setup() ks State
el addBehavior()
runy) removeBehavior()
stop() start()
is_alive()
send()
receive()
publish()

Figure 3. Class diagram of an loT artifact in SPADE.

According to this structure, Listing 2 shows a simple example of an artifact devoted to the publication of the
temperature of a particular sensor to all the interested (subscribed) agents. The shown code is incomplete, as it

focuses on the overwriting of two methods only. In the setup method, the artifact, using the presence functionality,

https://encyclopedia.pub/entry/20500 9/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

makes itself visible and then accepts by default all the agents that may request the subscription. Subsequently,
the run method enters in an infinite loop that first detects if there are any agents in its contact list and then reads
the current temperature value and publishes it. This simple example illustrates how easy integrating artifacts in the

multi-agent system is.

Listing 2. An example of an implementation of an artifact in SPADE.

class TemperatureSensorArtifact(spade_artifact.Artifact):

async def setup(self):

Setup artifact before startup.

self.presence.set_available()

async def run(self):

while True:

Publish only if my friends are online

if len(self.presence.get_contacts()) >= 1:
temperature = read_temperature()
await self.publish(f"{temperaturel}")
logger.info(f"'Publishing {temperature}™)
await asyncio.sleep(l)

The spade_artifact package described above includes the Python implementation of the loT artifact now included
in the reference version of the SPADE middleware. However, a Python implementation may not be appropriate for
many loT devices. For example, devices based on the ESP32 or the ESP8266 micro-controllers do not support this
language due to their limited architecture. Thanks to the language-agnostic trait of SPADE, it is possible to

implement the loT artifact model in different programming languages.

The most obvious choice for 10T devices would be the C language since it is still the most widely used language for
programming embedded systems. For this reason, a C implementation of the 10T artifact has also been developed.
As an example, Listing 3 shows a C implementation of an artifact that is equivalent to the one presented in

Listing 2.

In this case, the definition of an artifact starts with the connection to the WiFi network (method wifi_connection()),
which requires the configuration of the WiFi SSID and WiFi password. The second step is the connection to the
XMPP server, which the artifact performs by calling the init_communication_with_xmpp_server() method. The third
step is to determine if this artifact is visible to the agents, for which the presence_show(true) method is used. Then,

the artifact enters its main loop, where it uses the get num_available_contacts() to obtain the number of available

https://encyclopedia.pub/entry/20500 10/12

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

contacts (agents) that have subscribed to its presence and are currently online. If this value is at least one, the

artifact reads the temperature value and then publishes it to all the contacts subscribed to that observable property.

Listing 3. An example of an implementation of an artifact in C.

int temperature_data = 0;
char temperature_str[10];

void main(){
wifi_connection();
init_communication_with_xmpp_server();

presence_show(true) ;

while(1){

// Publish only if my friends are online

if (get_num_available_contacts() >= 1) {
temperature_data = read_temperature_data();
itoa(temperature_data, temperature_str, 10);
publish(temperature_str);

}

delay(1000) ;

}

}

This example illustrates the versatility of SPADE in communicating with very-low-powered systems, allowing direct

communication between the agent and the IoT artifact (running in the device), even if they are implemented in

different languages.

References

1. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015,

80, 1-50.

2. Atzori, L.; lera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787—

2805.

3. Savaglio, C.; Ganzha, M.; Paprzycki, M.; Badica, C.; Ivanovi¢, M.; Fortino, G. Agent-based

Internet of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020,

102, 1038—-1053.

https://encyclopedia.pub/entry/20500

Developing loT Artifacts in a MAS Platform | Encyclopedia.pub

10.

11.

12.

13.

14.

15.

. Foster, 1.; Kesselman, C.; Tuecke, S. The anatomy of the grid: Enabling scalable virtual

organizations. High Perform. Comp. Appl. 2001, 15, 200-222.

. Bajo, J.; Julian, V.; Corchado, J.; Carrascosa, C.; de Paz, Y.; Botti, V.; de Paz, J. An execution

time planner for the ARTIS agent architecture. Eng. Appl. Artif. Intell. 2008, 21, 769-784.

. Leitao, P.; Karnouskos, S.; Ribeiro, L.; Lee, J.; Strasser, T.; Colombo, A.W. Smart agents in

industrial cyber—physical systems. Proc. IEEE 2016, 104, 1086—-1101.

. Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-

organized multi-agent system with big data based feedback and coordination. Comput. Netw.
2016, 101, 158-168.

. Giordano, A.; Spezzano, G.; Vinci, A. Smart agents and fog computing for smart city applications.

In Smart Cities, Proceedings of the First International Conference, Smart-CT 2016, Malaga,
Spain, 15-17 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 137-146.

. Wu, Q.; Ding, G.; Xu, Y.; Feng, S.; Du, Z.; Wang, J.; Long, K. Cognitive internet of things: A new

paradigm beyond connection. IEEE Internet Things J. 2014, 1, 129-143.

Ayala, I.; Amor, M.; Horcas, J.M.; Fuentes, L. A goal-driven software product line approach for
evolving multi-agent systems in the Internet of Things. Knowl.-Based Syst. 2019, 184, 104883.

Palanca, J.; Terrasa, A.; Julian, V.; Carrascosa, C. SPADE 3: Supporting the New Generation of
Multi-Agent Systems. IEEE Access 2020, 8, 182537-182549.

Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 6120, RFC
Editor. 2011. Available online: https://xmpp.org/rfcs/rfc3920.html (accessed on 8 February 2022).

Rao, A.S.; Georgeff, M.P. BDI agents: From theory to practice. In Proceedings of the ICMAS, San
Francisco, CA, USA, 12-14 June 1995; Volume 95, pp. 312-319.

Bordini, R.H.; Hibner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak
Using JASON; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 8.

Ricci, A.; Viroli, M.; Omicini, A. Construenda est CArtAgO: Toward an Infrastructure for Artifacts in
MAS. Cybern. Syst. 2006, 2, 569-574.

Retrieved from https://encyclopedia.pub/entry/history/show/49148

https://encyclopedia.pub/entry/20500 12/12

