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Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related mortality in women

worldwide. Breast cancer is fairly heterogeneous and reveals six molecular subtypes: luminal A, luminal B, HER2+, basal-

like subtype (ER−, PR−, and HER2−), normal breast-like, and claudin-low. Breast cancer screening and early diagnosis

play critical roles in improving therapeutic outcomes and prognosis. Mammography is currently the main commercially

available detection method for breast cancer; however, it has numerous limitations. Therefore, reliable noninvasive

diagnostic and prognostic biomarkers are required. Biomarkers used in cancer range from macromolecules, such as DNA,

RNA, and proteins, to whole cells. Biomarkers for cancer risk, diagnosis, proliferation, metastasis, drug resistance, and

prognosis have been identified in breast cancer. In addition, there is currently a greater demand for personalized or

precise treatments; moreover, the identification of novel biomarkers to further the development of new drugs is urgently

needed.
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1. Introduction

Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related mortality in women

worldwide . It is estimated that there were approximately 2 million new cases and 627,000 breast cancer-related

mortalities globally in 2018 . Although the five-year relative survival rate for localized breast cancer is relatively high

(80–92%), the survival rate dramatically declines to <25% for metastatic breast cancer . Breast cancer is fairly

heterogeneous; gene-expression profiling of breast cancer revealed six intrinsic molecular subtypes: luminal A (estrogen

receptor (ER)+, progesterone receptor (PR)+, human epidermal growth factor receptor 2 (HER2)−, and Ki67−), luminal B

(ER+, PR+, HER+/−, and Ki67+), HER2+, basal-like subtype (ER−, PR−, and HER2−), normal breast-like, and claudin-low

(low expression of cellular adhesion genes) . Triple-negative breast cancer (TNBC) belongs to either the basal-like

or claudin-low subtypes . Breast cancer subtypes differ in terms of clinical relevance, patterns of gene expression,

selection of therapeutic strategies, responses to treatment, and prognosis . Therefore, knowledge of the specific

breast cancer subtype is important in guiding treatment decisions and predicting prognosis.

Breast cancer screening and early diagnosis play critical roles in improving therapeutic outcomes, leading to a better

prognosis for breast cancer patients . Mammography is currently the main commercially available detection method for

breast cancer; however, it has numerous well-known limitations including low sensitivity of 25~59% for detecting cancer in

dense breasts, which present commonly in younger women, as well as high rates of false-negatives and false positives,

and 1–10% overdiagnosis . Therefore, the effective management of breast cancer during therapy or early

detection depends on the availability of reliable noninvasive diagnostic, prognostic, and predictive biomarkers . In

addition, an increasing number of patients demand personalized or precise treatments; hence, the identification of novel

biomarkers for diagnosis and prognosis and the development of new drugs is urgently required.

Biomarkers for cancer include substances released from the cancer cells themselves or by other tissues in response to

tumors as well as physiological markers that can be visualized using imaging technology or detected by molecular

technology . Biomarkers are objective and quantifiable evaluations of biological states or diseases that can predict

tumor behavior, prognosis, or treatment responses, thus playing an important role in the management of breast cancer 

. They must be validated by human samples to ensure that they reflect the clinical outcome . Because tumor cells

are highly heterogeneous, a single biomarker might not have sufficient sensitivity and specificity to accurately predict

cancer progression and metastasis, and a combination of multiple markers is more appealing.

With the rapid advancement of molecular signaling pathways and genetic signatures, including immunohistochemistry,

next-generation sequencing, and targeted multigene, numerous clinically relevant biomarkers in tissue and/or blood (liquid

biopsies) have been reported to aid in determining the risk of metastasis, prognosis, recurrence, treatment guidance, and

drug resistance in breast cancer. Some of these have been used clinically . However, they lack specificity and
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sensitivity. Therefore, the identification of novel and effective biomarkers is urgently required. In addition, there is an

emerging development of immunotherapies for breast cancer, and it is important to identify reliable biomarkers for

predicting who will benefit from immunotherapies.

2. Types of Biomarkers

Biomarkers used in cancer range from macromolecules, such as DNA, genetic mutations, RNA, and proteins to whole

cells (Table 1 and Table 2). They can circulate in the blood as circulating mRNA, circulating free DNA, and circulating

tumor cells, making liquid biopsies attractive for clinical use . Two types of biomarkers are used for cancer

treatment outcome: prognostic biomarkers are associated with clinical outcome and can inform whether a patient should

be treated, and predictive biomarkers to guide a treatment that is effective only in a subtype of breast cancer .

Some biomarkers are already available in clinical practice, whereas some biomarkers have been validated in mouse

models or clinical trials.

Table 1. Biomarkers discovered recently for breast cancer.

[17][25][26]

[27][28][29]



Type Biomarkers Clinical Value Clinical Validation/Research Design References

DNA Immune response-

related genes

(BTN3A2, CD2 and

TRBC1)

may be used to identify

patients with a good

prognosis in HR−/HER2+

breast cancer.

Measured the tissues from 819

breast cancer patients.

Immunity genes

(APOBEC3G, CCL5,

CCR2, CD2, CD27,

CD3D, CD52,

CORO1A, CXCL9,

GZMA, GZMK, HLA-
DMA, IL2RG, LCK,

PRKCB, PTPRC, and

SH2D1A)

immunity gene expression

was an important

parameter for prognosis.

Tested on 225 breast tumor FFPE

tissues.

T helper type-1 gene

signatures (IFNG,

STAT1, GRZM,

CXCL9)

are correlated with

favorable clinical outcome,

particularly in ER- tumors.
 

methylated 14-3-3 σ
as a blood-based

biomarker for breast

cancer diagnosis.

meta-analysis

methylated APC and

RARβ

might be valuable serum-

based molecular markers

for early detection of early-

stage breast cancer, low

grade tumors and TNBC.

Tested on serum samples from

121 breast cancer patients, 79

patients with benign breast

diseases, and 66 healthy controls.

S100P and HYAL2
hypomethylation

as breast cancer

biomarkers for early stage

detection.

S100P: Validation I: 235 familial

breast cancer cases and 206

controls; Validation II: 189

sporadic breast cancer cases and

189 controls; Validation III: 156

sporadic breast cancer cases and

151 controls.

HYAL2: first validation round: 338

breast cancer cases and 507

controls; second validation round:

189 breast cancer cases and 189

controls.

long noncoding RNA

299 gene (LINC00299)

methylation

for early detection of

TNBC in young women.

Examined blood samples of 154

TNBC cases and 159 breast

cancer-free matched controls.
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

ESR1 mutations

1. ESR1 Y537S mutation

promotes resistance to

fulvestrant.

2. may have clinical utility

in directing further

endocrine therapy.

3. ESR1 mutations are

prevalent in ER-positive

aromatase inhibitor-

treated metastatic breast

cancer predicting its

prognosis.

1. Testing the blood samples of

195 patients from the PALOMA-3

cohort;

2. In the SoFEA trial, plasma

samples of 162 patients were

tested; in the PALOMA3 trial,

plasma samples of 360 patients

were tested.

3. In the BOLERO-2 cohort, 541

plasma samples were examined.

TP53 mutation

associated with better

prognosis in metaplastic

breast cancer with

increased RFS and OS.

Examined the clinical outcomes

data of 52 archived samples.

a 14-gene prognostic

signature (PFKL,

P4HA2, GRHPR,

SDC3, PPP1R15A,

SIAH2, NDRG1,

BTG1, TPD52, MAFF,

ISG20, LALBA,

ERRFI1, and VHL)

could serve as a potential

prognostic biomarker for

breast cancer.

Clinical data from 1097 cases

were obtained from the TCGA

database. 113 adjacent normal

samples and 1039 breast cancer

patients were followed-up for

≥1 month.

28-CpG based

methylation panel

could independently

predict the overall survival

of breast cancer patients.

Patients with high

methylation risk were

associated with tumor

heterogeneity

and poor survival.

The DNA methylation profile of

The

Cancer Genome Atlas Breast

Invasive Carcinoma (TCGA-

BRCA)

included a total of 890 breast

cancer samples.

A total of 62, 118, 188, 70, and 58

breast cancer samples were

included in GSE37754,

GSE72245, GSE75067,

GSE78754, and GSE72251. 40

normal breast samples and 80

breast cancer samples in

GSE666952.
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

MicroRNAs

miR-21 and/or miR-

221

can be successfully

applied as breast cancer

biomarkers.

Tested the sera of 50 patients

with breast cancer, 25

fibroadenoma, and 25 healthy

controls.

six miRNA signature,

miR-21, miR-221, miR-

210, miR-195, miR-

145, and let-7a

for early detection of

TNBC.

Examined 85 paired tumor tissues

and sera with an equal number of

adjacent normal tissue margins

and normal sera from healthy

women and 15 benign

fibroadenomas.

miR-21

promotes the

transformation and

development of breast

cancer.

Examined on blood samples of 30

female patients with breast

tumors and 30 with benign breast

lesions

Exosomal miR-1246

and miR-21

for detection of breast

cancer.

Tested the plasma of 16 patients

with breast cancer and 16 healthy

control subjects.

five-miRNA signature,

miR-1246, miR-1307-

3p, miR-4634, miR-

6861-5p, and miR-

6876-5p

for detection of early stage

breast cancer.

Tested 1280 serum samples of

breast cancer patients, 2836

serum samples from non-cancer

controls, 451 from patients with

other types of cancers, and 63

from patients with non-breast

benign diseases.

The eight-marker

signature (miR-16,

let7d, miR-103, miR-

107, miR-148a, let-7i,

miR-19b, and miR-22)

for early detection of

breast cancer including

younger women.

Tested plasma from 127 sporadic

breast cancer cases and 80

healthy controls.

a 9-miRNA profile
for early detection of

breast cancer.

Examined 116 blood samples

including 36 with breast cancer.

miR-1204

could be a novel

prognostic/diagnostic

biomarker for breast

cancer patients.

Tested sera from 144 breast

cancer patients and 38 healthy

controls.

combination of miR-

181b-5p, miR-200b-3p,

miR-200c-3p, and miR-

203a-3p

could be potential

diagnostic biomarkers for

inflammatory breast

cancer.

Examined tissue specimens of 18

non- inflammatory breast cancer

and 17 inflammatory breast

cancer patients.
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

miR-140 and miR-196a

both miR-140 and miR-

196a are promising

biomarkers for the

diagnosis of breast cancer.

Tested 110 cases of breast

cancer and their adjacent non-

tumor tissues.

miR-26a/26b

may be useful markers of

the progression of breast

cancer.

Examined 29 pairs of fresh breast

cancer and

adjacent tissues.

miR-26b

inhibited TNBC cell

proliferation and tumor

growth.

-

miR-182
contributed to cell

progression.
45 patients with breast cancer.

miR-224

inhibited proliferation and

migration of breast cancer

cells.

Examined serum samples from

45 patients with breast cancer.

miR-124-3p

reduced breast cancer cell

proliferation and

metastasis.

Tested 30 breast cancer and

normal breast tissues.

miRNA-17 and miRNA-

20b

resistance to taxol in

breast cancer patients

increased with the loss of

miRNA-17 and miRNA-

20b.

55 pairs of breast cancer tissues

and adjacent normal tissues were

examined.

miR-18a

overexpression directly led

to Dicer repression and

confers paclitaxel

resistance in TNBC.

Tested 20 TNBC patient tissues.

miR-90b, 130a, 200b,

and 452

contribute to

chemoresistance.
-

miRNAs 221 and 222

chemoresistance to

fulvestrant, doxorubicin, or

trastuzumab.

-

miRNA 320a
chemoresistance to

paclitaxel.
-

miRNAs let-7, 181a

and 145

chemoresistance to

doxorubicin, tamoxifen, or

epirubicin.

-
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

miRNA 125b

chemoresistance to

tamoxifen, letrozole,

anastrazole or fulvestrant.

-

miR200c and miR489

downregulation of

miR200c and miR489

were correlated with better

prognosis.

-

miR484 and miR4443

upregulation of miR484

and miR4443 were

associated with better

prognosis.

-

miR520h and miR125b

upregulation of miR520h

and miR125b were

correlated with poor

prognosis.

-

miR125b and miR21

could be novel,

noninvasive predictive

markers for neoadjuvant

chemotherapy response

and prognosis in breast

cancer.

Examined 118 stage II/III breast

cancer patients and 30 healthy

adult women.

miR-106b

is a putative plasma

marker for risk

assessment in patients

with breast cancer.

Examined the tissue and plasma

samples from 173 patients with

primary breast cancer and 50

women with fibroadenoma.

pre-miR-488

could be a novel

prognostic biomarker for

predicting recurrence in

breast cancer patients.

Tested the blood from 356 female

patients with breast cancer

without distant metastases,

preoperative therapy or previous

treatment for various cancers,

330 invasive ductal carcinomas

(IDC),

26 were ductal carcinomas in situ

(DCIS), and 11 healthy

volunteers.

miR-130b

contributes to MDR

through PI3K/Akt signaling

pathway.

Tested 29 pairs of breast cancer

tissues and their adjacent

noncancerous tissues.

miR-9 inhibit metastasis. -
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

miR-205 inhibit metastasis.

Tested on 40 pairs of TNBC and

their adjacent normal breast

tissues.

miR-628 inhibit metastasis. -

cicRNAs

hsa_circ_0001785

the potential diagnostic

biomarker for breast

cancer.

Examined the plasma of 57

breast cancer patients and 17

age-matched healthy individuals.

Combination of

hsa_circ_006054,

hsa_circ_100219, and

hsa_circ_406697

may be diagnostic

biomarker for breast

cancer.

Tested 51 breast cancer and

adjacent normal tissues.

hsa_circ_0001982

hsa_circ_0001982

knockdown suppressed

breast cancer cell

proliferation and invasion

and induced apoptosis by

targeting miR-143.

Examined 29 breast cancer

tissues and adjacent normal

tissues.

circRNA-000911

enhanced expression of

circRNA-000911

suppressed cell

proliferation, migration and

invasion, and promoted

the apoptosis of breast

cancer cells.

Human circRNA microarray

analysis.

circ-ABCB10

circ-ABCB10 knockdown

suppressed the

proliferation and increased

apoptosis of breast cancer

cells.

Tested 36 cancer and adjacent

noncancerous tissues.

circGFRA1

Knockdown of circGFRA1

inhibited proliferation and

promoted apoptosis in

TNBC.

Examined 51 TNBC tissues and

their paired adjacent normal

tissues.

circ_0006528
may play a role in breast

cancer chemoresistance.
-
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Protein

4-test combination of

TAP + CEA + CA125 +

CA15-3

higher sensitivity than the

traditional test, i.e., CEA,

CA125, or CA15-3 and

may be auxiliary used in

early screening.

Tested on blood of 261 women

with operable benign breast

disease and 348 with breast

cancer.

TFF1, TFF2 and TFF3
for breast cancer

screening.

Examined sera in 94 breast

cancer patients and 84 health

check females, and breast cancer

tissues.

Pleiotrophin (PTN)

PTN could be a potential

biomarker for the

presence of breast cancer.

Tested sera in 105 breast cancer

patients and 40 healthy

volunteers using ELISA. In

addition, PTN expression was

examined in 80 BC tissues in a

nested case-control study by

immunohistochemistry.

Combination of miR-

127-3p and HE4

Greatly improved the

sensitivity of breast cancer

diagnosis and may be a

candidate biomarker for

early detection and

diagnosis of breast cancer.

Examined plasma in 102 patients

with breast cancer, and 87

patients with benign breast

tumors and 90 healthy volunteers

as control.

Combination of VEGF

and CA 15-3

showed the highest

usefulness in the

diagnosis of early breast

cancer.

Tested plasma in 100 breast

cancer patients, and 50 patients

with benign breast tumors, and 50

healthy women as control.

Combination of AGR3

and AGR2

showed the potential

usability of AGR3 and

AGR2 as biomarkers for

blood-based early

detection of human breast

cancer.

Examined 190 breast carcinomas

and 39

normal breast tissues; 40 breast

cancer and 40 healthy serum

samples.

COL11A1, COMP, and

COL10A1

may be useful in

diagnostic assessment for

breast cancers

Discovery dataset:

50 healthy donors, 42 patients

with benign breast disease, and

52 patients with invasive breast

cancer;

validation cohort:

52 healthy donors, 49 benign

breast disease, and 66 invasive

breast cancer.
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Type Biomarkers Clinical Value Clinical Validation/Research Design References

CA15-3 included in the

diagnostic panel

constituted of 4 protein

peaks [m/z 3972,

6850, 8115 (Bc2), and

8949 (Bc3)]

distinguished invasive

ductal carcinoma from

healthy controls and

benign breast diseases.

Tested the sera from 62 patients

with invasive ductal carcinoma,

and 47 non-cancerous individuals

(16 healthy

controls and 31 patients with

benign breast diseases).

Serum autoantigens

(LGALS3, PHB2,

MUC1 and GK2) in

combination with CA

15-3

had better diagnostic

values compared with anti-

CA 15-3 alone for early-

stage breast cancer.

Examined the sera from 100

breast cancer patients and 50

healthy subjects.

A combination of six

antigens, RAD50,

PARD3, SPP1, NY-BR-

62, and NY-CO-58

could discriminate breast

cancer patients from

healthy controls.

Tested the sera of 112 patients

with breast cancer and 35

patients

with no neoplasm (control group);

Cancer and non-cancerous breast

tissue samples were obtained

from 17 female patients with

primary breast carcinomas and 7

patients with fibrocystic disease.

A combination of

serum protein

biomarkers and tumor

associated

autoantibodies

the benefit of the

integration of SPB and

TAAb for detecting breast

cancer.

Using a retrospective cohort of

sera from 18 participants with no

breast diseases, 92 participants

with benign breast diseases, and

100 participants with breast

cancers.

Sex hormones:

estradiol, testosterone,

and SHBG

Integration of hormone

measurements in clinical

risk prediction models may

represent a strategy to

improve breast cancer risk

stratification.

Tested blood of 1217 breast

cancer cases (430 pre- and 787

postmenopausal) and 1976

matched

Controls.

CCL25/CCR9

chemokine signaling

promotes migration and

invasion in different cell

lines by selective

regulating several EMT

markers.

-

CCL18-PITPNM3

chemokine signaling

promotes the invasion and

metastasis of breast

cancer through the

PI3K/Akt/GSK3β/Snail

pathway.

-
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TNBC-specific RBP,

NONO

NONO is highly expressed

in TNBC and is associated

with poor patient

outcomes, a potential

therapeutic target in

TNBC.

Tested on tissue microarray.

Peptides KNG1

 and C3f

differentiate BRCA1
mutant breast cancer from

sporadic B breast cancer

and cancer-free BRCA1
mutant carriers.

Examined on serum samples

from 55 carriers of hereditary

BRCA1 mutations, of whom 28

were diagnosed with breast

cancer, and 27 remained cancer-

free, 39 were diagnosed with

sporadic breast cancer, and 38

were healthy controls.

Lipid 27-hydroxycholesterol
may offer a novel breast

cancer risk strategy.

Tested on sera of 530 incident

invasive breast cancer cases and

1036 control participants from

Heidelberg cohort of EPIC.

Exosome

fibronectin

This liquid biopsy to detect

fibronectin on circulating

extracellular vesicles could

be a promising method to

detect early breast cancer.

Tested on plasma samples from

70 disease-free individuals, 240

breast cancer patients, 40 breast

cancer patients after surgical

resection, 55 patients with benign

breast tumor, and 80 patients with

non-cancerous diseases

(thyroiditis, gastritis, hepatitis B,

and rheumatoid arthritis.

Del-1

is a promising marker for

identification of patients

with early-stage breast

cancer and distinguish

breast cancer from benign

breast tumors and

noncancerous diseases.

Measured in plasma samples

from 81 healthy controls, 269

patients with breast cancer, 50

breast cancer patients after

surgical resection, 64 patients

with benign breast tumors, and 98

patients with noncancerous

diseases.

Table 2. Immune cells and other non-cancer cells as the biomarkers for breast cancer.

Cell Types Prognosis/Treatment References

T cells (Tregs)
better prognosis in lymph node negative, primary breast cancer patients including

those with stages I–III.

CD8 T cells were predictive for response to checkpoint inhibitors.

[95]

K438-

R457 S1304-R1320

[96]
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Cell Types Prognosis/Treatment References

B cells

1. better prognosis in lymph node negative, primary breast cancer patients

including those with stages I–III, ER- breast cancer, highly proliferating luminal B

breast cancer, and

2. improved outcome in HR+ breast cancer.

Plasma cells
better prognosis in ER- breast cancer and highly proliferating luminal B breast

cancer.

TILs

1. The frequency of TILs is usually high in the more aggressive breast cancer

subtypes. TIL frequency was found to be a superior prognostic marker;

2. were predictive for response to checkpoint inhibitors,

3. was associated with improved responses to trastuzumab or lapatinib in HER2+

breast cancer.

Macrophages associate with survival in basal-like breast cancer.

MDSCs are correlated with poor survival in ER- tumors.

Neutrophils

1. are associated with poor breast cancer survival;

2. inhibiting leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5)

abrogates neutrophil pro-metastatic activity and consequently reduces

metastasis.

NK cells
were found significantly depleted from peripheral blood compared to pretreatment

levels after chemotherapy.

myeloid

dendritic cell
improved outcome in HR+ breast cancer.

astrocytes
may provide new opportunities for effective anti-metastasis therapies, especially

for brain metastasis patients.
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