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Vincristine-induced peripheral neuropathy (VIPN) is a debilitating side-effect of vincristine. It remains a challenge to
predict which patients will suffer from VIPN. Pharmacogenomics may explain an individuals’ susceptibility to side-effects.
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| 1. Introduction

Vincristine is an important chemotherapeutic agent that is commonly used in treatment for pediatric cancers. It is
approved by the United States Food and Drug Administration (FDA) for the treatment of acute lymphoblastic leukemia
(ALL), Hodgkin and non-Hodgkin lymphoma, neuroblastoma, rhabdomyosarcoma, low-grade glioma and nephroblastoma.
Furthermore, off-label uses include the treatment of Ewing sarcoma and medulloblastoma W2, The main side-effect of
vincristine is vincristine-induced peripheral neuropathy (VIPN), which often presents as a symmetric sensory-motoric
neuropathy progressing distally to proximally W2, Presenting signs include foot drop, loss of deep tendon reflexes,
impaired balance, pain or tingling 2. In addition, patients can suffer from autonomic symptoms such as constipation or
orthostatic hypotension. The reported prevalence of VIPN varies, depending on assessment method and study
population, but it is estimated that the majority of patients receiving vincristine will experience some form of VIPN during
treatment WEEIM4, Up to 30% of patients may suffer from severe VIPN, requiring dose reduction or cessation of treatment
Bl suffering from VIPN is associated with a lower health-related quality of life, both by self- and proxy assessment and
consistently when using different assessment tools for VIPN (8, This effect of VIPN on health-related quality of life seems
to persevere after treatment, as was shown in a recent study in ALL survivors in which over 16% suffered from long-term
VIPN and experienced impact on both physical health and social functioning .

It is recognized that different populations might have an altered risk for VIPN Bl Older age has been associated with an
increased risk of VIPN, although results have been inconsistent EIRILALLIIZ] |5 addition, white children appear to have a
higher risk of VIPN than black children BIIL2A3I4LS] which is corroborated by a recent study in Kenyan pediatric cancer
patients in which only one out of 78 black patients developed severe VIPN and less than 5% developed clinically relevant
VIPN, despite the use of sensitive assessment methods 1€, Interestingly, these children are being treated at a higher
vincristine dose than what is common in Western countries (2.0 mg/m2 as opposed to 1.5 mg/m?) W8l Studies assessing
the relationship between VIPN and vincristine pharmacokinetics (PK) have shown inconsistent results. Some studies
show a correlation between VIPN and PK parameters such as area under the curve (AUC) L4, an estimate of vincristine
exposure, and intercompartmental clearance 18!, whereas others do not confirm these findings 122021221 Therefore,
potential risk factors for VIPN could be genetic variations in genes involved in vincristine PK, such as variations in the
cytochrome (CYP) 450 family of enzymes. Vincristine is predominantly metabolized by CYP3A4 and CYP3A5, of which
the latter has a higher intrinsic clearance 23], Genetic variants in both enzymes result in different metabolic activity (231241,
Racial populations have different distributions of wild-type and variant CYP3A4/5 alleles (2312811271 Combined with the
observation that black patients develop less VIPN, it has led to the hypothesis that faster clearance of vincristine in black
children results in a lower risk of VIPN in comparison to white patients 4. Indeed, several studies have described the
effect of variations in CYP3A4 and CYP3A5 on the development of VIPN [EIL3I[14][16][20]28][291[30131[32] ' pifferences in VIPN
prevalence across populations may thus stem from variations in genetic background, which can be studied via the rapidly
expanding field of pharmacogenomics.

Pharmacogenomics aims to assess the influence of genomics on an individuals’ treatment response and susceptibility to
side-effects, such as VIPN B384 Often, the effect of single nucleotide polymorphisms (SNPs) is assessed 2236l The
frequency distribution of major and minor alleles varies across racial groups and study populations, which has been well
characterized in large projects such as the 1000 Genomes Project and the genome Aggregation Database (gnomAD) 7



(28] pharmacogenomics aims to find those SNPs or genetic variations that are biologically relevant B2lE8l Two main study
designs have been used to assess this: candidate gene studies or population-based genome- or exome-wide association
studies (GWAS or EWAS respectively) BI49  Candidate gene studies determine, a priori, a set of genes, based on
available literature or mechanism of action, whose influence on a certain outcome is to be assessed 32, Population-based
GWAS or EWAS, on the other hand, assess the whole exome or genome (by whole exome sequencing (WES) or whole
genome sequencing (WGS)) for genetic variation in relation to a certain outcome measure B9, These studies may
therefore result in previously unknown genotype—phenotype associations.

Pharmacogenomics can serve as a guidance tool for precision therapy in which a priori a patients’ genetic susceptibility
for side-effects or therapeutic efficacy is determined. Although this has been implemented in clinical practice for some
drugs, such as thiopurine methyltransferase (TPMT), this is currently not possible for vincristine B142l Especially since
there is a lack of understanding of what causes variability in VIPN across patients, pharmacogenomics can provide
valuable insight into the pathogenesis of VIPN. If genes affecting vincristine PK are implicated, this may emphasize the
potential of therapeutic drug monitoring. Moreover, since it is unlikely that VIPN is caused by differences in PK alone,
variation in cellular sensitivity to vincristine and in neuronal pathways could be contributing factors. The implication of
genes related to neuronal pathways, the cytoskeleton or cellular integrity with VIPN might then help guiding clinicians in
deciding a priori if patients have a high chance of being developing (clinically relevant) VIPN and thus if patients should be
monitored more closely than others, or even given an adapted vincristine dosage. In contrast, other patients might be
identified who tolerate higher levels of vincristine and might thus not benefit from the generally applied dose capping at
1.5 mg/m2. Ultimately, the goal would be to develop a protocol for vincristine in which patients are stratified based on the
presence of genetic polymorphisms and given a dosage that limits the risk of severe VIPN while maintaining the highest
possible therapeutic efficacy.

2. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in
Children with Cancer

2.1. Association between Pharmacogenomic Parameters and VIPN

Table 1 and Table 2 show an overview of all SNPs found to have a statistically significant and non-significant association
with VIPN, respectively. Figure 1 shows a schematic overview of the function of genes associated with VIPN. Sixteen
SNPs in three ATP-binding cassette transporter genes (ABCB1, ABCC1, ABCC2) and one SNP in an miRNA targeting
ABCC1/RalA binding protein 1 (RALPB1) were described to be significantly associated with VIPN (Table 1). Ten SNPs
were associated with a protective effect against VIPN, whereas seven SNPs were associated with an increased risk of
VIPN. Of note, the strongest protective associations with high precision were reported for SNPs rs3740066 and rs12826
in ABCC2 (OR 0.23, 95% CI 0.10-0.53, and 0.24, 95% CI 0.10-0.54 respectively). The strongest risk association with
acceptable precision was reported for rs3784867 in ABCC1 (OR 4.91, 95% CI 1.99-12.10).
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Figure 1. Schematic overview of the function of genes associated with VIPN. Red: described SNPs in this gene are
associated with a higher risk of VIPN; green: described SNPs in this gene are associated with a lower risk of VIPN, brown:



described SNPs in this gene are associated with both a higher and lower risk of VIPN (different per SNP). Created with
BioRender.com.

In terms of metabolism-associated genes, a deletion in glutathione S-transferase mu 1 (GSTM1) and an SNP in vitamin D
receptor (VDR) were implicated with a heightened and a decreased risk to VIPN, respectively (Table 1) 13!, Furthermore,
six SNPs in cytoskeleton-associated genes or in miRNAs targeting those were associated with VIPN (microtubule
associated protein tau (MAPT), targeting tubulin beta 2B class 1IB (TUBB2), actin gamma 1 (ACTGL1), capping actin
protein gelsolin like (CAPG) and spectrin repeat containing nuclear envelope protein 2 (SYNEZ2)) (Table 1). Of those, two
SNPs were related to microtubules (MAPT and TUBB2) and associated with a protective effect and an increased risk of
VIPN, respectively (Table 1) 43l The four other SNPs were located in cytoskeleton-associated genes (ACTG1, CAPG,
and SYNE2) and associated with a CTCAE grade 3-4 VIPN (Table 1) B4l The latter passed the stringent significance
threshold for multiple comparisons, but the results could not be confirmed in a replication cohort 44, The strongest
protective association was noted for SNP rs3770102 in CAPG with an effect size of 0.1, although the uncertainty was high
(95% CIl 0.01-0.8). One SNP in a gene associated with hereditary neuropathies (solute carrier family 5 member 7
(SLC5AT7)) resulted in an increased susceptibility to VIPN (Table 1) 42l The reported effect size was large, but the size of
the confidence interval indicated relatively high uncertainty (OR 8.60, 95% CI 1.68-44.15) Except for the SNP in SYNEZ2,
all aforementioned SNPS were solely assessed in a discovery cohort and no replication studies were performed for any of
those associations 441,

Table 1. Single-nucleotide polymorphisms that were significantly associated with vincristine-induced peripheral
neuropathy in the pediatric oncology population.
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| 3. Conclusions

The following pharmacogenomic parameters have a significant influence on VIPN in children with cancer. SNPs in
ABCB1, ABCC1, ABCC2, CYP3A4, GSTM1, VDR, ACTG1, CAPG, CEP72, MAPT, SYNE2, TUBB2B, SLC5A7, BAHD1,
COCH, chromosome 12/chemerin, ETAA1l, MRPL4, MTNR1B, NDUFAF6, TMEM215 and in three miRNAs. CYP3A5
expression does not result in a heightened susceptibility of VIPN. To actualize the potential of pharmacogenomic testing,
future research should prospectively assess VIPN with a sensitive measurement tool in both a discovery and replication
cohort. Ultimately, the goal would be to develop an individualized protocol based on a patients’ genotype, taking all risk
and protective genes into account, and subsequently give patients a dosage that limits the risk of VIPN while maintaining
highest possible therapeutic efficacy. Dosage reductions or cessation of treatment, or for some patients even standardized
dose capping, would no longer be necessary.



