

Appraising Agroecological Urbanism

Subjects: [Urban Studies](#)

Contributor: Acga Cheng

By the mid-century, urban areas are expected to house two-thirds of the world's population of approximately 10 billion people. The key challenge will be to provide food for all with fewer farmers in rural areas and limited options for expanding cultivated fields in urban areas, with sustainable soil management being a fundamental criterion for achieving sustainability goals.

[sustainable agriculture](#)

[climate change](#)

[urban food systems](#)

[resilient cities](#)

[soil and plant health](#)

1. Introduction

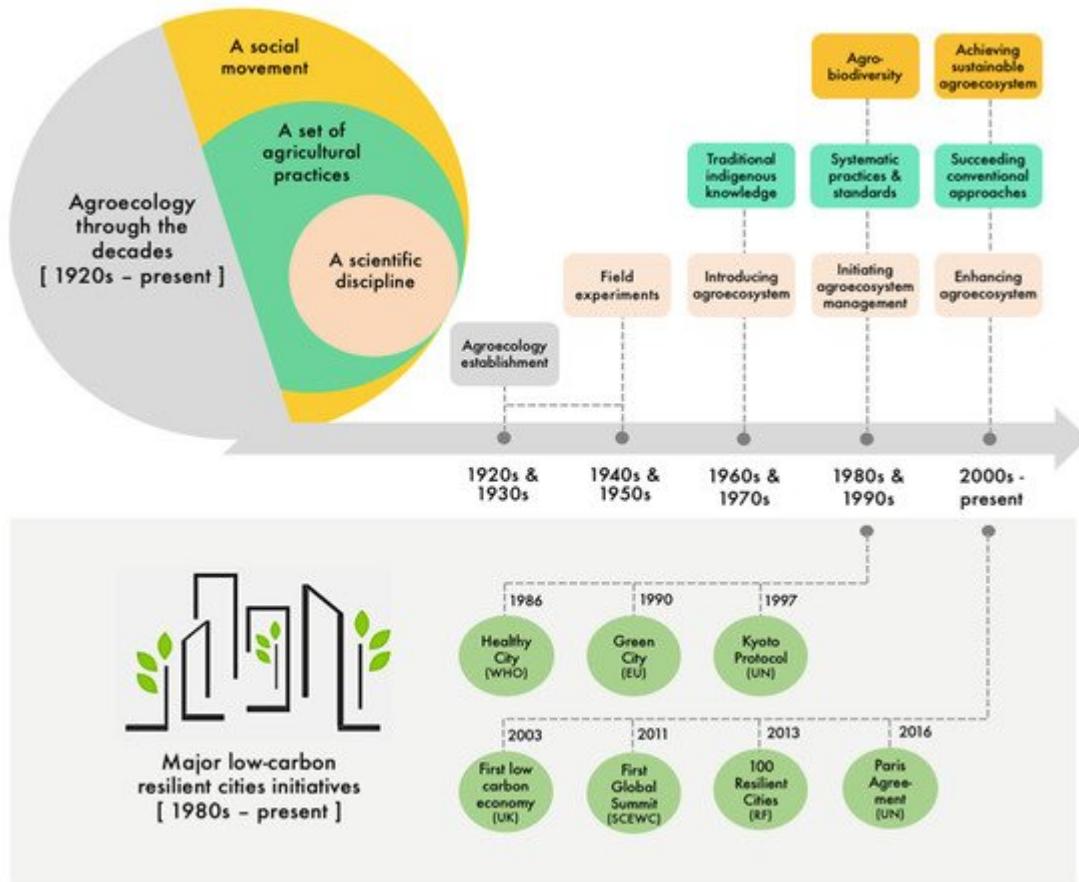
The recent coronavirus (COVID-19) pandemic paints a bleak picture of how vulnerable cities are to unforeseen complex global risks and crises. Urban settlements have existed for millennia, since the ancient river valley civilizations of Egypt, China, India, and Mesopotamia. These settlements, which initially depended mainly on domestic agriculture, grew and rose as the centers for merchants and traders [1]. Nonetheless, it was not until the 18th century that cities began to boom, spurred largely by the advent of industrialization [2]. This urban growth, better known as urbanization, has accelerated over the past half-century as large numbers of people have moved to cities for increased employment opportunities and greater access to quality education. Presently, more than 50% of the world's 7.8 billion people live in urban areas [3]. This proportion is projected to rise up to 70% by mid-century, and the majority of this urbanization is expected to take place in Asia, Latin America, and Africa. Since urbanization is a visible testament to humanity's capacity to modify landscapes and the climate, this continuous growth presents complex challenges for building and sustaining climate-resilient and equitable cities [4][5].

Although cities are the central grounds of economic growth and technological advances, rapid urbanization has been found to result in significant health problems and social inequalities, including poor nutrition, pollution, overcrowding, and poverty [6]. As more cities morphed into sprawling megacities or megapolises, suburbs around the world have grown more briskly, taking up significant tracts of fertile land that was previously utilized for agriculture [7]. The world's urban population is expected to be nearly 6.5 billion in 2050 and ensuring adequate and balanced diets for this population while enhancing food system resilience and urban sustainability will require radical transformations in farming practices, economics, and politics [8].

While urban population growth is concerning, climate change is no less of a threat, emphasizing the need for urban agricultural approaches that can withstand climate change while being sustainable [5][8]. The amount of carbon

dioxide (CO₂), the most prevalent greenhouse gas (GHG) that drives climate change, in the atmosphere continues to rise globally, and urban areas account for a whopping three-quarters of CO₂ emissions [\[9\]](#). The main consequence of this is that an urban environment generally experiences much warmer temperatures than its non-urbanized surroundings, a phenomenon known as the urban heat island (UHI) effect. The UHI effect contributes to increased energy consumption and pollution, as well as threats to water quality and human health. While green infrastructure can help to mitigate the UHI effect, the phenomenon is known to interfere with the growth and development of certain plant and animal species, as well as agriculture [\[9\]](#)[\[10\]](#)[\[11\]](#)[\[12\]](#).

The agricultural sector is critical to the economies of many countries, particularly those in the developing and least-developed worlds, where urban populations are rapidly increasing. On that account, urban agriculture necessitates a great deal of attention in order to manage urbanization, rapid population growth, food crises, and climate change in a sustainable manner [\[7\]](#)[\[8\]](#). Multiple studies have revealed that urban agriculture supports the economic, social, and environmental sustainability of metropolitan areas and have demonstrated how its major or potential trade-offs and synergies compare to those of industrial farming [\[8\]](#)[\[13\]](#). Recent events have highlighted the extreme fragility of megacities to unexpected complex global risks and crises—a case in point being the COVID-19 pandemic [\[14\]](#)[\[15\]](#). Climate change is no less of a threat and underscores the need for research on robust urban food systems that are ecologically, economically, and socially sustainable, which can be achieved through transformative agroecology.


2. Then and Now: Agroecology as the Root of Resilience

Agroecology, which involves farming systems that mimic natural ecosystems, will be a steppingstone toward achieving a suite of Sustainable Development Goals (SDGs), particularly SDG 1 (poverty alleviation), SDG 2 (global food security), and SDG 13 (climate action) [\[16\]](#). Although the term agroecology was coined in the 1920s, it was not until recently that it began to gain international attention, owing largely to its holistic and nature-based approaches to agriculture. The different branches and varied ideas about the field have led to confusion among researchers and members of the public [\[16\]](#). Furthermore, the available literature on the adoption of agroecological approaches in urban or metropolitan areas is relatively scarce and fragmented. Encompassing the entire food system, from farm to table to trashcan, agroecology is critical to combating climate change and improving human well-being, thereby safeguarding the planet's future. Some actors (such as researchers and policy makers) and funding agencies prefer to talk about Climate Smart Agricultural Practices rather than agroecological practices, but the two are very similar [\[17\]](#).

2.1. Agroecology Is a Footnote in Agricultural History

Agroecology, which often involves small-scale farmers with both indigenous (or local) and scientific knowledge, is less well-known in the world than other practices such as conventional or organic farming practices [\[18\]](#)[\[19\]](#). There have been numerous debates about modern agriculture, which includes two distinct philosophies, industrial and agrarian. The comparison of conventional farming and organic farming, which correspond to industrial and agrarian philosophies, is one of the most exemplary representations of the industrial–agrarian dichotomy [\[20\]](#). The industrial philosophy emphasizes high and efficient production at the lowest possible cost, and it is heavily reliant on external

inputs (such as chemical fertilizers) and simplified monocultures, which are typically involved in large-scale farming [21]. On the other hand, the agrarian philosophy recognizes biological diversity and land stewardship as having both environmental and social value, underscoring small-scale farming that emphasizes the sustainable use of ecosystem services and pest and disease management [16][21]. Within the agrarian paradigm, there are numerous alternative agriculture movements, including agroecology, which can be viewed as a social movement [20]. **Figure 1** illustrates the timeline of agroecology transformation since its inception in the 1920s, as well as major initiatives on building low-carbon, resilient cities since the 1980s.

Figure 1. Timeline of agroecology transformation from a scientific discipline to a “science for and with society” approach since the 1920s, and the major initiatives on building low-carbon, resilient cities since the 1980s.

Owing to its fundamental principle that farming should enhance natural systems while maximizing species' diversity, agroecology has evolved from a scientific discipline to a set of practices and a social movement that strive for sustainable and resilient food systems (**Figure 1**). Transformative agroecology, which integrates ecological and social knowledge at multiple scales, can be applied to agricultural systems ranging from agrarian to industrial [20]. Input reduction, higher biodiversity, economic diversification, fairness, co-creation of knowledge, and social values and diets are among the 13 agroecological principles. Furthermore, it employs social–ecological transitions guided by a framework comprised of 10 elements [16][22][23]. In recent years, the International standards requested a low threshold of chemical residues in agricultural products. This contributed to a growing recognition of

the importance and positive impacts of agroecological practices on food systems and climate change mitigation, particularly among researchers working toward sustainable agroecosystems [16].

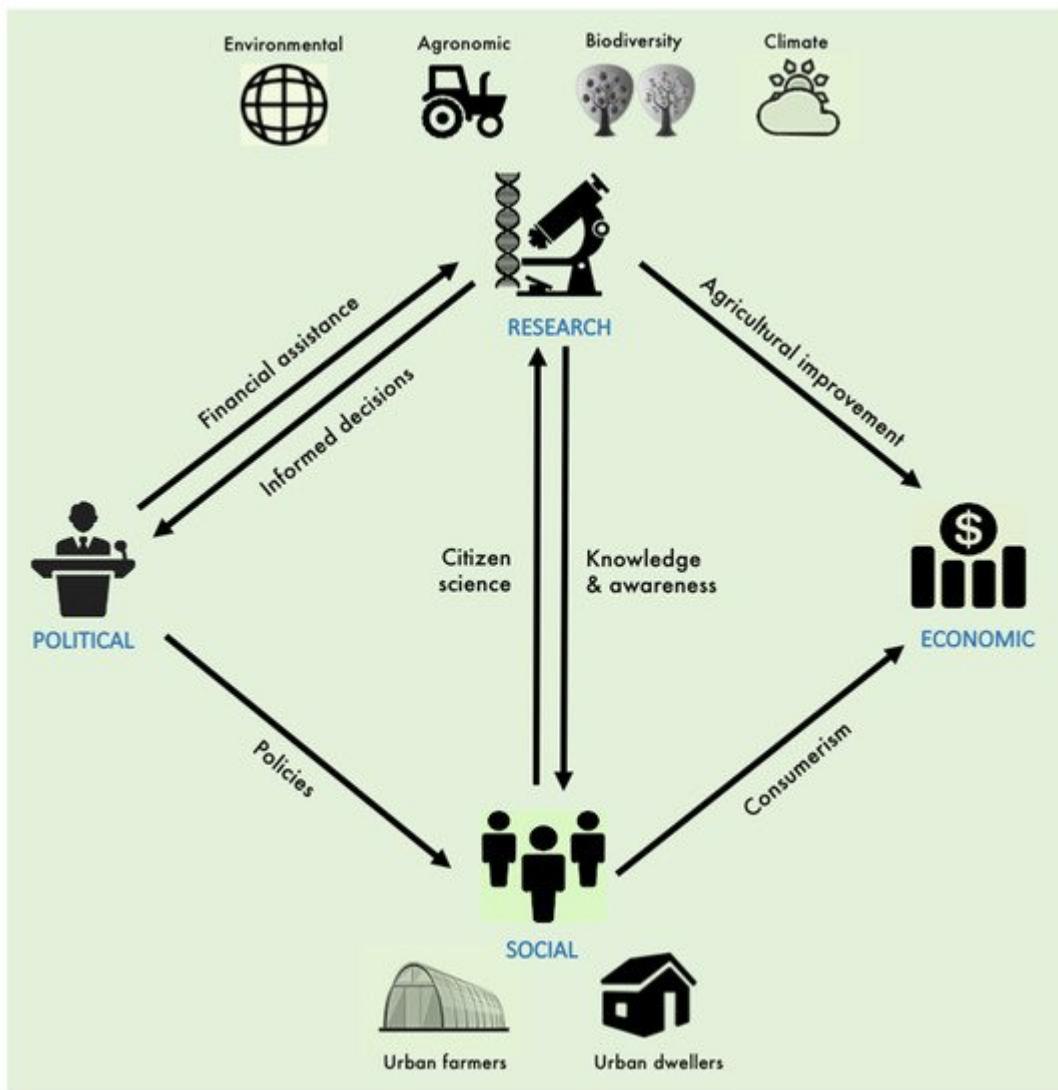
2.2. The Rise of Urban Agroecology

The Neolithic and Urban Revolutions are the two major stages in the transformation of hunter-gatherer (or forager) societies. Initial Neolithic domestications are regarded as unconscious evolutionary transformations that began with the cultivation of wild progenitors of domesticated cereals and pulses, which underwent various morphological changes over several millennia [24][25]. As the Neolithic period progressed, settlements became more permanent, and early cities with tens of thousands of inhabitants arose [1]. Gordon Childe coined the term “Urban Revolution” in the 1930s to describe the process by which small, illiterate agricultural villages were transformed into large, socially complex urban societies equipped with indigenous knowledge in traditional farming systems [26][27]. Prior to the Industrial Revolution, these conscious evolutionary transformations occurred independently in several parts of the world, ushering in the era of metropolitan or megalopolitan growth and exurbs’ development [28].

Although urbanization provides many social and economic opportunities, it is regarded as one of the most pressing global challenges of the 21st century, with more than 60% of the world’s population expected to live in cities by 2030, including approximately 55% and 20% of the world’s poor and undernourished, respectively [29]. Furthermore, the effects of UHI have been reported to pose a significant threat to the world’s growing urban societies, affecting energy consumption and increasing emissions of GHGs and air pollutants [30][31]. According to Zhu et al. [32], urban areas consume roughly two-thirds of the world’s energy and emit approximately 80% of GHGs, particularly CO₂. On the plus side, over the last three decades, there has been an increase in global initiatives to build low-carbon, resilient cities, with some major examples shown in **Figure 1**. Promoting and practicing sustainable urban agriculture is currently one of the dominant strategies for addressing urban food insecurity and contributing to climate change mitigation by reducing UHI [29][33]. Adoption of agroecology can help to enhance the potential of urban agriculture by emphasizing the importance of building diverse and resilient farms [29].

With a suite of holistic approaches, agroecology can help reorient agricultural systems based on localness, participation, and fairness [16][34]. **Table 1** presents some examples of agroecological approaches and their importance in terms of environmental, economic, and social sustainability in cities. Such efforts are consistent with SDG 11, which calls for cities to be inclusive, safe, resilient, and sustainable. Diversification of urban farms is the primary strategy for achieving a sustainable agricultural system in both the biophysical and social spheres [35]. According to Alterie and Nicholls [29], self-sufficiency in vegetables can be achieved at the community or city level if urban farms are redesigned based on an agroecological management. The study also reported that well-designed urban farms can potentially produce up to 15 times the total output of rural holdings. Meanwhile, Kerr et al. [36] reported that 78% of agroecology studies yielded positive food and nutrition security outcomes. All of these recent studies supported the notion that these agroecological practices must be widely scaled up to ensure widespread adoption by urban farmers.

Table 1. Examples of components, approaches, and significance of urban agroecology.


Components	Approaches	Significance
Agricultural improvement	Common agroecological practices (e.g., crop/livestock mixtures)	Preserving soil biodiversity and crop yield sustainability, crop and animal health, water quality
	Urban farm diversification (e.g., polycultures)	More sustainable urban food systems, food sovereignty
Ecosystem services	Climate change adaptation	More resilient urban agroecosystems and greenhouse gas regulation
	Nutrient cycling	Significant carbon and biological nitrogen fixation potentials
	Resource-use efficiency	Improving water management and soil fertility and health
Economic or social value	Pest regulation	Improving pest management through Integrated Pest Management policies
	Economic growth	Equitable distribution of urban-produced foods, economic self-sustainability
	Education and awareness	Economic self-sustainability, management sustainability (particularly for small-scale farmers/producers)
	Health	Food quality, noise reduction, stress reduction

3. “En Route” to Achieving Resilient Cities through Agroecological Practices

Extreme heat events caused by climate change, combined with increasing urbanization, will have a direct impact on urban agriculture and food systems [37][38]. Economic slowdowns have been observed in the pandemic's initial epicenters, including China, Europe, and the United States, which have spread to middle- and low-income countries for a variety of reasons, including declines in trade and commodity prices [39]. Under these conditions, it justifies why urban agriculture has emerged as a critical means of addressing local food and nutrition insecurity, particularly through agroecological approaches that benefit smallholder farming systems located in cities, megacities, or megapolises [35][40].

As the late Dr. Norman Borlaug, the father of the Green Revolution, stated, “A peaceful world cannot be built on empty stomachs and human misery”. Building resilient food systems through sustainable agriculture is one of the most effective ways to ensure food security, alleviate poverty, accelerate economic growth, and strengthen the middle classes, which are typically the main contributors to economic activity [36][41]. To reduce or totally eradicate poverty and hunger locally, regionally, or internationally, it requires better agricultural practices, technologies, policies, and coordination among different actors [16][42]. **Figure 2** depicts the lifecycle of innovation through

agroecology that should be established to meet the challenges of sustainable development in urban agriculture to pave the way for scientific information to provide significant benefits to society. All actors, including researchers, policy makers, farmers, and citizens, should be able to communicate in scientific terms, and researchers must ensure that their findings are relevant and understandable to society [16]. By building on and strengthening existing networks and interaction among researchers and urban farmers and/or dwellers, agroecology can foster social cohesion and socioeconomic synergies in the exchange of agricultural information and inputs among other benefits [34][43].

Figure 2. Towards sustainable urban food systems through agroecology, which includes fostering relationships among various key actors such as researchers, policymakers, farmers, and consumers, as well as reducing the use of various agricultural inputs to improve socioeconomic synergies and agricultural sustainability in a rapidly changing world.

For nearly a century, scientific advances have fueled global agricultural growth, allowing producers or farmers from various countries to deliver abundant food domestically. Agricultural diversification has increased dramatically over the last decade, which is known to improve ecosystem service delivery [35][41][44]. Among multiple components of

diversity that can affect ecosystem service delivery, plant or crop genetic diversity has emerged as the primary determinant of various ecosystem goods and services, including carbon sequestration, pollination, and soil nutrient retention [45]. Nonetheless, a citizen science survey conducted in France by Kondratyeva et al. [46] revealed that urban areas are complex ecosystems that function differently than natural ecosystems due to the human element, with plant communities composed of both locally and regionally unique urbanophile species. The study also demonstrated that citizen science programs are a good starting point for different actors, including researchers, policy makers, and citizens, to exchange knowledge and ideas for sustainable city development.

References

1. Fuller, D.Q.; Stevens, C.J. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. *Veget. Hist. Archaeobot.* 2019, 28, 263–282.
2. Fernihough, A.; O'Rourke, K.H. Coal and the European industrial revolution. *Econ. J.* 2021, 131, 1135–1149.
3. Ritchie, H.; Roser, M. Urbanization—Our World in Data. 2018. Available online: <https://ourworldindata.org/urbanization> (accessed on 10 October 2021).
4. Chai, D.; Fraedrich, K.; Guan, Y.; Gua, S.; Zhang, C.; Zhu, X. Urbanization and climate change: Insights from eco-hydrological diagnostics. *Sci. Total Environ.* 2019, 647, 29–36.
5. World Cities Report. 2020. Available online: <https://unhabitat.org/World%20Cities%20Report%202020> (accessed on 1 October 2021).
6. Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A problem for the rich and the poor? *Public Health Rev.* 2020, 41, 1.
7. d'Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. *Proc. Natl. Acad. Sci. USA* 2017, 114, 8939–8944.
8. Nicholls, E.; Ely, A.; Birkin, L.; Basu, P.; Goulson, D. The contribution of small-scale food production in urban areas to the sustainable development goals: A review and case study. *Sustain. Sci.* 2020, 15, 1585–1599.
9. Churkina, G. The Role of Urbanization in the Global Carbon Cycle. *Front. Ecol. Evol.* 2016, 3, 144.
10. Dubbeling, M.; Veenhuizen, R.; Halliday, J. Urban agriculture as a climate change and disaster risk reduction strategy. *Field Actions Sci. Rep.* 2019, 20, 32–39.

11. Li, D.; Stucky, B.J.; Deck, J.; Baiser, B.; Guralnick, R.P. The effect of urbanization on plant phenology depends on regional temperature. *Nat. Ecol. Evol.* 2019, 3, 1661–1667.
12. Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of changing population or density on urban carbon dioxide emissions. *Nat. Commun.* 2019, 10, 1–9.
13. Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. *Cities* 2019, 93, 104–119.
14. Langemeyer, J.; Madrid-Lopez, C.; Beltran, A.M.; Mendez, G.V. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? *Landsc. Urban Plan.* 2021, 210, 104055.
15. Pulighe, G.; Lupia, F. Food First: COVID-19 outbreak and cities lockdown a booster for a wider vision on urban agriculture. *Sustainability* 2020, 12, 5012.
16. Sethuraman, G.; Mohd Zain, N.A.; Yusoff, S.; Ng, Y.M.; Baisakh, N.; Cheng, A. Revamping Ecosystem Services Through Agroecology—The Case of Cereals. *Agriculture* 2021, 11, 204.
17. Sahruzaini, N.A.; Rejab, N.A.; Harikrishna, J.A.; Khairul Ikram, N.K.; Ismail, I.; Kugan, H.M.; Cheng, A. Pulse Crop Genetics for a Sustainable Future: Where We Are Now and Where We Should Be Heading. *Front. Plant. Sci.* 2020, 11, 531.
18. Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. *Nature* 2012, 485, 229–232.
19. Seminar, A.U.; Sarwoprasodjo, S.; Santosa, D.A.; Kinseng, R.A. Agroecological Education Aimed at Achieving Food Sovereignty. *J. Dev. Sustain. Agric.* 2017, 12, 34–44.
20. Shennan, C.; Krupnik, T.J.; Baird, G.; Cohen, H.; Forbush, K.; Lovell, R.J.; Olimpi, E.M. Organic and Conventional Agriculture: A useful framing? *Annu. Rev. Environ. Resour.* 2017, 42, 317–346.
21. National Research Council (NRC). *Advancing the Science of Climate Change*; The National Academies Press: Washington, DC, USA, 2010.
22. Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of Agroecology: Enabling transitions towards sustainable agriculture and food systems through visual narratives. *Ecosyst. People* 2020, 16, 230–247.
23. Wezel, A.; Goris, M.; Bruil, J.; Félix, G.; Peeters, A.; Bärberi, P.; Bellon, S.; Migliorini, P. Challenges and Action Points to Amplify Agroecology in Europe. *Sustainability* 2018, 10, 1598.
24. Fuller, D.Q.; Denham, T.; Arroyo-Kalin, M.; Lucas, L.; Stevens, C.J.; Qin, L.; Allaby, R.G.; Purugganan, M.D. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. *Proc. Natl. Acad. Sci. USA* 2014, 111, 6147–6152.

25. Allaby, R.G.; Stevens, C.J.; Lucas, L.; Maeda, O.; Fuller, D.Q. Geographic mosaics and changing rates of cereal domestication. *Philos. Trans. R. Soc. B* 2017, 372, 1735.
26. Childe, V.G. *Man Makes Himself*; Watts & Co: London, UK, 1936.
27. Childe, V.G. The urban revolution. *Town Plan. Rev.* 1950, 21, 3–17. Available online: <http://www.jstor.org/stable/40102108> (accessed on 11 November 2021).
28. Gotham, K.F. Urban Revolution. In *The Blackwell Encyclopedia of Sociology*; Ritzer, G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015.
29. Altieri, M.A.; Nicholls, C.I. Agroecology and the reconstruction of a post-COVID-19 agriculture. *J. Peasant Stud.* 2020, 47, 881–898.
30. Shen, Z.; Shi, J.; Tan, J.; Yang, H. The Migration of the Warming Center and Urban Heat Island Effect in Shanghai during Urbanization. *Front. Earth Sci.* 2020, 8, 340.
31. Filho, W.L.; Wolf, F.; Castro-Díaz, R.; Li, C.; Ojeh, V.N.; Gutiérrez, N.; Nagy, G.J.; Savić, S.; Natenzon, C.E.; Quasem Al-Amin, A.; et al. Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure. *Sustainability* 2021, 13, 753.
32. Zhu, Z.; Wang, L.; Liu, W.; Qi, D. Relationship between Urban Economic Connections and Geoeconomic Relations in Northeast China. *Complexity* 2020, 2020, 1–12.
33. Lucertini, G.; DiGiustino, G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. *Sustainability* 2021, 13, 5999.
34. Kansanga, M.M.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Beyond ecological synergies: Examining the impact of participatory agroecology on social capital in smallholder farming communities. *Int. J. Sustain. Dev. World Ecol.* 2019, 27, 1–14.
35. Bisoffi, S.; Ahrné, L.; Aschemann-Witzel, J.; Báldi, A.; Cuhls, K.; DeClerck, F.; Duncan, J.; Hansen, H.O.; Hudson, R.L.; Kohl, J.; et al. COVID-19 and Sustainable Food Systems: What Should We Learn Before the Next Emergency. *Front. Sustain. Food Syst.* 2021, 5, 650987.
36. Kerr, R.B.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. *Glob. Food Secur.* 2021, 29, 100540.
37. Khan, N.; Shahid, S.; Ahmed, K.; Wang, X.; Ali, R.; Ismail, T.; Nawaz, N. Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan. *Atmos. Res.* 2020, 233, 104688.
38. Food and COVID-19: How Cities Are Feeding Residents Today and Building a Better Tomorrow. C40 Cities, Climate Leadership Group, C40 Knowledge Hub. 2020. Available online: https://www.c40knowledgehub.org/s/article/Food-and-COVID-19-How-cities-are-feeding-residents-today-and-building-a-better-tomorrow?language=en_US (accessed on 9 September 2021).

39. APF—News Article: Canada Investment Monitor 2021 Report Highlights Opportunities for Canadian Companies in Post-Pandemic Asia. 2021. Available online: <https://www.asiapacific.ca/media/news-releases/55788> (accessed on 10 October 2021).
40. FAO—News Article: International Year of Family Farming 2014 Launched. 2014. Available online: www.fao.org/family-farming-2014 (accessed on 13 September 2021).
41. Cheng, A. Review: Shaping a Sustainable Food Future by Rediscovering Long-Forgotten Ancient Grains. *Plant. Sci.* 2018, 269, 136–142.
42. Hanafiah, N.M.; Mispan, M.S.; Lim, P.E.; Baisakh, N.; Cheng, A. The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy. *Plants* 2020, 9, 365.
43. Méndez, V.E.; Bacon, C.M.; Cohen, R. Agroecology as a transdisciplinary, participatory and action-oriented approach. *Agroecol. Sustain. Food Syst.* 2013, 37, 3–18.
44. Massawe, F.; Mayes, S.; Cheng, A. Crop Diversity: An Unexploited Treasure Trove for Food Security. *Trends Plant. Sci.* 2016, 21, 365–368.
45. Hou, Z.; Lv, G.; Jiang, L. Functional Diversity Can Predict Ecosystem Functions Better Than Dominant Species: The Case of Desert Plants in the Ebinur Lake Basin. *Sustainability* 2021, 13, 2858.
46. Kondratyeva, A.; Knapp, S.; Durka, W.; Kühn, I.; Vallet, J.; Machon, N.; Martin, G.; Motard, E.; Grandcolas, P.; Pavoine, S. Urbanization Effects on Biodiversity Revealed by a Two-Scale Analysis of Species Functional Uniqueness vs. Redundancy. *Front. Ecol. Evol.* 2020, 8, 73.

Retrieved from <https://encyclopedia.pub/entry/history/show/44351>