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On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of

diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and

survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is

generated by mitochondria. Apart from the electron transport chain and various other proteins, monoamine

oxidases (MAO) has been proposed to modify mitochondrial ROS formation. 
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1. Monoamine Oxidase Isoforms

Two different isoforms of MAO are known, namely MAO-A and MAO-B, both of which are located at the outer

mitochondrial membrane. Species-dependent cardiomyocytes express different MAO isoforms: in rats, MAO-A

predominates in adulthood,  while in adult mice MAO-B dominates . Interestingly, in rat hearts, MAO-B

activity also predominates up to an age of 2–3 weeks , most likely since MAO-B expression increases under

mechanical strain as compared to the quiescent situation . Human cardiomyocytes contain both MAO isoforms,

but with more, albeit moderate, expression for MAO-A . In rat hearts, MAO activity is higher in the left compared

to the right ventricle  and females have higher plasma MAO activity than males  as estrogens can modulate

MAO activity .

2. MAO Substrates

The two MAO isoforms have common substrates such as dopamine, but also specific substrates: MAO-B can

metabolize 1-methyl histamine , produced by the histamine-N-methyltransferase , while MAO-A metabolizes

serotonin (or 5-hydroxytryptamin, 5-HT) and catecholamines (for review, see ). MAO requires flavin adenine

dinucleotide as a cofactor that is reduced by the reaction of, and subsequently re-oxidized by, oxygen and water,

generating hydrogen peroxide . MAO can also form reactive aldehydes, such as 4-hydroxynonenal, as a

byproduct of catecholamine metabolism through cardiolipin peroxidation inside mitochondria in primary

cardiomyocytes. Deleterious effects of 4-hydroxynonenal are physiologically prevented by the activation of

mitochondrial aldehyde dehydrogenase 2 .

Mice deficient in both MAO-A and MAO-B demonstrate increased tissue levels of serotonin, norepinephrine,

dopamine, and phenylethylamine , and genetic ablation of MAO-A increases the serotonin concentration in the

blood and tissue of rats . Similarly, a blockade of MAO by drugs indicated for other uses (e.g., antidepressants)
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can alter histamine levels in mice hearts . In contrast, MAO-A overexpression decreases the level of

norepinephrine and serotonin in the heart (for review, see ) (Figure 1).

Figure 1. Two subtypes of monoamine oxidases (MAO)—named A and B—are located at the outer mitochondrial

membrane, which differ in their substrate specificity. Almost all cell types express MAOs but the respective subtype

might differ between species, organs and age. In the heart, MAOs are expressed in cardiomyocytes, fibroblasts,

vascular smooth muscle and endothelial cells. In the heart, MAO substrates are derived from different sources

including mast cells, sympathetic nerves, platelets and cardiomyocytes.

3. MAO Expression

An increased expression/activity of MAO occurs during aging  and with different diseases such as arterial

hypertension , pulmonary hypertension , hypertrophy , diabetes , myocardial infarction 

or heart failure . In the streptozotocin-induced diabetic rat model, particularly the MAO-B isoform is induced in

aortas and hearts and contributes to the generation of reactive oxygen species . While the underlying

mechanisms of MAO upregulation under the above conditions are still unclear, one potential factor contributing to

increased MAO expression/activity in the heart might be increased substrate availability (for review, see ).

An increased sympathetic tone increases plasma norepinephrine and epinephrine concentrations, and increased

norepinephrine spillover as seen in chronic heart failure patients . Serotonin concentrations are increased

during different disease states (for review, see ) and part of the increase has been attributed to altered platelet

function . Histamine co-localizes with norepinephrine in neurons  and is enclosed in cytoplasmatic granules of

mast cells, which lie adjacent to blood vessels and between cardiomyocytes , and mast cell degranulation might
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occur under stress conditions . Moreover, serotonin can be formed in the mouse and human heart , probably

by cardiomyocytes themselves .

In AC16 cardiomyocytes, MAO-A mRNA and protein expressions are affected by non-coding RNAs since

knockdown of the non-protein coding RNA 472 (LINC00472) reduced MAO-A expression, the results being partly

abolished by miR-335-3p inhibition. Thus, LINC00472 positively regulates MAOA expression via interaction with

miR-335-3p .

4. Monoamine Oxidases and Hypertrophy

Cardiac hypertrophy is a typical early adaptive response to increased cardiac workload and mechanical stress.

However, in cases of prolonged or chronic stress, this response may become maladaptive and ultimately lead to

heart failure. Cardiomyocytes synthesize additional sarcomeres, leading to the thickening of the ventricular wall

and increased overall cardiac mass and size. The subcellular reorganization that underlies cardiomyocyte

hypertrophy was found to require functional and responsive mitochondrial dynamics (for review, see ).

In wild type mice, pressure overload induced by transverse aortic constriction results in increased dopamine

catabolism, left ventricular hypertrophy and dilation progressing to cardiac dysfunction. In contrast, in MAO-B

knockout mice with transverse aortic constriction concentric left ventricular hypertrophy and function are

maintained, both at the early (weeks) and late stages (months) . As outlined above, in the hearts  as well as

in the isolated cardiomyocytes  of spontaneously hypertensive rats MAO activity is significantly increased even

before the development of cardiac hypertrophy . Increased MAO activity might represent an early event in the

development of cardiac hypertrophy  due to its potential impact on cardiac metabolism  since cardiac

hypertrophy normally goes along with a metabolic switch to preferential use of carbohydrates rather than fatty acids

.

In rat cardiomyocytes, administration of high micromolar concentrations of serotonin or dopamine increases

glucose transport through the upregulation of glucose transporters 1 and 4 at the sarcolemma; the increase in

glucose import is blocked by MAO-A inhibition . At similar concentrations, serotonin induces cardiomyocyte

hypertrophy, again the effect being largely attenuated by MAO-A inhibition  (or blockade of the extracellular

regulated kinase). In addition, the effects of angiotensin II on hypertrophy are attenuated by a pharmacological

blockade of MAO-A in rats . Since lower concentrations of serotonin induce cardiomyocyte hypertrophy

independent of MAO-A through the activation of the 5-HT(A2) receptor , genetic deletion of MAO-A also

increases load-dependent ventricular hypertrophy  (for review, see ). Thus, both an increased or decreased

MAO expression/activity can contribute to hypertrophic effects, depending on substrate availability.

5. Pulmonary Hypertension

MAOs have also been proposed to play an important role in pulmonary hypertension . In rats, pulmonary

hypertension secondary to monocrotaline injection , sugen5416/hypoxia, or pulmonary artery banding 
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upregulates MAO-A expression in the pulmonary vasculature and the failing right ventricle. Clorgyline treatment

reduced the right ventricular afterload and pulmonary vascular remodeling in sugen/hypoxia rats through reduced

pulmonary vascular proliferation and oxidative stress, resulting in improved right ventricular stiffness and relaxation

and reversed right ventricular hypertrophy. In rats with pulmonary artery banding, clorgyline had no direct effect on

the right ventricle . In contrast, recent unpublished data demonstrate less myocardial structural or functional

changes secondary to the pulmonary artery banding in cardiomyocyte-specific MAO B knockout mice in the right

ventricle.

6. Monoamine Oxidases and Ischemia/Reperfusion (I/R)
Injury

Under stress conditions such as I/R, the autonomic nervous system is activated, releasing neurotransmitters that

are metabolized by MAOs, thereby directly influencing heart function . Besides norepinephrine, serotonin and

histamine also play important roles in I/R injury. Serotonin accumulates in the heart during ischemia  and is

degraded after reperfusion depending on MAO-A activity after uptake into cells . Mast cells become activated

during stress conditions and release histamine ; histamine release from the heart is increased during I/R .

While mast cell activation thus increases substrate availability for MAO-B, MAO-B inhibition prevents mast cell

degranulation in diabetic mice hearts , implying a vicious cycle of mast cell and MAO-B activation.

During 30 min ischemia, hydroxyl radical production increases 2-fold with a further increase upon 60 min

reperfusion in isolated rat hearts, both of which can be decreased by pargyline administration. The decrease in

ROS formation following MAO inhibition is associated with reduced cardiomyocyte injury following I/R . Similarly,

cardiomyocyte-specific MAO-B knockout reduces infarct size following I/R in isolated mice hearts .

In vivo, the inhibition of MAO-A largely reduces myocardial ultrastructural damage induced by 30 min ischemia and

60 min reperfusion in the rat heart, associated with the prevention of postischemic oxidative stress, neutrophil

accumulation, and mitochondrial-dependent cell death . Infarct size and cardiomyocyte apoptosis are also

significantly decreased in MAO-A-deficient animals following 30 min ischemia and 180 min reperfusion, the

protection being accompanied by sphingosine kinase 1 inhibition and less ceramide accumulation .

Cardioprotection can be achieved also by mechanical intervention such as ischemic preconditioning . In both

male and female rat hearts, ischemic preconditioning improves functional recovery following I/R, which is further

enhanced in the presence of MAO inhibition by either clorgyline or pargyline. However, infarct size is similar among

all preconditioned groups, regardless of the presence of MAO inhibitors, indicating that acute inhibition of MAOs

potentiates the preconditioning-induced postischemic functional recovery without having any further effect on

infarct size beyond that achieved by ischemic preconditioning .

7. Monoamine Oxidases and Left Ventricular
Remodeling/Heart Failure
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Rasagiline mesylate (N-propargyl-1 (R)-aminoindan) (RG), a selective, potent irreversible inhibitor of monoamine

oxidase-B, administered for 28 days (2 mg/kg) starting 24 h after myocardial infarction, preserves left ventricular

geometry and function. Treatment with rasagiline prevents tissue fibrosis and attenuates cardiomyocyte apoptosis

in the border zone of the infarct associated with a markedly-decreased malondialdehyde level in the border zone,

indicating a reduction in tissue oxidative stress . Additionally, MAO-A is an important source of oxidative stress in

the heart and MAO-A-derived reactive oxygen species contribute to dilated cardiomyopathy . In mice, left

ventricular function following four weeks of coronary artery occlusion improves by pharmacological or genetic

inhibition of MAO-A. Both interventions protect the mice from 4-hydroxynonenal accumulation and mitochondrial

calcium overload, thus mitigating ventricular dysfunction .

Furthermore, it has recently been suggested that upregulation of MAO-A during heart failure will accelerate

intracellular catecholamine degradation, thereby inhibiting a direct stimulation of β-adrenergic receptors at the

sarcoplasmic reticulum; this interaction is closely linked to phospholamban phosphorylation and calcium filling of

the sarcoplasmic reticulum .

The importance of MAO for left ventricular remodeling and heart failure development can be shown in mice with

chronic overexpression of MAO-A. Here, reactive oxygen species  and 4-hydroxynonenal concentrations

increase, followed by mitochondrial dysfunction , cardiomyocyte hypertrophy, reduced left ventricular function

and increased cardiac fibrosis , as well as increased cardiac inflammation  (for review, see ). When

transgenic animals are treated with the antioxidant N-acetyl cysteine part of the above effects can be rescued 

.

Moreover, heart failure induced by doxorubicin is affected by MAO inhibition, which prevents both the severe

oxidative stress induced by doxorubicin as well as chamber dilation and cardiac dysfunction in doxorubicin-treated

mice in vivo .
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