

Food-Grade Nanoemulsions

Subjects: **Nanoscience & Nanotechnology**

Contributor: Qin Wang

Nanoemulsions, exhibiting droplet sizes of <200 nm, represent liquid-in-liquid dispersions that are kinetically stable. Water and oil are the two incompatible liquids most extensively applied in commercial environments. Because of their small size, characteristics such as visible transparency, high surface area per unit volume, sound stability and tunable rheology are often observed. Additionally, large-scale nanoemulsions' preparation is easily achievable in industrial conditions. Therefore, nanoemulsions are especially suitable for commercial applications.

nanoemulsions

preparation

stability

application

encapsulation

1. Introduction

Nanoemulsions, exhibiting droplet sizes of <200 nm, represent liquid-in-liquid dispersions that are kinetically stable. Water and oil are the two incompatible liquids most extensively applied in commercial environments. Because of their small size, characteristics such as visible transparency, high surface area per unit volume, sound stability and tunable rheology are often observed. Additionally, large-scale nanoemulsions' preparation is easily achievable in industrial conditions. Therefore, nanoemulsions are especially suitable for commercial applications ^{[1][2][3]}.

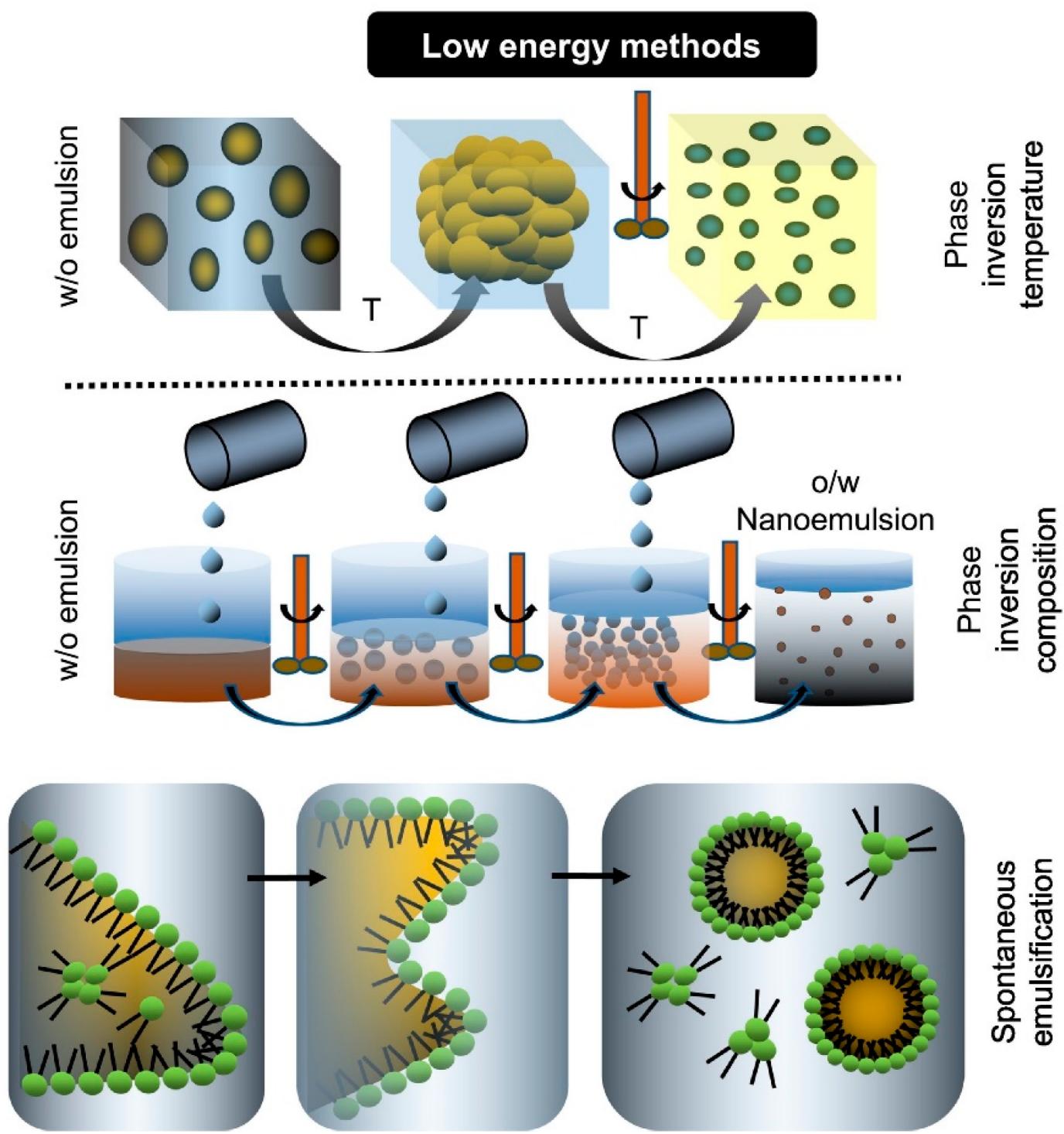
Since the oil and water phases are distributed relatively spatially, simple nanoemulsions can be divided into oil-in-water (O/W) nanoemulsions denoting the dispersion of small oil droplets in an aqueous medium, and water-in-oil (W/O) nanoemulsions signifying small water droplets distributed in an oil medium ^[3]. Additionally, utilizing a two-step procedure, it is also possible to produce two types of multiple nanoemulsions, namely water-in-oil-in-water (W/O/W) or oil-in-water-in-oil (O/W/O) ^[4]. For instance, the preparation of W/O/W nanoemulsions is achieved by assimilating the oil phase comprising lipophilic surfactant with the water phase to form the initial W₁/O nanoemulsions, which are then homogenized with an additional water phase (W₂) comprising hydrophilic surfactant ^[5].

The methods used for nanoemulsions' preparation can be divided into two principal groups namely low-energy and high-energy techniques. When environmental factors (e.g., composition or temperature) or nanoemulsions' compositions are modified, small droplets are generated, providing the basis necessary for the successful operation of the low-energy methods ^{[3][6][7][8]}. High-energy methods usually consume significant energy (~10⁸–10¹⁰ W/kg) to form small droplets. Furthermore, in the utilization of high-energy methods, the oil and water phases are breached and blended using the powerful cavitation, shear and turbulent flow profiles created by the specifically designed devices ^{[9][10]}.

Nanoemulsions are thermo-dynamically unstable since the free energy required to separate the oil phases from the water phases is lower than what is necessary for emulsification. Therefore, nanoemulsions typically break down during storage due to various mechanisms, such as gravitational separation (creaming or sedimentation), flocculation, coalescence and Ostwald ripening [11]. Moreover, various chemical and biochemical reactions such as flavor loss, biopolymer hydrolysis, color fading and lipid oxidation can adversely affect nanoemulsions, causing them to degrade during storage or lose their acceptable quality characteristics. Among the chemical deterioration phenomena mentioned above, lipid oxidation occurs the most frequently in nanoemulsions [12].

For several commercial uses, it is crucial that nanoemulsions-based products remain physiochemically stable when exposed to unfavorable environmental conditions (including temperature, mechanical forces, and ionic strength) during their production, storage, transportation and application [3][6]. The addition of suitable stabilizers, including emulsifiers, weighting agents, texture modifiers and ripening inhibitors can improve the physical stability of nanoemulsions [6][13]. Given that, three methods are commonly used to improve the nanoemulsions' chemical stability, including the manipulation of interfacial characteristics (e.g., thickness, charge, and chemical reactivity), the addition of chelating agents or antioxidants, as well as controlling environmental elements (e.g., temperature, light, pH, and oxygen levels) [3][6].

So far, a number of food ingredients and additives, including bioactive lipids, vitamins, flavorings, acidulants, preservatives, colorings, antioxidants and so on, have been encapsulated by nanoemulsions and some of them are already available in the market [1][3][14]. A larger droplet surface area, as well as a decline in particle size of the nanoemulsions may lead to increased functionality of the bioactive compounds contained within them. The majority of the bioactive compounds are characteristically lipophilic. Thus, O/W nanoemulsions are commonly used to improve the solubility and dispersibility of lipophilic substance in aqueous media, enhance stability, appearance, taste or texture, increase uptake absorption and bioavailability, and reduce the off-flavor (such as bitterness or astringency) [14][15][16].


2. Preparation

A number of methods were developed to facilitate nanoemulsions, which include high-energy as well as low-energy techniques [17]. Selecting an appropriate method for the preparation of nanoemulsions rely on the characteristics of the compounds needing homogenization (specifically the surfactant and oil phases), as well as the required physicochemical attributes and operational qualities of the ultimate product (including rheological, optical, release, and stability properties) [6]. Understanding the various fabrication methods is crucial for relevant personnel to choose the most suitable preparation technique and fabricate nanoemulsions for special application.

2.1. Low-Energy Methods

Low-energy methods are denoted by changes in environmental conditions, as well as the composition of the mixture influencing the development of oil nanodroplets within the mixed systems containing surfactants, oil, and water. The most frequently used low-energy techniques are spontaneous emulsion (SE), emulsion phase inversion

(EPI) (including phase inversion composition (PIC), and phase inversion temperature (PIT)) [8][18]. The principles of the characteristic low-energy techniques used to O/W nanoemulsions were shown in **Figure 1**.

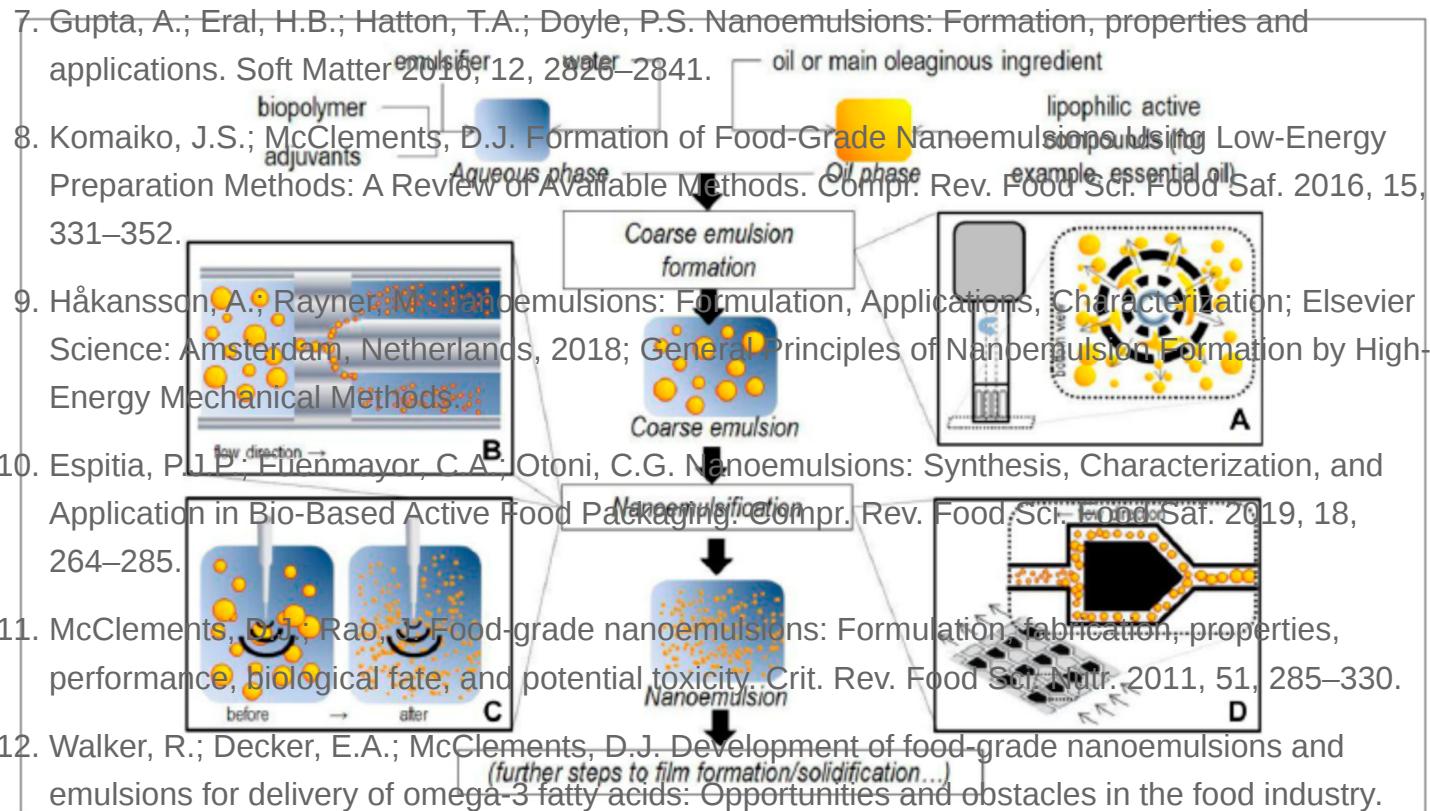
Figure 1. Schematic depiction of the characteristic low-energy techniques used to create O/W nanoemulsions, including phase inversion temperature (PIT), phase inversion composition (PIC) and spontaneous emulsion (SE) [19].

The low-energy methods for nanoemulsions' preparation and their application in encapsulation of bioactive compounds are summarized in **Table 1**.

Table 1. Examples of application of low-energy methods for nanoemulsions' preparation.

Emulsification Method	Optimal Processing Conditions	Bioactive Compound Encapsulated	Droplet Diameter (nm)	Reference
SE	(1) titration of organic phase into aqueous phase, (2) constant stirring, 600 rpm, (3) room temperature	Peppermint essential oil	≈50	[20]
	(1) titration of organic phase into the aqueous phase, (2) constant stirring, 1000 rpm/10 min, (3) room temperature	Citrus oil	10–30	[21]
	(1) titration of organic phase into aqueous phase, (2) constant stirring, 750 rpm, (3) room temperature	Citrus oil	≈100	[22]
	(1) titration of organic phase into aqueous phase, (2) constant stirring, 600 rpm/15 min, (3) room temperature	Cinnamaldehyde	<100	[23]
	(1) stirred, 1000 rpm/1 h, (2) room temperature	Capsaicin	13–14	[24]
PIC	(1) deprotonated eugenol in hot alkaline added to surfactant mixtures, (2) the mixtures were acidified to pH 7.0, stirred, 600 rpm	Eugenol	≈ 109–139	[25]
	(1) mixed oil and surfactant, (2) oil phase added to aqueous phase, (3) phase inversion	Docosahexaenoic acid	<200	[26]

Emulsification Method	Optimal Processing Conditions	Bioactive Compound Encapsulated	Droplet Diameter (nm)	Reference
	occurred at a certain oil-to water ratio, (4) stirred, 30 min	Eicosapentaenoic acid		
	(1) aqueous phase (water, glycerol) added to organic phase (sunflower oil, polysorbate 80, curcumin), (2) stirred, 300 rpm/30 min	Curcumin	≈200	[27][28]
		Essential Oils	29.55–37.12	[29]
	(1) mixed organic phase and aqueous phase, (2) continuing stirred, (3) ambient temperature	Blend*		
PIT	(1) all components were stirred, 30 min, (2) heated to 15 °C above the PIT, (3) the temperature was reduced to the PIT	Cinnamon oil	101	[30][31]
	(1) coarse emulsions were heated, 21–98 °C /0–3 h, (2) immediately quenching in ice/water with hand shaking	Lemon oil	≈100	[32]
	(1) mixing all components, (2) 3 temperature cycles (90–60–90–60–90–75 °C)	Curcuminoids	20–100	[33]


2. Maali, A.; Mosavian, M.T.H. Preparation and Application of Nanoemulsions in the Last Decade (2000–2010). *J. Dispers. Sci. Technol.* 2013, 34, 92–105.

~~Some of the nanoemulsion preparation methods are blend, shear, and high-energy methods. Blend and shear methods are the most common methods for nanoemulsion formulation. Applications of nanoemulsions include pharmaceuticals, cosmetics, food, and cosmetics. The blend method is a simple and cost-effective way to prepare nanoemulsions. It involves the physical mixing of oil, water, and emulsifier. The shear method involves the use of a high-speed homogenizer to disperse the oil droplets in the water phase. High-energy methods, such as ultrasound and high-pressure homogenization, involve the use of high-energy sources to break down the oil droplets into smaller, more uniform droplets.~~

2.2. High-Energy Methods
 High-energy methods, such as ultrasound and high-pressure homogenization, are used to disperse the oil droplets in the water phase. These methods involve the use of high-energy sources to break down the oil droplets into smaller, more uniform droplets. Ultrasound is a non-destructive method that uses high-frequency sound waves to disperse the oil droplets. High-pressure homogenization is a more destructive method that uses a high-pressure pump to force the oil droplets through a small nozzle, creating a high-velocity stream that breaks down the droplets. Both methods can be used to produce nanoemulsions with a droplet size of 100 nm or smaller. The choice of method depends on the specific application and the properties of the oil and water phases. For example, ultrasound is often used for the preparation of emulsions with a high oil content, while high-pressure homogenization is more suitable for emulsions with a low oil content. The choice of method also depends on the desired droplet size and the required processing time. Ultrasound is generally faster and more cost-effective than high-pressure homogenization, but it may not be suitable for all applications. High-pressure homogenization is more expensive but can produce emulsions with a more uniform droplet size and a longer shelf-life.

protection of nanoemulsion. Effect of high phenols on the *Candida parapsilosis* seed germination and the protein by mixing of the food components [10]. Food Res. Int. 2018, 108, 126–132. *In vitro* or stirrer. Later on, the coarse emulsions are exposed to disruptive forces to facilitate a reduction in the droplet diameter to 200~500 nm [10]. Based on the devices used, high-energy methods include rotor-stator emulsification (RSE), high-pressure homogenization (HPH), high-pressure microfluidic homogenization (HPMH) and ultrasonic homogenization (USH) [9][34]. The principles of high-Stability, Rheology, and Appearance.

energy techniques used to create O/W nanoemulsions were shown in **Figure 2**.

Figure 2: Schematic portrayal of high-energy techniques utilized for the preparation of O/W nanoemulsions. (A) traditional high-speed mixers are usually employed to form a coarse O/W emulsions before emulsification by (B) high-pressure homogenization (HPH), (C) ultrasonic homogenization (USH), (D) high-pressure microfluidic homogenization (HPMH) [34].

13. Zeeb, B.; Herz, E.; McClements, D.J.; Weiss, J. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. *J. Colloid Interface Sci.* 2014, 433, 196–203.

14. Salvia-Trujillo, I.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O.

Edible Nanoemulsions as Carriers of Active Ingredients: A Review. *Annu. Rev. Food Sci. Technol.*

The high-energy methods for nanoemulsions' preparation and their application in encapsulation of bioactive compounds are summarized in **Table 2**.

15. Seibert, J.B.; Bautista-Silva, J.P.; Amparo, T.R.; Petit, A.; Pervier, P.; Almeida, J.C.D.S.; Azevedo, M.C.; Silveira, B.M.; Brandao, G.C.; de Souza, G.H.B.; et al. Development of propolis

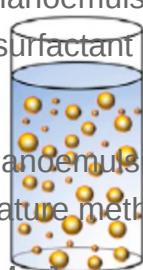
Table 2. Examples of application of high-energy methods for nanoemulsions' preparation.

Emulsification method with antioxidant and antimicrobial activity for use as a potential natural

Emulsification Method	Optimal Processing Conditions	Bioactive Compound Encapsulated	Droplet Diameter (nm)	Reference
RSE	24000 rpm/25 min	docosahexaenoic acid	87	[35]

Emulsification Method	Optimal Processing Conditions	Bioactive Compound Encapsulated	Droplet Diameter (nm)	Reference	their
1 HPH	800 bar/8 cycles	docosahexaenoic acid	11.17	[35]	phase 988–
1	103 M Pa/10 cycles	pepper extract	132 ± 2.0- 145 ± 1.0	[36]	or dermal
2	60 MPa/3 cycles	curcumin	203.6-260.6	[37]	l
2	40 ksi/10 cycles	fish oil	89.7 ± 27.7	[38]	avour
2	137.9 MPa/10 cycles	rosemary essential oil	2.88	[39]	nts, o
2	1000 bar/5 cycles	docosahexaenoic acid	148	[40]	ification: 122–
HPMH	350 bar/5 cycles	curcumin	275.5	[41]	
2	13 ksi/1 cycle	fish oil	<160	[42]	2016,
2	350 W/5 min	Resveratrol	20.41 ± 3.41	[43]	ancing on: An
USH		resveratrol cyclodextrin inclusion complex	24.48 ± 5.70		γ Self-
2	20.5 kHz/400 W for 15 min	thymus daenensis oil	171.88 ± 1.57	[44]	pared by
2	Combined method	docosahexaenoic acid	11.31	[35]	d
	HPH (24,000 rpm/15 min) + HSP (800 bar/8 cycles)				5

28. Borrin, T.R.; Georges, E.L.; Moraes, I.C.F.; Pinho, S.C. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. *J. Food Eng.* 2016, 169, 1–9.


29.3 Stability

Plaistre, T.; Yansakaow, S.; Leelapornpisid, P. Optimization, characterization and stability of essential oils blend loaded nanoemulsions by PIC technique for anti-tyrosinase activity. *Int. J. Pharm. Pharm. Sci.* 2015, 7, 308–312.

Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; McClements, D.J. Hydrophobic effect induces the hydrolytic instability. *Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method*. *Int. J. Food Sci. Technol.* 2010, 11, 190–196. Understanding the essential mechanisms responsible for nanoemulsions' instability is crucial in developing systems exhibiting adequate stability qualities.

31. Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; McClements, D.J.

Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. *J. Colloid Interface Sci.* 2018, 514, 208–216.

Kinetically
stable
emulsion

32. Su, D.; Zhong, Q. Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method. *J. Food Eng.* 2016, 171, 214–221.



33. Jintapattanakit, A.; Hasan, H.M.; Junyaprasert, V.B. Vegetable oil-based nanoemulsions containing curcuminoids. Formation optimization by phase inversion temperature method. *J. Drug Deliv. Sci. Technol.* 2018, 44, 289–297.

Oiling off
Phase
separation

34. Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. *Trends Food Sci. Technol.* 2018, 74, 132–146.

Gravitational
separation
Coalescence
or
Ostwald
ripening

35. Karthik, P.; Anandharamakrishnan, C. Fabrication of a nutrient delivery system of docosahexaenoic acid nanoemulsions via high energy techniques. *RSC Adv.* 2016, 6, 3501–3513.

Flocculation

36. Galvão, K.C.S.; Vicente, A.A.; Sobral, P.J.A. Development, Characterization, and Stability of O/W Nanoemulsions Produced by High Pressure Homogenization. *Food Process Technol.* 2017, 11, 355–367.

3.1.1. **Gravitational Separation**
3.1.1.1. Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on the physicochemical stability. *Int. J. Food Sci. Technol.* 2017, 84, 31–46.

The physical separation of the droplets induced by gravitational separation (sedimentation or upward (creaming) due to their density exceeding or being lower than that of the liquid surrounding it, is known as gravitational separation. Water and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. *Food Chem.* 2019, 275, 135–142.

38. Dey, T.K.; Koley, H.; Ghosh, M.; Dey, S.; Dhar, P. Effects of nano-sizing on lipid bioaccessibility tends to move in a downward direction, while oil migrates upward since most liquid oils are less dense than water in a liquid state. Therefore, sedimentation is common in W/O nanoemulsions, while O/W exhibit more cases of creaming [30]. An increase in droplet size, density contrast in conjunction with a decline in the aqueous phase viscosity, influence the motion speed of the droplets induced by gravitational separation [6].

39. Llinares, R.; Santos, J.; Trujillo-Cavado, J.A.; Ramírez, P.; Muñoz, J. Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. *Int. J. Food Sci. Technol.* 2018, 87, 370–375.

40. Kupathurayagam, A.; Makris, M. *CC* Enhancing *Omega-3* fatty acid separation (sedimentability) and cinnamaldehyde stability through emulsifiers. *Food Eng.* 2016, **187**, 92–105.

41. Raviadaran, R.; Chandran, D.; Shin, L.H.; Manickam, S. Optimization of palm oil in water nano-water (997 kg m⁻³) [47].

42. Liu, F.; Zhu, Z.; Ma, C.; Luo, X.; Bai, L.; Decker, E.A.; Gao, Y.; McClements, D.J. Fabrication of The colloidal interaction between the droplets determines two types of droplet accumulation namely coalescence Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet and flocculation [50].

3.1.2. Flocculation and Coalescence

43. Kumar, R.; Kaur, K.; Upad, S.; Mehta, S.R. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. *Ultrason. Sonochem.* 2017, **37**, 478–489.

44. Moghimi, R.; Aliahmadi, A.; Rafati, H.; Abtahi, H.R.; Amini, S.; Feizabadi, M.M. Antibacterial and As reported by Bai et al., a cream layer was evident for saponin-coated droplets when salt concentrations anti-biofilm activity of nanoemulsion of *Thymus daenensis* oil against multi-drug resistant exceeded 300 mM, suggesting that the accumulation of droplets primarily resulted from flocculation instead of *Acinetobacter baumannii*. *J. Mol. Liq.* 2018, **265**, 765–770.

45. McClements, D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. The process by which a larger droplet is formed when several droplets collide and amalgamate is known as coalescence [50].

46. Arancibia, C.; Miranda, M.; Matiacevich, S.; Troncoso, E. Physical properties and lipid coated with rhamnolipids displayed stability following thermal treatments between 30 °C to 90 °C, with salt bioavailability of nanoemulsion-based matrices with different thickening agents. *Food Hydrocoll.* concentrations below 100 mM NaCl, pH levels between 5 and 9, as well as storage for at least two weeks at room 2017, **73**, 243–254.

47. Chen, H.; Cao, J.; McClements, D.J.; Liu, B. (2010–2011) Enhancement of physicochemical properties of soybean protein stabilized nanoemulsions by interface pressure linking and magnitude at high salt concentrations. *Food Hydrocoll.* 2018, **77**, 976–985.

48. Bai, L.; Liu, F.; Xu, X.; Huan, S.; Gu, J.; McClements, D.J. Impact of polysaccharide molecular excess of n-alcohol led to nanoemulsion destabilization, coalescence was found to be the primary destabilization characteristics on viscosity enhancement and depletion flocculation. *J. Food Eng.* 2017, **207**, 35–45.

49. Li, P.; Li, W. C. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. *Food Hydrocoll.* 2016, **53**, 218–224.

50. Bai, L.; McClements, D.J. Formation and stabilization of nanoemulsions using biosurfactants: 3.1.3. Ostwald Ripening

Rhamnolipids. *J. Colloid Interface Sci.* 2016, **479**, 71–79.

51. Wooster, T.J.; Lockett, D.; Sanguansri, P.; Andrews, H. Impact of microemulsion inspired approaches on the formation and destabilisation mechanisms of triglyceride nanoemulsions. *Soft Matter* 2010, **12**, 1425–1435.

52. when the dispersed phase solubility in large droplets (small curvature) is lower than in small droplets (large curvature), which prompts droplet growth due to the appearance of a concentration gradient [53].

52. Shing, G.; Kyalid, N.; Gher, Z.; Davies, M.; Ang, B.; Sival, C. J. **Nanoemulsion Formulation and**
53. **characterization of a trapase-rich enriched thyme oil nanoemulsion stabilized using a single hydrophobic natural emulsifier.** *Water Chem.* 2018, **255**, 67–74.

53. Thompson, K.L.; Derry, M.J.; Hatton, F.L.; Armes, S.P. **Long-Term Stability of n-Alkane-in-Water**
high water-solubility of thyme oil induced expeditious droplet growth as a result of Ostwald ripening [55].

Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening.
Langmuir 2018, **34**, 9289–9297.

3.2. Chemical Stability

54. Ryu, V.; McClements, D.J.; Corradini, M.G.; McLandsborough, L. **Effect of ripening inhibitor type**
Various biochemical and chemical reactions such as flavor loss, lipid oxidation, biopolymer hydrolysis and color
on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. *Food Chem.* 2018,
fading occur in nanoemulsions leading them to lose their favorable characteristics. Of these, lipid oxidation is
245, 104–111.
considered as one of the most significant types of chemical degradation [12]. The interfacial areas of nanoemulsions
55. **Walker, R.; Gao, J.; CaEe Decker, E.; McClements, D. J. **Impact of molecular weight on the formation and****

56. **stability of fish oil-in-water nanoemulsions using casein and (1,3)-**McG, thymoquinone, and** Park, H. **Food****

Emulsions. 2011, **211**, 60–68.

56. **stability of nanoemulsions might exhibit a more significant association with the**
chemical stability instead of the physical stability in the case of O/W nanoemulsions with retinol [57].

56. McClements, D.; Decker, E. **Lipid oxidation in oil-in-water emulsions: Impact of molecular**
environment on chemical reactions in heterogeneous food systems. *J. Food Sci.* 2000, **65**, 1270–
1282.

57. Park, H.; Mun, S.; Kim, Y.R. **UV and storage stability of retinol contained in oil-in-Water**
prepared nanoemulsions using Pluronic F68 and various oils generally utilized for pharmaceutical and cosmetic
58. **applications, and explored their stability mechanisms.** The eventual destabilization appeared due to the rising of

large drops which formed through coalescence and Ostwald ripening and coalescence were responsible for the
formation of large drops, which rose to cause the ultimate destabilization [58]. According to Chen et al., for pure
59. Wooster, T.J.; Golding, M.; Sangwanish, P. **Impact of oil type on nanoemulsion formation and**
Ostwald ripening stability. *Langmuir* 2008, **24**, 12758–12765.

60. Weiss, J.; Takhistov, P.; McClements, D.J. **Functional Materials in Food Nanotechnology.** *J. Food*
Sci. 2006, **71**, R107–R116.

Consequently, the mean particle size of the nanoemulsions expands, resulting in accelerated droplet coalescence
61. **and sedimentation.** [47]

61. Sevdou, M.; Andre, C.M.; Cambier, S.; Yonekura, L.; Taoukis, P.S.; Hoffmann, L.
Modulation of chemical stability and in vitro bioaccessibility of beta-carotene loaded in kappa-
carrageenan oil in nanoemulsions. *Food Chem.* 2017, **220**, 208–218.

4. Nanoemulsion Stabilizer

62. Grossmann, R.E.; Tangpricha, V. **Evaluation of vehicle substances on vitamin D bioavailability: A**
In order to satisfy the specific requirements of commercial applications, nanoemulsions should be designed to
systematic review. *Mol. Nutr. Food Res.* 2010, **54**, 1055–1061.

63. Ziani, K.; Fang, Y.; McClements, D.J. **Encapsulation of functional lipophilic components in**
It is critical to select adequate aqueous and oil phases, as well as the most suitable additives, such as emulsifier,
surfactant-based colloidal delivery systems; Vitamin E, vitamin D, and lemon oil. *Food Chem.*
2012, **134**, 1106–1112.

64. Akundi, T.U.; Barlow, C.J. **Candida antarctica lipase A** effectively concentrates DHA from fish and
thraustochytrid oils. *Food Chem.* 2017, **229**, 509–516.

For instance, apart from decreasing the droplet size, gravitational separation can also be reduced by adding thickeners to improve the viscosity of the aqueous phase, or adding weighting agents to decrease the density

65 contrast, complete lipid regeneration by Desbatilene, and the development of stage-taking as to whether the
 66 water interactions, suitable and integration into functional food products, and in foods 2016 (e.g.,
 67 hydrophobic, 306–314 der Waals, and depletion). This is often accomplished by changing the aqueous phase
 68 composition or the nature of the emulsifier used [6]. The addition of ripening inhibitors or the utilization of an oil
 69. Mazza, M.; Pomponi, M.; Janiri, L.; Bria, P.; Mazza, S. Omega-3 fatty acids and antioxidants in
 70 phase displaying low water-solubility can restrict Ostwald ripening [6][59].
 71 neurological and psychiatric diseases: An overview. *Prog. Neuropsychopharmacol. Biol.*

Psychiatry 2007, 31, 12–26.

5. Applications in Encapsulation of Bioactive Compounds

67. Lohith Kumar, D.H.; Sarkar, P. Encapsulation of bioactive compounds using nanoemulsions.

The use of many bioactive compounds, such as bioactive lipids, essential oils, flavor compounds, vitamins, polyphenols, carotenoids and so on in the food industry remain challenging due to their inadequate solubility in water as well as their stability in food preparations [14][60]. Generally, nanoemulsions are usually designed to retain

bioactive compounds during storage within a food product but control their release when they encounter specific environmental conditions, such as the mouth for flavors or the gastrointestinal tract for pharmaceuticals or nutraceuticals ⁶⁹. Additionally, the delivery and slow release of hydrophobic bioactive compounds in O/W

Consequently, Davidsons Rumah Zongsi has a mission to actively help the robotics industry by providing their solidum case in order to facilitate the Food Ministry of the 2015-2019 gastrointestinal tract (GIT) system [62] [63].

71. Ma, Q.; Davidson, P.M.; Zhong, Q. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin. *Food Chem.* 2016, 206, 167–173.

5.1. Bioactive Lipids

72. Sharma, A.; Sharma, N.K.; Srivastava, A.; Kataria, A.; Dubey, S.; Sharma, S.; Kundu, B. Clove Essential polyunsaturated fatty acids (PUFAs), especially omega-3 oils, e.g. eicosapentaenoic acid (EPA), and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic docosahexaenoic acid (DHA), α -linoleic acid and α -linolenic acid are the main bioactive lipids [64][65]. PUFAs *Fusarium oxysporum* f.sp. *lycopersici*. Ind. Crops Prod. 2018, 123, 353–362. PUFAs reportedly have substantial health benefits, such as the neuroplasticity of nerve membranes, nervous system

73. Yang, Y.; Zhao, C.; Tian, G.; Lu, C.; Li, C.; Bao, Y.; Tang, Z.; McClements, D. J.; Xiao, H.; Zheng, J. Characterization of physical properties and electronic sensory analyses of citrus oil-based bioactive lipids are highly unstable against oxidation and presented low odor thresholds. Therefore, exceedingly low concentrations affected the sensory parameters. Encapsulation of bioactive lipids in nanoemulsions is

74. Ozturk, B. Nanobemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. *Eur. J. Lipid Sci. Technol.* 2017, **119**, 1900539. [\[CrossRef\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

According to Zhang et al., Stable DHA and EPA nanoemulsions were prepared by EPT method. Within 20 days, the best nanoemulsions have good physical stability under different storage conditions, and the retention rate of DHA/EPA can be stabilized at >60% [26]. Dey et al., suggested that nanoemulsions demonstrated a considerably

Preparation and Stabilization of emulsions stabilized by mixed sodium caseinate and soy protein

77. Kadappan, A.S.; Guo, C.; Gümüş, C.E.; Bessey, A.; Wood, R.J.; McClements, D.J.; Liu, Z. The nanoemulsions showed improved stability and extent of lipid digestibility.^[40]

Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies. *Mol Nutr Food Res*. 2018; 62: 1700836.

5.2. Essential Oils and Flavor Compounds

78. Schäfer, J.; Atte, F.; Zhang, B.; Bhat, V.; Wessels, J.; McClements, D.J. Fabrication of plant-based vitamins, 79. flowers, fortified nanoemulsions, and their bioaccessibility. *Food Funct.* 2019, **10**, 1826–1835.

79. Lv, S.; Gu, J.; Zhang, R.; Zhang, Y.; Tan, H.; McClements, D.J. Vitamin E Encapsulation in Plant-based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. *J. Agric. Food. Chem.* 2018, **66**, 10532–10542.

80. Moradi, S.; Anarjan, N. Preparation and characterization of alpha-tocopherol nanocapsules based on emulsion stabilizing nanoemulsions. *Food Sci. Biotechnol.* 2019, **e28**, 113A–121.

81. Campani, V.; Biondi, M.; Mayol, L.; Cilurzo, F.; Pitard, M.; de Rosa, G. Development of homogenizing the essential oils in the aqueous solutions containing CS and lecithin, indicating that the nanoemulsions for topical delivery of vitamin K1. *Int. J. Pharm.* 2016, **511**, 170–177.

82. Assadpour, F.; Jafari, S.M. A systematic review on nanopackaging of food bioactive ingredients and nutraceuticals by various nanocarriers. *Crit. Rev. Food Sci. Nutr.* 2018, **59**, 3129–3151.

83. Kumar, D.D.; Mani, B.; Pothuraju, R.; Sharma, R.; Bajaj, R.; Minaxi, M. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. *Food Funct.* 2016, **7**, 417–424.

84. Zheng, B.; Peng, S.; Zhang, X.; McClements, D.J. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. *J. Agric. Food. Chem.* 2018, **66**, 10816–10826.

85. Sogasti, D.; Deokar, S. Evaluation of clove and lemongrass oil incorporation in plant lipid nanoemulsions, which enhances the levels of docosahexaenoic acid in serum and the lipid profile in rats. *Prostaglandins, Leukotrienes, Essential Fatty Acids* 2015, **119**, 45–52.

86. Silva, H.D.; Beldíkova, E.; Poejo, J.; Abrunhosa, L.; Serra, A.T.; Duarte, C.M.M.; Brányik, T.; Cerqueira, M.A.; Pinheiro, A.C.; Vicente, A.A. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. *J. Food Eng.* 2019, **243**, 89–100.

87. Singh, G.; Par, P.S. Trans-resveratrol containing nanoemulsions using delivery system (SNEDDS) with enhanced bioavailability potential: Optimization and MCT influence on in situ release produced. *Food Deliv.* 2018, **22**, 520–530.

88. Son, H.-Y.; Lee, M.-S.; Chang, E.; Kim, S.-Y.; Kang, B.; Ko, H.; Kim, I.-H.; Zhong, Q.; Jo, Y.-H.; Kim, C.-T. Formulation and Characterization of Quercetin-loaded Oil in Water Nanoemulsion and were obtained with the addition of MCT. Additionally, nanoemulsions containing cinnamaldehyde and MCT could provide an enhanced long-term inhibition on the bacterial growth of *Escherichia coli* compared with pure cinnamaldehyde. *Food. Technol. Biotechnol.* 2018, **08**, 154–161.

89. De Garsi, G.; Moraes-Lovison, M.; Pinho, S.C. Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. *LWT Food Sci. Technol.* 2018, **108**, 154–161.

95.3.3. Vitamins A.S.; Taarji, N.; Khalid, N.; Kobayashi, I.; Nakajima, M.; Neves, M.A. Formulation and characterization of water-in-oil nanoemulsions loaded with acai berry anthocyanins: Insights of As essential micronutrients, vitamins form a crucial part of human health. There are two types of vitamins: fat-soluble (lipophilic) and water-soluble (hydrophilic). Vitamins A, E, D, and K are grouped as the lipophilic vitamins, while vitamins B and C are hydrophilic.

91. Peng, Y.; Meng, Q.; Zhou, J.; Chen, B.; Xi, J.; Long, P.; Zhang, L.; Hou, R. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. *Food Chem.* **2018**, *106*, 542–548.

92. Santos, D.T.; Meireles, M.A.A. Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends. *Open Chem. Eng. J.* **2010**, *4*, 42–50.

93. Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. *J. Food Sci.* **2011**, *76*, R6–R15.

94. Fan, Y.; Yi, J.; Zhang, Y.; Wen, Z.; Zhao, L. Physicochemical stability and in vitro bioaccessibility suggested that UV light reduced the residual retinol in the emulsion systems that utilized low oil concentrations of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. *Food Hydrocoll.* **2017**, *63*, 256–264.

95. Yi, J.; Zhang, Y.; Liang, R.; Zhong, F.; Ma, J. Beta-Carotene Chemical Stability in Nanoemulsions Was Improved by Stabilized with Beta-Lactoglobulin–Catechin Conjugates through Free Radical Method. *J. Agric. Food. Chem.* **2014**, *63*, 297–303.

96. Meng, Q.; Long, P.; Zhou, J.; Ho, C.T.; Zou, X.; Chen, B.; Zhang, L. Improved absorption of Beta-Carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. *Food Res. Int.* **2019**, *116*, 731–736.

97. Sotomayor-Gerding, D.; Oomah, B.D.; Acevedo, F.; Morales, E.; Bustamante, M.; Shene, C.; Rubilar, M. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced vitamin bioaccessibility declined in the following order: corn oil > fish oil ≈ flaxseed oil. *Food Chem.* **2016**, *199*, 463–470.

98. Liu, X.; Zhang, R.; Wei, C.; Chen, Y.; Ding, L.; Fei, J.; Ho, C.T.; Xiao, H. Nutraceuticals Based Delivery (53D) Delivery Systems for Nutraceuticals: Influence of Oily Components on the Stability of Vitamin K1 in High Astaxanthin Bioaccessibility. *Food Biophys.* **2018**, *13*, 412–421.

99. Zhong, J.; Wang, Q.; Qin, X. Improving the stability of phosphatidylcholine-enhanced K₁ into food formulations. The results showed that nanoemulsions could offer an option for the commercial nanoemulsions using octenyl succinic anhydride-modified starch. *Int. J. Biol. Macromol.* **2018**, *120*, 1500–1507.

Retrieved from <https://encyclopedia.pub/entry/history/show/41274>

5.4. Phenolic Compounds

Phenolic compounds displaying significant antioxidant properties can be employed in biological preparations and various food products such as anti-microbial, anti-atherogenic, anti-inflammatory, anti-thrombotic, and anti-allergenic agents [82]. Phenolic compounds are classified into lipophilic and hydrophilic compounds.

Lipophilic phenolic compounds were usually encapsulated by O/W nanoemulsions. O/W nano-emulsification, can reportedly improve the bioavailability of lipophilic phenolic compounds due to higher absorption, solubility, and permeation into the body, as well as the safeguarding of the lipophilic phenolic compounds in nanoemulsions within food preparations [67]. According to Kumar et al., curcumin nanoemulsions with sodium caseinate were prepared. The cellular uptake of curcumin was improved by nanoemulsification because that the slow release of curcumin in the intestine is beneficial to incorporate it into mixed micelles of the bile salts or phospholipids [83]. Zheng et al. prepared curcumin nanoemulsions by three different methods (e.g., pH-driven, conventional, and heat-driven) and compared them with three curcumin supplements that are currently widely available. The results showed that the bioaccessibility of all curcumin obtained nanoemulsions compared well to even the most superior commercial formulation. Additionally, the nanoemulsions produced using the pH-driven technique denoted the highest concentrations of curcumin in the mixed micelles phase following exposure to a simulation of a gastrointestinal tract [84]. Sugasini et al. prepared a phospholipid-stabilized nanoemulsion containing curcumin and carrier oil (sunflower oil, coconut oil, or linseed oil) and explored the possibility of nanoemulsions to enhancing the curcumin bioavailability and DHA levels in rats. The results indicated the presence of high DHA levels in tissue and serum lipids, as well as elevated curcumin levels in the serum, heart, liver, and brain of rats given feed nanoemulsions containing linseed oil and curcumin [85]. According to Silva et al., compared with WPI-nanoemulsions, nanoemulsions stabilized by WPI-chitosan mixture showed the improved apparent permeability coefficient of curcumin via Caco-2 cells, as well as the improved bioaccessibility and antioxidant ability [86]. According to Singh et al., the rate and extent of bioavailability of t-resveratrol was significantly enhanced by loading in nanoemulsions rather than that of free t-resveratrol. Alongside this, the results of an in situ single pass intestinal perfusion study showed a remarkable enhancement in the absorptivity and permeability parameters of nanoemulsions [87]. Son et al. prepared quercetin-loaded O/W nanoemulsions containing Tween 80, caprylic/capric triglyceride (Captex® 355), soy lecithin, and sodium alginate using the SE method. The nanoemulsion polydispersity index and particle size were <0.47 and 207–289 nm, respectively. The nanoemulsions were stable at pH levels ranging from 6.5–9.0 during a storage period of three months at 21 °C and 37 °C. Additionally, in rats that received a diet high in cholesterol, the nanoemulsion containing quercetin displayed a more substantial efficacy in decreasing the level of serum and hepatic cholesterol, with higher release of bile acid into feces, compared to free quercetin [88]. As reported by Carli et al., nanoemulsion-encapsulated quercetin was created with the EIP method and using two separate surfactants, namely Brij 30, and Tween 80. Nanoemulsions were obtained with mean particle size of 180–200 nm. The retention of quercetin was around 70% in nanoemulsions that contained 0.30% quercetin (w/w) and were stored for 90 d. Additionally, the incorporation of quercetin-loaded nanoemulsions in chicken patés can improve their oxidative stability in a considerably more efficient manner than synthetic antioxidants. Sensory information suggested that the quercetin encapsulation in nanoemulsions enhances consumer acceptability of the products [89].

Hydrophilic phenolics or the mixture of hydrophilic and lipophilic phenolics were usually encapsulated by W/O nanoemulsions. According to Rabelo et al., stable W/O nanoemulsions containing açaí berry extracts (ABE, rich in anthocyanins) were successfully formulated. All W/O nanoemulsions containing different concentrations of ABE exhibited high antioxidant activity and retention rates of anthocyanins after 30 days of storage. When 2% of

anthocyanins was encapsulated in a 30 wt% ϕ d (weight fraction of the dispersed phase) W/O nanoemulsions, they had an estimated half-life of 385 days [90]. Moreover, hydrophilic phenolics can also be encapsulated by O/W nanoemulsions. As reported by Peng et al., The O/W tea polyphenols (TP) nanoemulsion were prepared with polysorbate 80 and corn oil using the HPH method. The TP nanoemulsions with particle sizes of 99.42 ± 1.25 nm were stable during a 20-day storage period at 4 °C, 25 °C, or 40 °C. The results of in vitro assay of the simulated digestion model displayed a higher degree of bioaccessibility with regard to (-)-epigallocatechin gallate (EGCG), while (-)-epicatechin (EC), (-)-epigallocatechin (EGC), and (-)-gallocatechin gallate (GCG) exhibited lower bioaccessibility in the nanoemulsions compared to the aqueous solutions [91].

5.5. Carotenoids

Carotenoids represent natural lipophilic pigments that provide various health advantages such as safeguarding the eyes and reducing certain cancers. Increasing carotenoid bioavailability can be achieved when they are ingested with dietary lipids since the micelles derived from digested products are beneficial to solubilization and transportation of carotenoids to the epithelial cells [67][92][93]. Encapsulation of hydrophobic carotenoids into O/W nanoemulsions could protect them from external stress factors. Additionally, the bioavailability of carotenoids can be increased after nano-emulsification.

As reported by Fan et al., O/W nanoemulsions containing β -carotene (BC) were prepared using WPI and WPI-dextran as emulsifiers. Following a 30-day storage period at 25 °C and 50 °C, the highest BC retention rate was evident in nanoemulsions that were stabilized with WPI-DT (5 kDa) conjugate due to the relatively high scavenging ability of diphenyl-1-picryl-hydrayl (DPPH). Additionally, the encapsulation in nanoemulsions stabilized by WPI-dextran (70 kDa) significantly impeded the lipolysis and release of BC [94]. According to Yi et al., BC retention of lactalbumin-catechin conjugate-stabilized nanoemulsions was significantly greater than that of lactalbumin-stabilized ones, which was attributed to the increased radical-scavenging and binding ability with free metal ion of lactalbumin after grafting with catechin [95]. Meng et al. prepared nanoemulsions containing TP and BC and found that the addition of TP was effective in enhancing the oral bioavailability and storage stability of BC. During storage at varying temperatures of 4 °C, 25 °C, and 35 °C, the stability and the BC retention of nanoemulsions containing TP and BC was higher than those of nanoemulsions containing only BC. Additionally, as shown by the in vitro simulated digestion assay and the in vivo absorption study, comparing with nanoemulsions containing only BC, the nanoemulsions containing TP and BC exhibited the higher recovery rates of BC at digestion phases I and II and the higher conversion efficiency of BC to vitamin A [96]. As reported by Sotomayor-Gerding et al., carotenoid (astaxanthin or lycopene) nanoemulsions were obtained by the HPH method. Nanoemulsions were stable to environmental conditions and storage time. The nanoemulsion oxidative stability was improved by trolox and the stability of lycopene nanoemulsions was improved by the synergistic effect of trolox and butylated hydroxytoluene (BHT). Additionally, carotenoid nanoemulsions were partially (66%) digested and highly bioaccessible (70–93%) [97]. As reported by Liu et al., the bioaccessibility of astaxanthin in nanoemulsions containing different carrier oils (olive oil, flaxseed oil and corn oil) was much higher than that in nanoemulsions containing no lipid, due to that the hydrophobic carotenoids could be solubilized by the mixed micelles formed from the carrier oils. The final free fatty acid release, as well as the bioaccessibility of astaxanthin exhibited a decrease in the following order: olive oil >

flaxseed oil > corn oil [98]. As reported by Shen et al., the nanoemulsions stabilized with WPI had the highest cellular uptake of astaxanthin, followed, in order, by PWP, WPI–lecithin mixture, PWP–lecithin mixture ($5.05 \pm 0.1\%$), lecithin, and Tween 20 [99].