Physical Properties of Food Materials Subjects: Agricultural Engineering Contributor: Tanmay Sarkar The physical properties of food materials have defined those properties that can only be measured by physical means rather than chemical means. Food materials are basically naturally occurring biological-originated raw materials that have their own exclusive physical identity that makes them unique in nature. Due to the uniqueness of their physical properties, to properly measure the different physical characteristics of any food materials to get control and understand about the changes in their native physical characteristics with the influence of time-temperature-processing-treatment-exposure, proper measurement techniques for various physical properties of food materials are required with numerous desired outputs. Keywords: food industry; food physics ## 1. Importance of Physical Analysis Methods in the Food Industry Physical testing in the food industry refers to the methods used to evaluate a food product's varied physical qualities. Color, viscosity, weight, thickness, granulation size, and texture are all common food product attributes examined. Physical testing in the food industry is usually employed as a quality indication, but it can also be used to ensure product consistency. Manufacturers can utilise this to evaluate product value, connect a product to consumer perception, and, in some situations, ensure food safety when a product must be cooked. Unusual physical outcomes could indicate a problem with the shelf life, production, and supply chain. Physical testing has a distinct advantage for businesses in terms of monitoring their suppliers' items and catching problems before customers complain. Furthermore, when physical qualities are assessed in conjunction with consumer research, the physical test specification ranges can be linked to desirable product information. This can help determine preferences in terms of appearance, such as a certain hue, or texture, such as viscosity, firmness, and consistency. Because a product's physical properties impact customer perspective and acceptability, determining optimal physicochemical characteristics can aid product development teams and retailers with knowledge on the part for drawing conclusions. Technologies that help in the physical analysis of food material is a subject of growing interest because of their non-destructive nature (Figure 1). Since the last half of the 20th century there has been an increase in the search for new physical analysis methods for the food industry. In Scopus and the Web of Science, a moderate number of papers are being published on this topic, and most of the published articles are research articles. The published works available in the field basically describe the working procedures, results, and validation of some particular methods on specific food products. Keyword searching reveals that the techniques to analyze the physical property of food materials are gaining the interest of researchers from academia, as well as from industry (>25 in 2022 to date, >75 in 2021 and >50 in 2020). Bibliometric analysis has revealed that there are several research papers available on the techniques for analysis of various physical properties of food materials, but there is a need for a concise review of the principles, specific field of applications, merits, and demerits of the techniques to provide an overall view of the rigorously practiced methods. ### 2. Techniques for Non-Destructive Physical Methods During recent years, researchers have applied several novel techniques in the field of physical property assessment of different food commodities. Depending on the physical states of the food material, the methods of physical techniques that have been employed are described in **Figure 2**. Figure 2. Novel techniques for assessment of physical properties of food materials. ### 2.1. Ultrasonic Wave-Based Analysis The ultrasonic frequency is beyond audible to human hearing. These acoustical or mechanical waves have a frequency of ≥ 20 kHz. An ultrasonic scanning system can be used for food diagnostic purposes (physicochemical properties like flow rate, structure, composition, and physical state), especially for soybean, honey, cereals, meat, and aerated foods (**Table 1**) [1]. Volume estimation, firmness, maturity of fruits $2 \le 3 \le 10$ have been measured or conducted with ultrasound. Ultrasound velocity, attenuation coefficient, signal and wave amplitude, acoustic impedance, and relative delay are the parameters considered for analysis of food materials [8][2]. The techniques provide the following advantages: portable, simple, low power consumption, lower operational cost, adaptability for both liquid and solid foods, and environmentally friendly [8]. The limitations of the techniques are shock wave generation, followed by degradation of products, and radical formation followed by off-flavor formation in the products subject to analysis. Surface characteristics and homogeneity of products may affect test efficiency and the development of mass transfer resistance [1]. #### 2.2. Young's Modulus and Poisson's Ratio The Sitkey technique was applied by researchers to determine the Poisson's ratio as a function of moisture content and Young's modulus as a function of loading rate. A material testing machine was used to perform the test. It found that there is a negative correlation between the Poisson's ratio of the grains and moisture content. On the other hand, the reverse was found for the loading rate. For the grains, Young's modulus is inversely proportional to moisture content and loading rate $\frac{[10]}{10}$. ### 2.3. Compressibility Analysis through High-Pressure Processing (HPP) Processing food by applying high pressure is now an impactful technique to preserve different foods. High pressures exhibit bulk compression loading on the food. At high pressure (400–1000 MPa) and adiabatic conditions with a pressure change of 100 MPa, there is a change in water temperature of 3 °C. Pressurization of food material leads to changes in rheological properties, thermodynamic properties, and compression heating [11]. It is a non-destructive green technique, but the food composition and solute concentration are the limiting factors for the efficacy of the technique. Moreover, it is not suitable for solid food products [11]. ### 3. MRI Technique MRI is the formation of a very weak magnetization field produced by atomic nuclei of body tissue in the presence of another magnetic field. The density of the nuclei is correlated to the magnetization, and hence it shows the nature of the distribution of atoms. In an MRI, mainly hydrogen atoms are observed. Therefore, softer tissue with large water molecules can be studied well in an MRI $^{[12]}$. Fat content (40 ± 23 mg/g) determined by an MRI demonstrated an association with GC (39 ± 16 mg/g) in starving fish. For well-fed fish, however, there was no agreement. This could be attributable to non-triglyceride lipid synthesis in well-fed fish and MRI and GC sensitivity differences. It is obvious that the MRI may more precisely depict fat content $^{[13]}$. The non-invasive and non-destructive features of this technique make it attractive for food analysis $^{[14]}$, but for the cost-intensive nature and difficulty in analysis of food materials in the metastable physical state (e.g., subcool materials) $^{[15]}$. The physical properties, their significance in the food industry, their techniques for measurement, interpretation of the measured results, brief working principle, and the objective of the analysis have been listed in **Table 1**. **Table 1.** Physical properties of different food commodities. | Physical
Property | Significance
in Food
Industry | Unit | Interpretation of
Measured Data | Measurement
Technique | Principle | Measured
Property | Objective of Analysis | Reference | |------------------------|---|---------|--|--------------------------|--|--|--|-------------------| | Water Activity
(WA) | Assessment of internal structure of the food, effect on food texture and shelf-life assessment. | - | WA > 0.90 growth
of bacteria; WA <
0.70 growth of
molds inhibit;
WA < 0.60 growth
of most of the
microorganisms
inhibit | Water activity
meter. | Ratio of the
vapour
pressure (VP)
of the water in
food and the
VP of the pure
water. | Equillibrium
relative
humidity | Quality characteristic
measurement for
Sugar and sugar
replacers, Starch
powders, Agar gels. | [1 <u>6]</u> [17] | | Hygroscopicity | Assessment
of a food's
ability to
absorb
moisture. | | Powdered food
with high
hygroscopicity
likely to be
clump formation
with
simultaneous
increase in
texture
hardening | Hygrometers | Works on the concept of evaporative cooling. | Amount of
moisture
uptake by a
specific fod
material | Moisture sorption isotherm modeling for starch and wheat gluten, Corn starch, pepper | [18] | | Mass | Measure for
inertia and
heaviness of
a body. | kg/g/mg | | Weighing
balance. | A counteracting force is created to be compared to the unknown mass. | Quantity of matter | To meet product formulation standards and manufacturing specifications | | | Density | Mass per unit volume. | kg/m³ | >1 kg/m³ (at STP)
food material will
sink in water | Hydrometer | Displacement
of its own
weight within a
fluid. | Mass and volume | | [<u>16]</u> | | | | | | | | | Alcohol concentration
of drinks; Solids in
sugar syrups; Density,
specific gravity and
absorption of fine
aggregate; Specific
gravity of pigments. | LEVI | | Physical
Property | Significance
in Food | Unit | Interpretation of
Measured Data | Measurement
Technique | Principle | Measured
Property | Objective of Analysis | Reference | |--------------------------------|--|--|--|--|--|--|--|----------------------| | Specific Gravity | Ratio of the
absolute
density of a
food material
to the density
of a reference
material | - | Determines
whether the solid
food materials
will sink or float
in liquid medium | Specific
gravity bottle | Liquid
densities are
measured by
measuring the
weight
difference
between an
empty and
filled bottle and
dividing by an
equal volume
of water. | Density of
food
materials and
water | | | | Bulk Density | Density of
powders like
food
materials
which contain
hollow
spaces or
voids filled
with gas,
normally air. | g/mL | High bulk
density is
desirable in
terms of food
transportation
and packaging | - | By measuring
the volume of a
known mass of
powder sample
that may have
been passed
through a sieve
into a
graduated
cylinder. | | Determination of
powdered food
characteristics
especially for grinding
and spray drying
process | | | Particle Size | Particles with
a regular
shape are
characterized
by their linear
dimensions
(lengths)
along their
principal
axes. | m/cm/mm | Affect the flowability, solubility and reactivity, and the shelf life, processing condition, organoleptic properties and texture of the final product (e.g., sieving considered for >63 micron particles; sedimentation hindered when size <10 nm) | Particle Size
Analyzer | The angle of incidence light scattering is inversely proportional to particle size. | Diameter | Texture and organoleptic characterisation of chocolate, fibres of grain, powdered food, and sizing of protein nano-fibres. | | | Specific Surface
Area (S.A) | Quantification
of internal
surface area
or size of
individual
particles
within a
disperse
system | m ² /kg or
m ² /g | Materials with
500–3000 m²/g
S.A suitable for
solute and gas
absorption; 200
m²/g S.A suitable
for catalyst | Brunauer-
Emmett-Teller
(BET) surface
area analysis | | Surface area | Mass and heat
transfer calculation,
gas and moisture
permiability through
packaging materials | [<u>19][20][21]</u> | | Sphericity | Compactness
compared
with a perfect
sphere of
same
dimension. | - | Sphericity value
≈ 1 (sphere),
≈0.00271 (cube),
≈0.00155
(cylinder) | | Ratio of the
surface area of
an equal-
volume sphere
to the actual
surface area of
the particle. | Surface area
and volume | Analysis and design
of food process
equipment | | | Sauter Diameter
(SD) | Diameter of a
hypothetical
sphere with
the same
specific
surface as
the irregular
shaped
particle. | m/cm/mm/
µm | Coarse particle
(SD > 10 mm);
fine particle ≈ 1
mm, ultrafine
particle < 0.1 mm | Diameter
gauge | Ratio of
surface area
and volume of
particle | Surface area
and volume | Grinding
characteristics
measurement for
wheat grain and size
reduction
characterisation | | | Physical
Property | Significance
in Food
Industry | Unit | Interpretation of
Measured Data | Measurement
Technique | Principle | Measured
Property | Objective of Analysis | Reference | |---|---|------|--|---|--|--|---|------------------------------| | Uniaxial Stress | It is caused
by a force
pushing or
pulling the
body in a
direction
perpendicular
to the surface
of the solid
body upon
which the
force is
acting. | Pa | - | Strain gauge
hole-drilling
method | Deformation
around the
hole | Deformed
area | | | | Young's
Modulus | It is the slope
of the linear
part of the
stress-strain
curve for a
material
under tension
or
compression. | - | Addition fat
reduces the
young's modulus
i.e., the decrease
in rigidity. The
harder is the
food material the
higher is the
young's modulus | Oscillating
rod | Estimated with
the help of
stress-strain
curve. | Alteration in
length, and
uniaxial
stress | Alginate gel: stress strain behavior and viscoelasticity. Fruit and vegetable puree products: rheological properties. Ketchup: hydrocolloids and flow behaviour. Powders: flow properties, nonflow problems. Wheat flour: rheological properties using farinograph, extensograph, valorigraph, alveograph device. | | | Bulk Modulus | The relative change in the volume of a body produced by a unit compressive or tensile stress acting uniformly over its surface. | Pa | | - | The measure of the ability of a substance to withstand changes in volume when under compression on all sides. It is equal to the quotient of the applied pressure divided by the relative deformation. | Pressure and volume | | [22][23][24]
[25][26][22] | | Shear Modulus | It is the
resulting
stress When
a force is
acting
parallel to a
surface. | Pa | The higher the
shear modulus
the higher is the
rigidity of the
food material | - | - | Pressure and
strain | | | | Newtonian Flow | linear
relationship
between
shear stress
(SS) and
resulting
shear rate
(SR). | - | Reynolds no
(NR) <2000;
visosity not
change with
applied force | Ball
viscometer | | Elapsed time
for the ball to
fall under
gravity | Flow behaviour of
liquid food materials
for process design,
quality measure and
flexible container | | | Non-Newtonian
Flow | non-linear
relationship
between SS
and SR. | - | NR >2000;
visosity change
with applied
force | Brookfield
viscometer | | Torque | design | | | Interfacial
Surface Tension
(IST) | It is the force
of attraction
between the
molecules at
the interface
of two fluids. | N/m | Emulsion
stability
increases with
the IST | Force
tensiometer | Du Noüy ring
method;
Wilhelmy plate
method | Force and
length | Foam stability of ice-
cream; Physical
properties of
chocolate | [<u>28]</u> | | Physical
Property | Significance
in Food
Industry | Unit | Interpretation of
Measured Data | Measurement
Technique | Principle | Measured
Property | Objective of Analysis | Reference | |----------------------|--|-------------------------------|---|---------------------------------|---|----------------------|--|--------------------------------------| | Permeability | Quantification of the relative ease with which a transporting substance can pass through the material. | m²/s-Pa | Lower the
permeability of
the packaging
material lower
will be the shelf
life of the food
product | Helium
Permeability
Meter | | Pressure,
mass | Undertanding the | | | Conductivity | It can be
defined as a
measure of
electrical
conduction. | Siemens
per meter
(S/m) | Efficiency of pulsed electric and ohmic heat proces is depend on conductivity of food materials | conductivity
meter | It is the ability
of a material to
conduct
electric
current. | Resistivity | moisture transfer
phenomenon during
drying of fruits; mass
tranfer phenomenon
in lactose
crystallization,
Whey-protein-coated
plastic films; design | [<u>29][30][31]</u>
[<u>32]</u> | | Resistance | It is a
measure of
the
opposition to
current flow
in an
electrical
circuit. | Ohm (Ω) | Juiciness and
tenderness of
meat products
are correlated
with the
resistance | Ohmmeter | Deflection of pointer to left or right side in ohmmeter due to current passing through it indicate low/high resistance. | | plastic films; design
of pulse electric and
ohmic heat process. | | Significance Interpretation of Physical Measured Measurement in Food Unit Principle Objective of Analysis Reference Property Measured Data Technique Property Industry The difference References in the amount Thermal of heat Food materials 1. Majid, I.; Nay Roperty that Vanda, V. Ultrassomigation and food technology of the view. Gaogent Food Agric. 2015, 1, 1071022. Joule per have more Heat capacity temperature ability of the scanning temperature of ability of the 2. Yildts, F.; Özdenman, T.; Ukrişink, S. Engresand takin higher cooking trasoniantesting of Pruit Quality Determination. J. erfo**emainee** of reference are Food Qual. 2019, 6810865. measured as a 3. Mizrach, A. Assessing plum fruit quality attributes with an ultrasonia pretined. Food Res. Int. 2004, 37, 627–631. 4. Mizrach, A. Ultrasonic technology for quality evaluation of fresh fr Postharvest Biol. Technol. 2008, 48, 315-330. temperature of the substance 5. Ross, K.A.; Pyrak-Nolte, L.J.; Campanella, O.H. The the onductivity and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of mixing time food meas Int. 2004, 37, 567–577. 6. Li, C.; Zheng, Y.; Kwabena, A. Prediction of License of Watts per distributed two types of constant over constant over Amount of Week attle by Using Listersound Technologies with High frequency. Acouracies. Inchroceedings routhe 2 distributed E fchange in formation Engineering, Taiyuan, China, Intermational Co. n**terence**non Int conductivity ability of food Kelvin 10—11 July 2009; Volume 2wkm k474foot ass, steady-state hot-wire based surface area and nonmethod), and affecting the of food steady-state time domain 7. Hæggström, E.; Luukkala, M. Ultrasound detection also delentification for bodies in footh products for Control heating up understanding of 2001, 12, 37-45. conductivity phase. thermo physical properties for mea meters) transient 8. Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, Mr. May Pelications of ultrasound linear networks is, processing take Oneasurements) properties for chedda and quality control of food: A review. Food Res. Int. 2012, 48, 41 cheese: techniques. prediction of thermal 9. Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology Applicative. Focials 11351 Most of the food freezing and thawing 2018, 7, 164. materials lies for meat and dough: within the range thermal conductivity 10. Ogawa, Y.; Marshull By.M.; Yamamotoof Nos-Young's Modulus and Poisson's Ratio Changes in Square 10' m² s⁻¹ (apple Discovery Jeobleste See a Rity diesh and Square 10' m' s' (apple Discovery Carrenta Root Tivide by during Beiling. Inter-the Discovery density and liftishing TD) shrimp; investigation specific heat for thermal properties capacity diffusivity (TD) specific heat second 10' m² s⁻¹ (peas). Diffusivity thermal specific heat Diffusivity during high pressure processing. J. handquid to Jechnol. 2017, 54, 802–809 cool or heat the 12. Antequera, T.; Caballero, D.; Grassi, PS: duttaro, B.; Perez-Palacios, T. Evaluation of fresh meat quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A review. Meat Sci. released by 2021, 172, 108340. burning a 13. Brix, O.; Apablaza, P.; Baker, A.; Taxt, T.; Grüner, R. Chemical shikhhasad MR imaging and gas chromatography for quantification Hand localization of fat in Atlantic mackerel. J. Exp. Mayer 10. Ecol. 2009, 376, 68-75. generated 4 kcal/g for atmosphere 14. Ebrahimnejad due to. Ebrahimnejad, H. Dada aglaeh, A.; Barghi, H. User of Magnetic Resonance Imaging in Food Quality Capatrol: A Reviewsijo Biomed. Phys. 5 10 164, 1970 164, pressure 1_{B0mb} 132. vessel o Increase in kJ/kg of specified (cv) or specified higher the CV Calorimeter "pomp" temperature 15. McCarthy, M. quantity at arthy, K.L. Applications for magnetic resonance depending to food research. Magn. Reson. Imaging energy content within the 1996, 14, 799re802e calorimete of the food and the 16. Figura, L.O.; Conditions. A.A. Food Physics: Physical Properties Measusement and Applications; Springer: Berlin, temperatur Germany, 2010; p. 550. change within the absorbing 17. Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Water sorption-disortherms of starch powders: Part 1: Mathematical description of experimental data. J. Food Eng. 2004, 61, 297–307. - 18. Peng, G.; Chen, X.; Wu, W.; Jiang, X. Modeling of water sorption isotherm for corn starch. J. Food Eng. 2007, 80, 562–567. - 19. Ziegler, G.R.; Mongia, G.; Hollender, R. The role of particle size distribution of suspended solids in defining the sensory properties of milk chocolate. Int. J. Food Prop. 2007, 4, 353–370. - 20. Attaie, H.; Breitschuh, B.; Braun, P.; Windhab, E.J. The functionality of milk powder and its relationship to chocolate mass processing, in particular the effect of milk powder manufacturing and composition on the physical properties of chocolate masses. Int. J. Food Sci. Technol. 2003, 38, 325–335. - 21. Lyu, F.; Thomas, M.; Hendriks, W.H.; van der Poel, A.F.B. Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Anim. Feed Sci. Technol. 2020, 261, 114347. - 22. Cuq, B.; Gonçalves, F.; Mas, J.F.; Vareille, L.; Abecassis, J. Effects of moisture content and temperature of spaghetti on their mechanical properties. J. Food Eng. 2003, 59, 51–60. - 23. Juszczak, L.; Witczak, M.; Fortuna, T.; Banyś, A. Rheological properties of commercial mustards. J. Food Eng. 2004, 63, 209–217. - 24. Resch, J.J.; Bautherto C.R. Rheological and physicochemical properties of derivatized whey protein concentrate Property Objective of Analysis Reference Property Objective of Analysis Reference Property - 25. Gujral, H.S.; Sharma, A.; Singh, N. Effect of hydrocolloids, storage temperature, and duration on the consistency of tomato ketchup, Int. Ja Food Prop. 2007, 5, 179–191. - component to 26. Haley, T.A.; Smith, and S. Evaluation of in-line absorption photometry trayer energy products. LW, the form of in-line absorption photometry trayer and the form of in-line absorption photometry trayer and the capacitance proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage proportional relationship in the form of in-line absorption photometry proportional voltage voltag - 27. Ahmed, J.; Ranagewamy, H.S. Dynamic rheology and thermal transplationace in meat-based strained baby foods. J. Food and a time constant. - 28. Chang, Y.; Hartel, R.W. Stability of air cells in ice cream during hardening and storage. J. Food Eng. 2002, 55, 59–70. - 29. Funebo, T.; Anti-pending Prothon, F.; Kidman, S.; Langton, M.; Skjöldebrand, C. Mercollegie and convective dehydration of ethanol treated and frozen apple—Physical properties and drying kinetics. Int. J. Food Sci. Technol. 2002, 37, 603–614. Weakly number of electrons in a - 30P Fremmandism M. to Spriess, W.E.L. Mass transfer in strawberry tissue during osmotic definition of the magnetic magnetic and 16, or odd, the molecule is paramagnetic. - paramagnetic. 31. Hong, S.I.; Krochta, J.M. Oxygen barrier performance of whey-protein-coated plastic films and protein for sell fithe total relative humidity, base film and protein for J. Food Eng. 2006, 77 ang 39 more during drying process of noodles; meat Magnetic electrons in a motion of selectrons of noodles; meat gay and selectrons of selectrons of selectrons of selectrons and selectrons are selectrons of selectrons and selectrons are are selectrons and selectrons are selectrons and selectrons are - 32. PAIVAGE TAIL A QUARTY evaluation of goat pread by van electrical methodotton Agric. Electron muscle scharacterization, except 10 and 16 application of water binding, - 33. Cogné, C.; Andrieu, J.; Laurent, P.; Bhe molecule is Nocquet, J. Experimental data and modelling of the molecule of paramagnetic. Nocquet, J. Experimental data and modelling of meat ice creams. J. Food Eng. 2003, 58, 331–341. - 34-Marquiis 7 Battachment of moisture configuration of moisture configuration temperature. Int. J. Food Prop. 2007, 5, 231–245. - 35. Marschoun, L.T.; Muthukumarappan, K.; Gunasekaran, S. Thermal properties of cheddar cheese: Experimental and modeling. Int. J. Food Prop. 2006, 4, 383–403. - 36. Olafsdottir, G.; Nesvadba, P.; Di Natale, C.; Careche, M.; Oehlenschläger, J.; Tryggvadóttir, S.V.; Schubring, R.; Kroeger, M.; Heia, K.; Esaiassen, M.; et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004, 15, 86–93. - 37. Ryder, J.; Ababouch, L. Food and Agriculture Organization of the United Nations. In Proceedings of the Fifth World Fish Inspection and Quality Control Congress, The Hague, The Netherlands, 20–22 October 2003; p. 162. - 38. Bhosale, A.A.; Sundaram, K.K. Firmness Prediction of the Apple Using Capacitance Measurement. Procedia Technol. 2014, 12, 163–167. - 39. Evans, S.D.; Nott, K.P.; Kshirsagar, A.A.; Hall, L.D. The effect of freezing and thawing on the magnetic resonance imaging parameters of water in beef, lamb and pork meat. Int. J. Food Sci. Technol. 1998, 33, 317–328. - 40. Huang, Y.; Cavinato, A.G.; Tang, J.; Swanson, B.G.; Lin, M.; Rasco, B.A. Characterization of sol–gel transitions of food hydrocolloids with near infra-red spectroscopy. LWT Food Sci. Technol. 2007, 40, 1018–1026. - 41. Jaillais, B.; Morrin, V.; Downey, G. Image processing of outer-product matrices—A new way to classify samples: Examples using visible/NIR/MIR spectral data. Chemom. Intell. Lab. Syst. 2007, 86, 179–188. - 42. Esteban-Díez, I.; González-Sáiz, J.; Sáenz-González, C.; Pizarro, C. Coffee varietal differentiation based on near infrared spectroscopy. Talanta 2007, 71, 221–229. - 43. Chen, B.; Fu, X.G.; Lu, D.L. Improvement of predicting precision of oil content in instant noodles by using wavelet transforms to treat near-infrared spectroscopy. J. Food Eng. 2002, 53, 373–376. - 44. Singh, S. Refractive Index Measurement and its Applications. Phys. Scr. 2002, 65, 167-180. | Physical
Property | Significance
in Food
Industry | Unit | Interpretation of
Measured Data | Measurement
Technique | Principle | Measured
Property | Objective of Analysis | Reference | |--------------------------|---|--|--|--------------------------|--|--|--|----------------------------------| | Electric
polarization | Separation of centre of positive charge and the centre of negative charge in a material with help of high-electric field. | Coulomb
per square
metre
(C·m ⁻²) | It influence the
dielectric heating
of food materials | Polarimeter | - | Dipole
moment | Sequential treatment of drinking water with UV and ozone; combined treatment of pulsed light and to inactivate microorganism; pulsed UV treatment of milk; gelling temperature investigation of gelling gels, rheologic and dielectric properties; analytical fingerprinting with spectroscopic techniques for butter and margarine; identifying coffee arabica, robusta and blends by NIRS. | | | Refractive index | Ratio of the
velocity of
light in a
vacuum to
the velocity of
light in a
material. | - | Higher refractive
index refers to
higher total
soluble solid
content | Refractometer | The concentration of a particular substance within a given solution is measured. It operates based on the principle of refraction. When rays of light pass from one medium into another, they are bent either toward or away from a normal line between the two media. | Angle of
refraction | Measure for
concentration and
purity of food
materials | (<u>40)(41)(42)</u>
(43)(44) | | Colour | Sensory
attribute | TCU
(True
Color Unit) | L = 0 (black), =
100 (white); a =
+ve (red) = -ve
(green); b = +ve
(yellow), = -ve
(blue) | Colorimeter | It is based on Beer-Lambert's law, according to which the absorption of light transmitted through the medium is directly proportional to the medium concentration. | Concentration
or intensity of
colour | standardising and checking of ingredient colour allows them to maintain control over the colour of their final goods and analyse colour changes during manufacturing, transit, and preservation. | |