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Airway mucus is a complex viscoelastic gel mainly composed of water, glycoproteins, lipids, enzymes, minerals,

etc. Among them, glycoprotein is the main factor determining mucus-gel-like rheology. Airway mucus forms a

protective barrier by secreting mucin, which represents the absorption barrier, especially for more lipophilic drugs. It

rapidly clears the drug from the airways through physiological mucus clearance mechanisms, so the drug does not

remain in the lungs or reach the airway epithelial tissue for a long time.

airway mucus  nanoparticles

1. Introduction

The mucus layer plays a vital role in human health, as it is the front line of the body's defense system , capable of

selectively penetrating foreign bodies and pathogens, thereby protecting the normal functioning of the organism .

Lung mucus consists of two layers: the fluid layer on the airway surface and the layer around the eyelashes. The

former consists of gel-forming mucus and is responsible for adsorbing and encapsulating inhalation particles. The

latter is where surface cells beat and relax, efficiently transporting the mucus layer to the outside of the lungs .

The composition and thickness of the mucus layer is not constant; It is a dynamic system whose composition and

thickness are caused by the continuous secretion and clearance of mucus .

In addition to water, the main component of mucus is mucin, which can be divided into two subtypes according to

its glycosylation variability: secreted mucin and membrane-bound mucin. Membrane-binding proteins bind mainly

to the surface of the mucosal epithelium, while the disulfide bonds between them link the secreted mucins to form a

continuous gel state . Given the importance of lung mucus to the bioavailability of pulmonary drugs, studying the

important components and tissues of lung mucus  is critical to understanding its barrier function. Drugs delivered

directly to the airways or inhalation therapy   are commonly used to treat lung disease. Among them, inhalation

therapy makes it easier to deliver therapeutic drugs to the pulmonary mucosa, so it is possible to significantly

reduce the dose of the drug and further reduce its side effects. However, due to the inherent clearance mechanism

of the pulmonary mucosa, the drug is less bioavailable in the lungs, and most of the drug is cleared in the

pulmonary mucosa .

Over the past few decades, convincing data have confirmed that nanodelivery systems can be promising carriers

for delivering drugs through the mucus layer, including polymer nanoparticles, liposomes, polymer micelles, and

nanoparticles . After inhalation delivery to the airway, these nanoparticles can penetrate or remain
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in the airway mucus layer by osmosis-mediated, adhesion-mediated, and biomimetic-mediated, respectively 

. The benefits of utilizing nanocarriers are increased bioavailability of the drug and reduced unwanted toxicity

due to its surface modification, suitable nanometer size, and blood stability .

2. Pathophysiology of Airway Mucus

According to statistics, a typical adult breaths about 16-20 times per minute in a calm state. The amount of gas

inhaled or exhaled is approximately 500 mL, or tidal volume . As a result, the surface of the human airways

constantly interacts with the external environment, including inhaled particles and pathogens. The mucociliary

clearance mechanism is an important defense mechanism for maintaining a normal physiological state of the

human airway . The mucocilia removal system avoids the retention of pathogenic bacteria by constantly

renewing the mucus blanket while removing pathogenic microorganisms and inhaled particles. The mucosal cilia

clearance system  has three main components: the surface fluid layer in contact with the airway lumen, the

periciliary fluid layer that supports cilia beating, and the respiratory epithelium composed of secretory cells

 (Figure 1).

Figure 1Schematic diagram of the structure and function of the mucus barrier: (A) The mucosal cilia removal

system has three main components: the surface fluid layer in contact with the airway lumen, the periciliary fluid

layer that supports cilia beating, and the respiratory epithelium composed of secretory cells. Constant renewal of
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the mucus blanket avoids the retention of pathogenic bacteria, while removing pathogenic microorganisms (red

spheres) and inhaled particulate matter (green spheres); (B) Schematic diagram of the nanoparticle structure

through the mucin network. Small molecules can cross the mucus barrier by diffusion freely, but most large

molecules do not easily cross the mucus barrier; (C) Schematic diagram of PCL collapse under normal conditions

due to mucus and PCL layers and airway dehydration.

The mucus layer is one of the key components of the mucocilia removal system, which acts as both a physical and

a chemical barrier. The mucus layer consists of hundreds of substances and contains 98% water and 2% solids

. The main macromolecule of this 2% solid substance is mucin, a macromolecule formed from a family of

glycoproteins that are highly glycosylated . The main secreted mucins in the airways are MUC5B and

MUC5AC , which have characteristic domains formed by repeated tandem associations of abundant proline,

serine, serine, and threonine. The repeat sequence undergoes O-glycosylation to harden the mucin backbone and

increase the stiffness of the mucin chain, thus maintaining the gel morphology of the mucus. Mucin itself can bind

to therapeutic drugs in a non-specific way. Pavan G. Bhat and colleagues studied the permeability of porcine

gastric mucus to five substances: isoniazid , pentamidine , rifampicin , p-aminosalicylic acid , and

pyrazinamide , all of which can be delivered to lung targets using inhalation therapy. The permeability of all two

agents was significantly reduced in the presence of mucus compared with the permeability of the blank buffer .

The above results show that all compounds bind specifically to mucin molecules before passing through the mucus

layer, resulting in reduced penetration through the mucus layer. The pore size of the mucus layer also plays a

crucial role in the penetration of the drug. Anionic and nonionic surfactants have a more significant effect on the

mucus permeability of nanoparticles and their mucus barrier modulation ability, which also depends on the type of

surfactant. Sodium lauryl sulfate (SDS) increased the composite viscosity and viscoelasticity of mucus, but

poloxamer showed a downward trend. Tween 80 largely retains its original mucus rheological and morphological

properties and may be a promising candidate for promoting the penetration of nanoparticles into the mucus barrier

with good safety. Studies have shown that some small molecules can cross the mucus barrier through free

diffusion, but most large molecules do not easily cross the mucus barrier . Therefore, the permeability of the

mucus layer may be limited by its pore size can be infered .

The periciliated liquid layer (PCL) is ideal for cilia flow and is approximately 5-10 μm thick,  corresponding to the

length of the cilia. If the layer is too thick, cilia cannot reach the upper mucus layer and therefore cannot perform

their clearing defense function. At the same time, if this layer is too thin, the upper mucus layer adheres to the cilia

and blocks their movement . Hydration of airway surface fluids is critical to achieving mean mucus clearance ;

In the normal airway , water is distributed between the mucus layer and the periciliary fluid layer, and the layer

with low osmotic pressure changes its concentration more easily than the layer with high osmotic pressure. Button

et al. propose a brush gel model that shows that when the mucus layer is heavily hydrated , its osmotic pressure

drops sharply, so that the liquid from the airway surface enters the mucus layer first, while the PCL remains

unchanged. Conversely, when airway dehydration occurs, the mucus layer is dehydrated first, increasing its

concentration, increasing the osmotic pressure of the mucus layer, and the PCL layer is compressed under high

pressure, causing the PCL to collapse. PCL is a network structure composed of various macromolecular

substances, the size of which is not constant between grids, related to the height of the PCL layer . When the
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airway surface fluid is overhydrated, resulting in the collapse of the PCL layer, the mesh size of the PCL layer is

subsequently reduced; Assuming that the drug particles reach the mucus layer, the penetration of the drug particles

in the lung mucosa is significantly reduced due to the reduction of the pores in the PCL grid. In addition, a series of

changes in the composition and structure of the mucus layer in the pathological state, such as an imbalance in ion

transport in the lung airways in patients with cystic fibrosis (CF), leads to a decrease in the volume of fluid on the

surface of the airway, a significant increase in the viscoelasticity of the mucus, and impaired clearance of mucocilia

. In addition, under pathological conditions, the concentration of mucin, DNA, and actin increased

significantly, significantly reducing the average size and size distribution of the mesh spacing, thereby severely

hindering the transport of nanoparticles. Therefore, there is an urgent need for nanodelivery carriers capable of

carrying drugs through dense mucus layers.

3. Nanoparticle-Mediated Effective Enhancement of Drug
Retention and Penetration in the Airway Mucosa

Based on the barrier properties of airway mucus described earlier, researchers can design different strategies to

enhance the penetration of drugs in the pulmonary mucosa according to their characteristics. Among them,

nanoparticle formulations have significant advantages in improving cell penetration and therefore may be a

promising approach to treating lung diseases . However, when used as a transport carrier, it faces a double

barrier of size filtration of the mucus layer and interaction filtration. Since the barrier properties of mucus change its

behavior, it is necessary to design nanoparticles appropriately, such as changing the surface properties of

nanoparticles (including particle surface functional groups and charge density, etc.), changing their particle size

 , etc. In addition, enlarging mucosal lattice voids by disrupting specific non-covalent interactions of mucogel is

also an effective way to promote mucosal drug penetration. Table 1 summarizes the various types of nanoparticles

that enhance mucus penetration and retention.

Table 1. Summary of nanoparticles for enhanced mucus penetration and retention.
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Nanoparticle type Recipe details outcome reference

Hydrophilic

polymer

modified

nanoparticles
Polyethylene glycol, polyethersheath,

polyperch and polyethyleneimine

composite nanoparticles

Effectively prevent lung

macrophages from absorbing

nanoparticles

One day after administration,

about 14% of the pegylated

nanoparticles are cleared from

the lungs, while about 37% of

the non-pegylated particles

are eliminated

[45]
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Nanoparticle type Recipe details outcome reference

Ph-sensitive methoxypolyethylene

glycol (mPEG)-doxorubicin (DOX)-

coupled nanoparticles

The speed and degree of

internalization of DOX cells

increases

DOX released from mPEG-

DOX nanoparticles is

significantly accelerated in

acidic environments

Cytotoxicity: mPEG1K–DOX >

free DOX > mPEG2K–DOX ≫

mPEG5K–DOX

Polyacrylic acid (PAA) and

polyallylamine (PAM) composite

nanoparticles

Neutral nanoparticles are

obtained

Enhances mucus penetration

Cell-

penetrating

peptides

modify

nanoparticles

The phage display library serves as a

screening tool to identify peptides

that promote mucus barrier transport

The diffusion rate of the CF

mucus model was increased

by a factor of 2.6

Decreased affinity for mucin

Cell uptake by conjugated

nanoparticles increased 3-fold

Peptides are directly coupled to DNA

to form nanoparticles

Excellent lung distribution

Polyethylene glycolated

nanoparticles exhibit excellent

colloidal stability

40% PEG-modified

nanoparticles exhibit excellent

transgene expression
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Nanoparticle type Recipe details outcome reference

Lipid

nanoparticles

Liposomal vesicle encapsulation

fasudil

The embedding efficiency

ranged from 68.1±0.8% and

73.6±2.3%.

10-fold increase in terminal

plasma half-life

Insulin/dimyristic

phosphatidylglycerol hydrophobic ion

pair, incorporated from a

nanoemulsion system

High package efficiency

(70.89%)

SNEDDS formulations exhibit

increased mucus permeability

Protects proteins from

enzymatic degradation

Lipid polymer hybrid nanoparticles

consisting of a polylactic acid-glycolic

acid (PLGA) core and a

dipalmitoylphosphatidylcholine

(DPPC) lipid shell

Polyethylene glycol surface coating

When mucus barrier

properties are dominated by

pathologically associated

proteins, there is no difference

in pegylation

Metal

nanoparticle

Silver nanoparticles

Levels of hypoxia-inducible

factor (HIF)-1α, VEGF,

phosphatidylinositol-3 kinase

(PI3K) increased

Mucous glycoprotein

expression (Muc5ac) in lung

tissues was substantially

decreased

Gold nanoparticles Gold nanoparticles clearly

inhibited (70–100%) allergen-

induced accumulation of
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Nanoparticle type Recipe details outcome reference
inflammatory cells as well as

the production of both pro-

inflammatory cytokines and

reactive oxygen species

Gold nanoparticles prevented

airway hyper-reactivity,

inflammation and lung

remodeling

Chitosan-

modified

nanoparticles

Thiol adhesion of anionic polyacrylic

acid (PAA) and cationic chitosan

(CS) nanoparticles

The modification of the polymer was

performed by coupling with cysteine

(PAA-Cys) and 2-iminothiane (CS-

TBA)

Improved mucosal adhesion

of thiolated nanoparticles

Ranking of particle adhesion

ability: CS-TBA > PAA-Cys >

CS > PAA

CS-TBA has 2-fold higher

mucosal adhesion properties

than PAA-Cys NP

Sodium tripolyphosphate (TPP) as

ionic crosslinker

Mannose-anchored N,N,N-trimethyl

chitosan nanoparticles (TMC) doped

with ethoxanthine (ETO) were

prepared

The prepared Mn-TMC NPs

had a particle size of 223.3

nm, a PDI of 0.490, a ζ

potential of −19.1 mV, a drug

loading of 76.26 ± 1.2%, and

an encapsulation efficiency of

91.75 ± 0.88%

The pulmonary bioavailability

of TMC-TPP NPs was 4.2

times higher than that of ETO

suspension, while the

pulmonary bioavailability of

MnTMC-TPP NPs was 4.1

times higher than that of ETO

suspension

[54]

[55]



Enhanced Drug Penetration and Retention in Airway Mucosa | Encyclopedia.pub

https://encyclopedia.pub/entry/50812 8/14

Nanoparticle type Recipe details outcome reference

N,N,N-trimethyl chitosan

nanoparticles (TMC polymers) with

different degrees of quaternization

were first synthesized

Absorption properties of

polymers increase with the

degree of quaternization

All these polymers led to a

mild increase in mucus

secretion at pH 4.40.

At pH 7.40, only highly

quaternized TMC can

increase nasal absorption of

insulin

Hyaluronic

acid-modified

nanoparticles

Encapsulation of salbutamol sulfate

(SAS) in dry powder form in inhalable

hyaluronic acid (HA) particles

Local albuterol retention in the

lungs is more than three times

higher than albuterol without

HA

A reasonable in vitro lung

deposition with a fine particle

fraction of over 30%

Hyaluronic acid allows SAS to

have extended release

properties and prolong

retention time in the lungs

The maximum plasma

concentration decreased

significantly from 2267.7

ng/mL to 566.38 ng/mL

Loading of budesonide particles into

hyaluronic acid particles using a

spray drying process

Longer retention time of HA-

modified nanoparticles on the

surface of porcine tracheal

cannulae
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