

TGF β Signalling in Helminths

Subjects: **Parasitology**

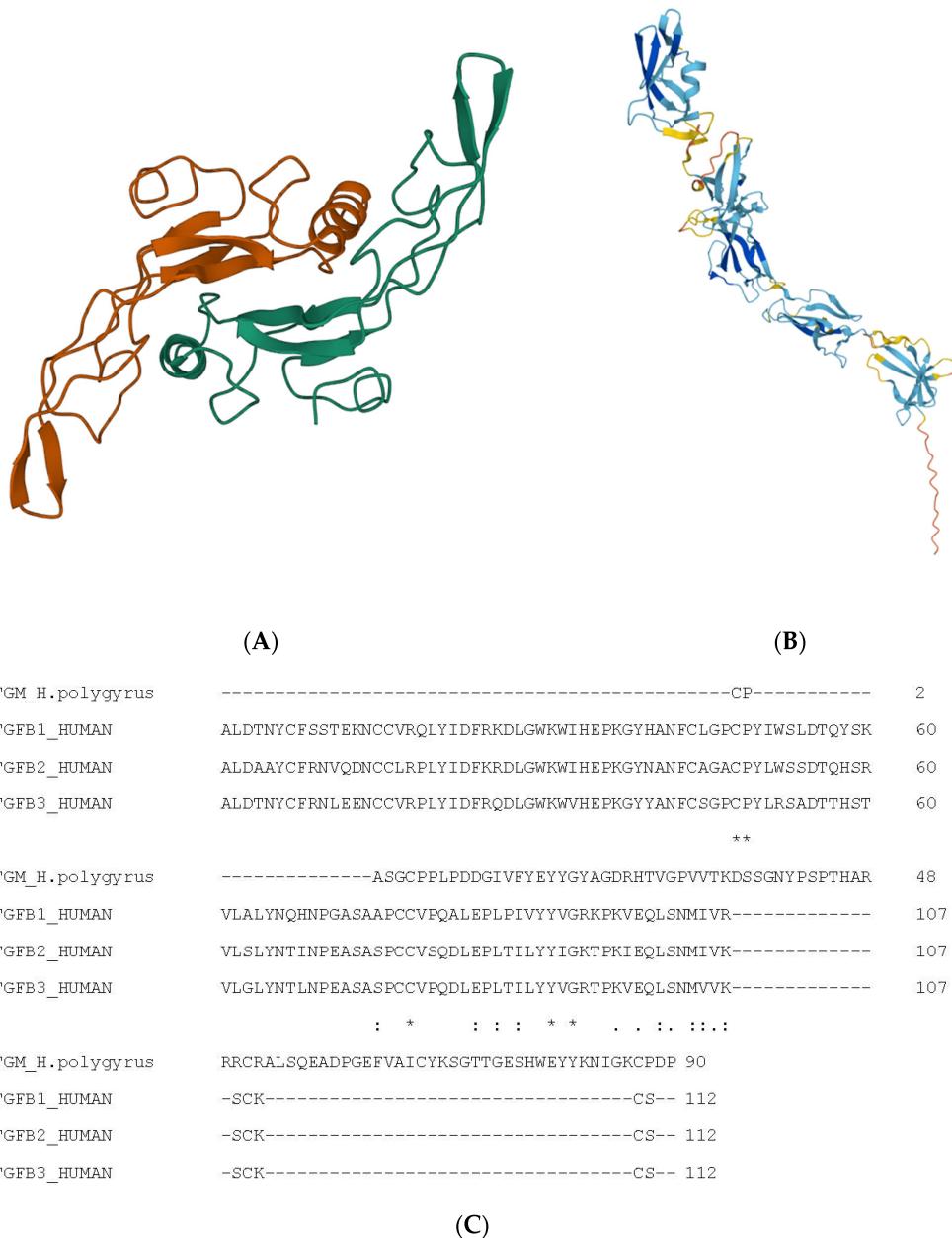
Contributor: Marta Maruszewska-Cheruiyot , Michael James Stear , Maja Machcińska , Katarzyna Donskow-Łysoniewska , Katarzyna Donskow-Łysoniewska

There has been little interaction between parasitologists and oncologists, some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. The research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGF β) signalling pathway to modulate the immune response to their benefit.

TGF β

TGF β mimic

nematode


cancer

1. Introduction

The β superfamily of transforming growth factors is a numerous group of evolutionarily conserved ligands involved in the regulation of cellular, physiological, and pathological processes. Signalling by TGF β influences embryonic development and tissue homeostasis, including angiogenesis, tissue regeneration, modulation of the immune response, extracellular matrix remodelling, cell mobility, and apoptosis in physiological and pathological conditions, especially during development, tumour progression, and metastasis [\[1\]](#)[\[2\]](#)[\[3\]](#)[\[4\]](#)[\[5\]](#).

The pleiotropic activity of the signalling pathways induced by TGF β superfamily factors reflects the complexity of the signal transmitted. This complexity is observed in TGF β ligands, more than 30 of which have been identified so far. TGF β occurs in human cells in three isoforms: TGF β 1, TGF β 2, and TGF β 3. Their amino acid sequence similarity is 71–80% [\[6\]](#). TGF β isoforms are synthesised as a pre-protein. The native form is dimeric, and the primary structure of active ligands contains a motif of 6 to 12 cysteine residues, referred to as the cystine knot (CK). The presence of the cystine knot is responsible for the formation of homo- and heterodimers of TGF β factors, and their active form has a molecular weight of approximately 25 kDa.

TGF β 1 is synthesised as a 390 amino acid proprotein, which undergoes post-translational processing. Amino acids 1–29 form the signal peptide, amino acids 30–278 form the latency-associated peptide LAP, whereas the remaining amino acids 279–390 form TGF β 1. The LAP and TGF β 1 chains remain noncovalently linked during storage in the extracellular matrix, which keeps TGF β 1 inactive. The sequence of the protein is available in the EBI database (P01137), and the structure (1KLA in the Protein Data Bank in Europe) of the homodimer TGF β 1 (**Figure 1A**) was determined by Hinck et al. 1996 [\[7\]](#).

Figure 1. Structure of TGF β 1 and nematode-derived mimic TGFM. **(A)** Structure of TGF β 1. **(A)** Used Mol* to create visualisation [8]. Alpha helices are indicated as coils, whereas beta-pleated strands are indicated as arrows. **(B)** Structure of TGFM. **(B)** Also used Mol* for visualisation. Alpha helices are indicated as coils, whereas beta-pleated strands are indicated as arrows. **(C)** Multiple sequence alignment of TGF β isoforms and nematode-derived mimic TGFM. The '*' indicates an identical amino acid while the ':' indicates a similar amino acid.

Canonical cell signalling induced by ligands belonging to the TGF β superfamily is mediated by highly specific serine and threonine kinase receptors, which are expressed by most types of human cells. TGF β receptors are transmembrane glycoproteins with an N-terminal region responsible for ligand binding, a single transmembrane fragment, and a C-terminal cytoplasmic region in which the kinase domain is located. Activation of the canonical TGF β pathway occurs when the dimeric TGF β ligand binds to the TGF β type II receptor dimer, which, having constitutive kinase activity, undergoes autophosphorylation. The TGF β R1 receptor dimer is bound to the TGF β –

TGF β R2 complex, and serine and threonine residues in the repeating glycine and serine residues (GS region) are then phosphorylated by the activated TGF β R2 receptor. The signal is then transmitted through the TGF β I α receptors of the Smad cytoplasmic proteins. Canonical signalling of TGF β is negatively regulated by the Inhibitory Smads (I-Smad) proteins Smad6 and Smad7. The I-Smad proteins, unlike the R-Smad and Co-Smad proteins, do not contain the MH1 domain responsible for DNA sequence recognition and transcriptional activity. The MH2 domain determines the binding of the Smad7 protein to TGF β receptors, thus competing with the R-Smad proteins. Similarly, TGF β cell signalling is inhibited by the Smad6 protein, which, by binding to the Smad4 protein, reduces the formation of Smad1–Smad4 complexes [9][10][11][12].

Many Faces of TGF β

Due to the influence of TGF β on an array of diverse cellular functions including cell growth, differentiation, adhesion, migration, and apoptosis, perturbations of the TGF β signalling pathways are involved in the progression of various tumours. TGF β is a multifunctional cytokine that acts in a cell- and context-dependent manner as a tumour promoter or tumour suppressor. This phenomenon is known as the TGF β paradox [13]. In healthy cells and early-stage cancer cells, TGF β ligands stimulate signalling pathways leading to the expression of genes involved in tumour suppression, inhibition of proliferation, stimulation of differentiation, induction of apoptosis or autophagy, elimination of inflammation, and suppression of angiogenesis. In contrast, advanced tumours produce excessive amounts of TGF β , which contributes to tumour growth, invasion and metastatic spread, and drug resistance [5].

The pleiotropic function of TGF β in tumour development is due to the interaction of this cytokine with various signalling pathways. Activation of the TGF β type II receptor (T β RII) and, in turn, type I receptor (T β RI) by TGF β 1 transduces signals through receptor-regulated Smads (Smad2/3) and common-partner Smad (Smad4), leading to the transcriptional regulation of target genes. Reflecting its diverse and complex functions in cancer cells, TGF β upregulates some autophagy-related genes in a Smad4-dependent fashion. Thus, certain hepatocellular carcinoma cell lines undergo cell cycle arrest and apoptosis in response to TGF β [14].

However, a number of noncanonical TGF β signalling pathways are responsible for unexpected signalling outcomes or even opposing biological outcomes of TGF β signalling in the same cells [15]. The activated TGF β complex transfers signals through molecules such as receptor-associated factor 4 (TRAF4), TRAF6, TGF β -activated kinase 1 (TAK1), p38 mitogen-activated protein kinase (p38 MAPK), p42/p44 MAPK, phosphoinositide 3-kinase Pi3K/AKT, extracellular signal-regulated kinase (ERK), Rho-like GTPase signalling pathways, JUN N-terminal kinase (JNK), or NF- κ B to reinforce or decrease downstream cellular responses [16]. Some of these pathways could be transducers of the TGF β signal to Smads [17].

Furthermore, the regulation of TGF β signalling in cells can include the intracellular distribution of the receptors, composition of the receptors, and expression of accessory molecules. For example, mature alternatively activated macrophages (M2) induced by IL-4 require the presence of glucocorticoids (GCs) to express TGF β II on the cell surface to become permissive to the TGF β [18].

TGF β is involved in interactions between cancer cells and the host immune system termed as “immunoediting” and summarised in the three “E’s” theory: elimination, equilibrium, and escape. Because of (i) genetic instability and tumour heterogeneity and (ii) immune selection pressure, tumour cells become progressively capable of avoiding immune destruction during carcinogenesis [19][20][21]. Evading immune eradication is a prerequisite for neoplastic progression. The immune escape strategies of cancer may be classified into two main mechanisms. First, cancer cells may become invisible to the immune system. This can be achieved by losing or downregulating MHC and/or molecules involved in antigen presentation, thereby preventing their recognition by the immune system. Second, cells may “defend” themselves to become resistant to immune eradication. This can be achieved in several ways: by becoming resistant to apoptosis, expressing inhibitory ligands that deactivate immune cells, and/or inducing an immunosuppressive microenvironment, the TME [19].

In cancer, TGF β is recognised as one of the most important regulators in the tumour microenvironment (TME), which is a highly heterogeneous milieu consisting of different cell types. The TME includes the presence of immunosuppressive cell populations such as tumour-infiltrating myeloid cells, including myeloid-derived suppressor cells (MDSCs) and M2-like tumour-associated macrophages (TAMs). Likewise, the presence of immune regulatory populations, including regulatory T cells (Tregs), regulatory B cells (Bregs), and regulatory dendritic cells (DCregs), can mediate immunosuppression [22]. These cell types beside cancer cells are not just sources of TGF β s; they seem to exploit autocrine or paracrine TGF β for their expansion, polarisation, and behaviour towards a tumour-promoting role rather than tumour elimination [22]. Tumour immune escape is complex, and a crucial aspect is promoting the expansion and activation of immature DCs. The immature DCs that uptake apoptotic and necrotic DCs convert into tolerogenic DCs (tDCs) with enhanced TGF β secretion [23]. tDCs display low expression of costimulatory molecules such as CD80 and CD86 as immature DCs; but they simultaneously have high expression of inhibitory molecules (TRAIL, PD-L1, DC-SIGN, and CTLA-4) and immunosuppressive molecules (e.g., TGF β , IL-10, IL-27, NO, and IDO) and, in turn, support the Treg differentiation of type 1 Tregs (Tr1) in response to IDO, IL-10, and TGF β .

Naïve CD4 $^+$ T cells differentiate into CD25 $^+$ Foxp3 $^+$ Tregs (Tregs) in the thymus and into CD25 $^-$ Tregs including IL-10 $^+$ Tr1, TGF β $^+$ Th3, and Foxp3 $^+$ cells (iTregs) in the periphery. Treg cells promote tumour growth and progression through multiple inhibitory pathways, and TGF β is secreted at high levels by Treg cells in the tumour microenvironment. Blockade of TGF β expressed on the surface of Treg cells using neutralising antibodies improved immunity to melanoma and suppressed the metastasis of pancreatic tumours in mice [24][25]. Furthermore, TGF β mediates T-cell suppression via programmed death-1 (PD-1) coinhibitory receptor 1 (immune checkpoint) upregulation through Smad3-dependent and Smad2-independent transcriptional activation in T cells and in the TME [26].

In response to the TGF β released by different cell types, including tumour cells in the TME, circulating monocytes that express high numbers of TGF- receptors migrate into the TME, where they differentiate into tumour-associated macrophages (TAMs). On these cells, TGF β induces markers specific for M2-type macrophages with tumour supportive function [13].

Other immune cells such as cytotoxic T cells (CTLs), natural killer (NK), and neutrophils involved in the anticancer response are also regulated by TGF β . In the mouse system, TGF β prevents the activity of cytotoxic CD8 $^{+}$ T cells by inhibition of perforin, granzymes (GzmA, GzmB), interferon- γ (IFN- γ), and FasL expression [27]. Correct NK signal transduction by NKG2D surface receptor–ligand binding culminates in the degranulation of NK cells to eliminate tumour cells. NKG2D ligands on tumour cells are downregulated, among other molecules, by TGF β to escape NK-cell-mediated immune surveillance [28]. TGF β can also inhibit NK cell activity by decreasing IFN- γ production by these cells [29].

Neutrophils are the main group of cells that infiltrate tumours, and they have a critical function in the immunosuppression of the TME as the tumour evolves. Similarly to M2, N2 neutrophils (N2 TANs) display protumourigenic activity, and the TGF β within the tumour microenvironment induces N2 cells. TGF β -stimulated N2 secretes different molecules that shape the TME. Neutrophils can be activated to display a stronger antitumour phenotype by blocking TGF β [30][31].

2. TGF β Signalling in Helminths

Even such primitive animals as sponges and *Trichoplax* produce molecules belonging to the TGF β family [32]. However, TGF β seems to be unique to the animal kingdom. There are no documented members of the protein family in other kingdoms of living organisms. Several species of nematodes, both free-living and parasitic, have TGF β signalling pathway components.

The best-described TGF β pathway in nematodes is TGF β signalling in *Caenorhabditis elegans*. The TGF β pathway plays fundamental roles in the development of this free-living roundworm. Five ligands (Ce-DBL-1, Ce-DAF-7, CeUNC-129, Ce-TIG-2, and Ce-TIG-3) and three receptors (Ce-DAF-1, Ce-DAF-4, and Ce-SMA-6) have been identified, and two signal pathways have been described for *C. elegans*.

The first pathway controls dauer larvae. Dauer larvae develop in response to unfavourable environmental conditions. Ce-DAF-7 influences entry and exit from the dauer stage and is a ligand for Ce-DAF-1 (type I) and Ce-DAF-4 (type II) receptors. Ce-DAF-8 and Ce-DAF-14 are components involved in signal transmission, whereas Ce-DAF-3 antagonistically acts towards them [33][34]. The dauer form in free-living roundworms is hypothesised to be equivalent to the infective L3 stage of parasitic nematodes [35][36][37]. It appears to be critical in the evolution of parasitism.

The second TGF β -related pathway, called Sma/Mab, is involved in body size control, regulation of gland cell morphology, development of male tail, immune defence, mesoderm differentiation, and reproductive ageing [34][38][39]. Ce-DBL-1 is a ligand for Ce-SMA-6 and Ce-DAF-4 receptors in this pathway. SMA-2, SMA-3, and SMA-4 have been identified as Smad components and are involved in the Sma/Mab signal pathway [34].

DAF-7, DAF-1, and DAF-4 are strongly conserved throughout nematode phyla. However, the regulators of the TGF β pathway in *C. elegans* have also been found in Clades IV and V (DAF-8 and DAF-3) or in Clade V (DAF-14)

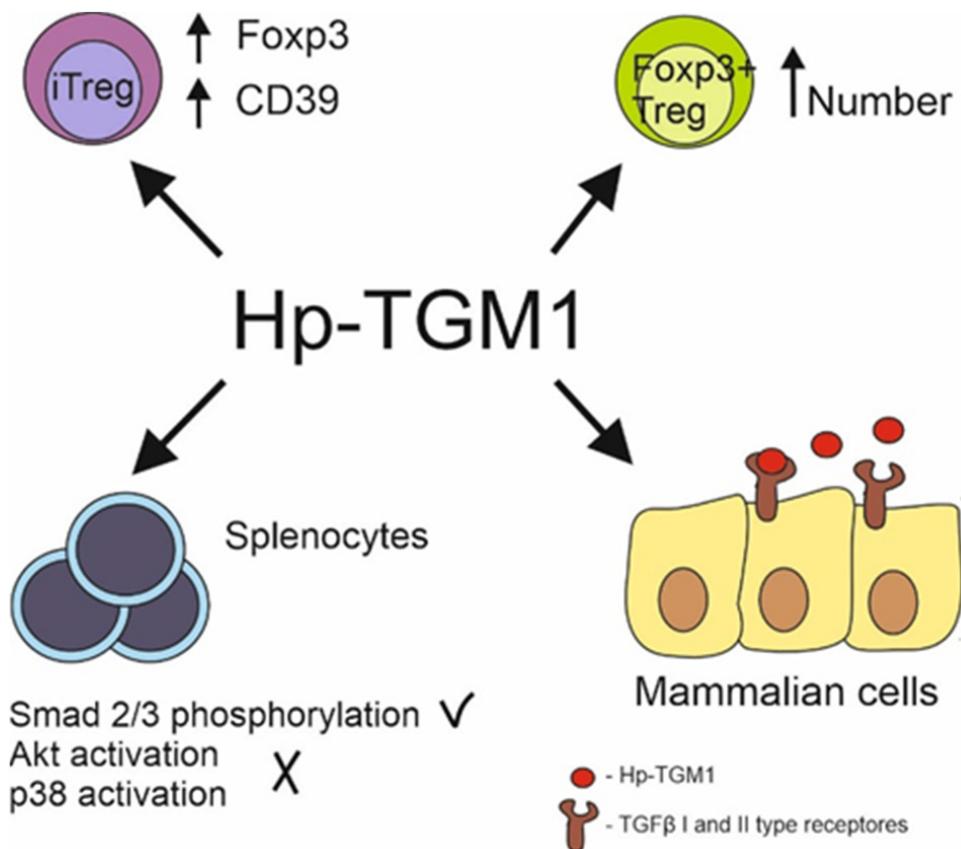
only [40]. Parasitic nematodes independently evolved at least 15 times from free-living Nematoda [41]. However, the role of the TGF pathway in the evolutionary origin of parasitism is unclear. One hypothesis states that the appearance of TGF β in the evolution of nematodes had a key role in dauer formation and the emergence of invasive larvae from this stage [42]. An alternative hypothesis considers TGF signalling to be primarily in development from iL3 to adult [40].

Two TGF-related genes have been found in *Brugia malayi*. This nematode is transmitted by mosquitoes and causes lymphatic filariasis in humans. Larval stages are found in the blood, whereas adults settle in lymphatic vessels. A transforming growth factor homolog-1 (Bm-tgh-1) shows similarity to genes encoding proteins in the dpp/Dbl-1 family. Bm-tgh-1 is mostly expressed during parasite growth when nematodes are present in the host [43]. A second molecule, Bm-TGH-2 displays similarity to DAF-2 from *C. elegans* and to human TGF β . The similarity between Bm-TGH-2 and human TGF β is restricted to the C-terminal domain with 38% identity. The gene encoding Bm-TGH-2 is maximally expressed in the microfilarial stages. As the parasite is exposed to various immune factors in the host blood, Bm-TGH-2 may play a significant role in modulating the immune response. Tgh-2 is expressed during the adult stage, in male as well as female species of *B. malayi*. Recombinant Bm-TGH-2 binds to the TGF β receptor, and this binding can be partially inhibited by human TGF β [44].

Brugia pahangi has a gene encoding a TGF β receptor homologue termed Bp-trk-1 [45]. Bp-trk-1 shows similarity to TGF β type I receptors and SMA-6 from *C. elegans* [46]. Furthermore, filariae may be rich in molecules with similar structures to TGF β . Antibodies that recognise the latent form of human TGF β react with *B. malayi* as well as many filarial worms including *Onchocerca volvulus*, *Onchocerca gibsoni*, *Onchocerca ochengi*, *Onchocerca armillata*, *Onchocerca fasciata*, *Onchocerca flexuosa*, *Wuchereria bancrofti*, and *Dirofilaria* sp. These antibodies may detect molecules with structural similarity to TGF β 1 [47].

Furthermore, three proteins in the hookworm *Ancylostoma caninum* have been identified as TGF family members. *A. caninum* develops in dogs and cats. Humans can also be infected with *A. caninum* as an accidental host. *A. caninum* DBL-1 (Ac-DBL-1) is involved in parasite growth regulation, and the protein has a similar amino acid sequence to *C. elegans* DBL-1. The highest expression of Ac-dbl-1 is observed in the adult male stage; hence, DBL-1 from *A. caninum* probably performs the same function as in *C. elegans*—tail growth regulation. Another one, with the highest similarity to *C. elegans* DAF-7, is called Ac-DAF-7 and regulates arrested development. Tissue-arrested L3 and reactivated L3 stages of *A. caninum* are characterised by the highest Ac-daf-7 expression [48]. In addition, human TGF β can reactivate the tissue-arrested form of *A. caninum* but cannot induce the development of environmental L3. It is possible that L3 possesses receptors for TGF molecules of mammalian origin [49].

Haemonchus contortus is an important parasite found in the abomasum (true stomach) of goats and sheep. Two receptors belonging to the TGF β family have been identified for *H. contortus*. One has domains characteristic of a TGF β type I: receptor Hc-TGFBR1, and one is a TGF β type II receptor: Hc-TGFBR2 [50][51]. Both of them play a role in developmental processes of *H. contortus*. Hc-TGFBR1 gene expression is observed during all developmental stages of the parasite. Interestingly, Hc-TGFBR1 is structurally more similar to human TGFBR1


than to DAF-1 from *C. elegans*, suggesting a more similar function to a molecule of human origin [50]. Furthermore, Galunisertib, a TGF-type I receptor inhibitor utilised in clinical trials involving cancer patients [52], can block the transition of free-living L3 into the parasitic L4 of *H. contortus* [48][50]. Hc-tgbr2 is expressed in all stages of the parasite, with the greatest levels of expression found in infective L3 and adult male species. Silencing of the gene reduced the level of the L3 to L4 transition in vitro [49]. In addition, two TGF signalling ligands for *H. contortus* have been characterised. *H. contortus* DAF-3 (Hc-DAF-3) shows similarity to DAF-3 from *C. elegans* and is classified as Co-Smad protein. Hc-daf-3 is expressed at the highest level by L3 and adult female species [53]. Hc-TGH-2 is the second ligand described for *H. contortus*. The Hc-tgh-2 gene is expressed by all developmental stages, with iL3 expressing the most. Hc-TGH-2 seems to play an important role in the transition from the free-living to parasitic stage, as well as in digestion, absorption, and reproductive development, based on the localisation of the ligand in parasite body [54].

Molecules with similar sequences to TGF ligands have also been found in *Heligmosomoides polygyrus*, *Necator brasiliensis*, and *Teladorsagia circumcincta*, although their functions have not been studied. The TGH-2 subfamily showed similarity to Ce-DAF-7, TGH-2 from *B. malayi* and mammalian TGF β . Interestingly, tgh-2 expression varies in four different Trichostrongyloid nematode parasites. The maximum expression occurs in adults of *H. polygyrus* and *T. circumcincta*, but only in L3 in *H. contortus* and *N. brasiliensis* [55].

Nematode TGF β Mimic

Compounds that have a different structure but function similarly to TGF ligands have been reported in parasitic nematodes. *Heligmosomoides polygyrus* is among the best understood of all nematode infections, and immune modulation has been clearly demonstrated [56]. *H. polygyrus* has a direct life cycle [56]. Adults live in the small intestine where they breed; eggs are laid by adult female species and excreted in the faeces. They develop through two moults into infective third-stage larvae. Infective larvae are ingested in natural infections but usually orally gavaged in experimental infections. Within 24 h, larvae have penetrated into the submucosa where they develop over the next ten days and undergo two moults before emerging into the lumen of the small intestine. About two weeks after infection, adult female species produce eggs that can be seen in the faeces.

H. polygyrus produces at least five molecules that modulate immune responses [57], and these influence the immune response at several levels. One of them is a TGF β mimic (*H. polygyrus bakeri* TGF β mimic, Hp-TGM), which influences the production of regulatory T cells. A family of ten Hp-TGMs are members of the complement control protein (CCP) superfamily, which also contains HpARI (*H. polygyrus bakeri* alarmin release inhibitor) and HpBARI (*H. polygyrus bakeri* binds alarmin receptor and inhibits). Hp-TGM has high immunomodulatory potential [58] and consists of five atypical domains. The Hp-TGM family has no homology with mammalian TGF β or other members of the TGF β family [59]. However, Hp-TGM can bind to TGF β receptors and possesses T β RI and T β RII receptor-binding sites. Moreover, HP-TGM competes with mammalian TGF β for TGF β receptors [60]. Although the TGM D3 domain and TGF β bind the same residues in the TGF β receptors, there is little sequence similarity between the molecules (Figure 2).

Figure 2. Hp-TGM1 functions similarly to mammalian TGF β despite lack of homologies between proteins. Hp-TGM1 binds to mammalian TGF β I and II type receptors; induces Smad 2/3 phosphorylation with lack in Akt and p38 signal pathway activation in murine splenocytes; induces generation of mice and human FoXP3⁺ Treg cells; increases Foxp3 and CD39 expression in induced Treg same as mammalian TGF β .

References

1. Derynck, R.; Akhurst, R.J. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. *Nat. Cell Biol.* 2007, 9, 1000–1004.
2. Massagué, J. TGFbeta in Cancer. *Cell* 2008, 134, 215–230.
3. Tian, M.; Neil, J.R.; Schiemann, W.P. Transforming growth factor- β and the hallmarks of cancer. *Cell Signal.* 2011, 23, 951–962.
4. Derynck, R.; Muthusamy, B.P.; Saeteurn, K.Y. Signaling pathway cooperation in TGF- β -induced epithelial-mesenchymal transition. *Curr. Opin. Cell Biol.* 2014, 31, 56–66.
5. Morikawa, M.; Derynck, R.; Miyazono, K. TGF- β and the TGF- β Family: Context-Dependent Roles in Cell and Tissue Physiology. *Cold Spring Harb. Perspect. Biol.* 2016, 8, a021873.

6. Liu, G.; Ding, W.; Neiman, J.; Mulder, K.M. Requirement of Smad3 and CREB-1 in mediating transforming growth factor-beta (TGF beta) induction of TGF beta 3 secretion. *J. Biol. Chem.* 2006, 281, 29479–29490.
7. Hinck, A.P.; Archer, S.J.; Qian, S.W.; Roberts, A.B.; Sporn, M.B.; Weatherbee, J.A.; Tsang, M.L.-S.; Lucas, R.; Zhang, B.-L.; Wenker, J.; et al. Transforming Growth Factor β 1: Three-Dimensional Structure in Solution and Comparison with the X-ray Structure of Transforming Growth Factor β 2. *Biochemistry* 1996, 35, 8517–8534.
8. Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Ve-lankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. *Nucleic Acids Res.* 2021, 49, 431–437.
9. Ten Dijke, P.; Goumans, M.J.; Itoh, F.; Itoh, S. Regulation of cell proliferation by Smad proteins. *J. Cell Physiol.* 2002, 191, 1–16.
10. Itoh, S.; Ten Dijke, P. Negative regulation of TGF-beta receptor/Smad signal transduction. *Curr. Opin. Cell Biol.* 2007, 19, 176–184.
11. Hata, A.; Chen, Y.G. TGF- β signaling from receptors to smads. *Cold Spring Harb. Perspect. Biol.* 2016, 8, a022061.
12. Zhao, B.; Chen, Y.G. Regulation of TGF- β Signal Transduction. *Scientifica* 2014, 2014, 874065.
13. Wu, F.; Weigel, K.J.; Zhou, H.; Wang, X.J. Paradoxical roles of TGF β signaling in suppressing and promoting squamous cell carcinoma. *Acta Biochim. Biophys. Sin.* 2018, 50, 98–105.
14. Suzuki, H.I.; Kiyono, K.; Miyazono, K. Regulation of autophagy by transforming growth factor- β (TGF- β) signaling. *Autophagy* 2010, 6, 645–647.
15. Gratchev, A. TGF- β signalling in tumour associated macrophages. *Immunobiology* 2017, 222, 75–81.
16. Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. *Nature* 2003, 425, 577–584.
17. Zhang, Y.E. Non-Smad pathways in TGF-beta signaling. *Cell Res.* 2009, 19, 128–139.
18. Gratchev, A.; Kzhyshkowska, J.; Kannookadan, S.; Ochsenreiter, M.; Popova, A.; Yu, X.; Mamidi, S.; Stonehouse-Usselmann, E.; Muller-Molinet, I.; Gooi, L.; et al. Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. *J. Immunol.* 2008, 179, 6553–6565.
19. de Charette, M.; Houot, R. Hide or defend, the two strategies of lymphoma immune evasion: Potential implications for immunotherapy. *Haematologica* 2018, 103, 1256–1268.

20. Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immuno- surveillance to tumor escape. *Nat. Immunol.* 2002, 3, 991–998.

21. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. *Cell* 2011, 4, 646–674.

22. de Folmont, A.; Bourhis, J.-H.; Chouaib, S.; Terry, S. Multifaceted Role of the Transforming Growth Factor β on Effector T Cells and the Implication for CAR-T Cell Therapy. *Immuno* 2021, 1, 160–173.

23. Kushwah, R.; Wu, J.; Oliver, J.R.; Jiang, G.; Zhang, J.; Siminovitch, K.A.; Hu, J. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. *Eur. J. Immunol.* 2010, 40, 1022–1035.

24. Yu, P.; Lee, Y.; Liu, W.; Krausz, T.; Chong, A.; Schreiber, H.; Fu, Y.X. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. *J. Exp. Med.* 2005, 201, 779–791.

25. Soares, K.C.; Rucki, A.A.; Kim, V.; Foley, K.; Solt, S.; Wolfgang, C.L.; Jaffee, E.M.; Zheng, L. TGF- β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. *Oncotarget* 2015, 6, 43005–43015.

26. Park, B.V.; Freeman, Z.T.; Ghasemzadeh, A.; Chattergoon, M.A.; Rutebemberwa, A.; Steigner, J.; Winter, M.E.; Huynh, T.V.; Sebald, S.M.; Lee, S.J.; et al. TGF β 1-Mediated SMAD3 Enhances PD-1 Expression on Antigen-Specific T Cells in Cancer. *Cancer Discov.* 2016, 6, 1366–1381.

27. Thomas, D.A.; Massagué, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. *Cancer Cell* 2005, 8, 369–380.

28. Fionda, C.; Margarini, G.; Soriani, A.; Zingoni, A.; Cecere, F.; Iannitto, M.L.; Ricciardi, M.R.; Federico, V.; Petrucci, M.T.; Santoni, A.; et al. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: Role of STAT3. *J. Immunol.* 2013, 190, 6662–6672.

29. Laouar, Y.; Sutterwala, F.S.; Gorelik, L.; Flavell, R.A. Transforming growth factor- β controls T helper type 1 cell development through regulation of natural killer cell interferon- γ . *Nat. Immunol.* 2005, 6, 600–607.

30. Batlle, E.; Massagué, J. Transforming Growth Factor- β signaling in immunity and cancer. *Immunity* 2019, 50, 924–940.

31. Uribe-Querol, E.; Rosales, C. Neutrophils in Cancer: Two Sides of the Same Coin. *J. Immunol. Res.* 2015, 2015, 983698.

32. Huminiecki, L.; Goldovsky, L.; Freilich, S.; Moustakas, A.; Ouzounis, C.; Heldin, C.H. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. *BMC Evol. Biol.* 2009, 9, 28.

33. Massagué, J. TGF β signalling in context. *Nat. Rev. Mol. Cell. Biol.* 2012, 13, 616–630.

34. Savage-Dunn, C.; Padgett, R.W. The TGF- β Family in *Caenorhabditis elegans*. *Cold Spring Harb. Perspect. Biol.* 2017, 9, a022178.

35. Viney, M.E.; Thompson, F.J.; Crook, M. TGF- β and the evolution of nematode parasitism. *Int. J. Parasitol.* 2005, 35, 1473–1475.

36. Crook, M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. *Int. J. Parasitol.* 2014, 44, 1–8.

37. Vlaar, L.E.; Bertran, A.; Rahimi, M.; Dong, L.; Kammenga, J.E.; Helder, J.; Goverse, A.; Bouwmeester, H.J. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. *Parasit. Vectors.* 2021, 14, 554.

38. Ramakrishnan, K.; Ray, P.; Okkema, P.G. CEH-28 activates dbl-1 expression and TGF- β signaling in the *C. elegans* M4 neuron. *Dev. Biol.* 2014, 390, 149–159.

39. Luo, S.; Shaw, W.M.; Ashraf, J.; Murphy, C.T. TGF- β Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. *PLoS Genet.* 2009, 5, e1000789.

40. Gilabert, A.; Curran, D.M.; Harvey, S.C.; Wasmuth, J.D. Expanding the view on the evolution of the nematode dauer signalling pathways: Refinement through gene gain and pathway co-option. *BMC Genomics* 2016, 17, 476.

41. Blaxter, M.; Koutsovoulos, G. The evolution of parasitism in Nematoda. *Parasitology* 2015, 142, S26–S39.

42. Viney, M.E. How did parasitic worms evolve? *Bioessays* 2009, 31, 496–499.

43. Gomez-Escobar, N.; Lewis, E.; Maizels, R.M. A novel member of the transforming growth factor- β (TGF- β) superfamily from the filarial nematodes *Brugia malayi* and *B. pahangi*. *Exp. Parasitol.* 1998, 88, 200–209.

44. Gomez-Escobar, N.; Gregory, W.F.; Maizels, R.M. Identification of tgh-2, a filarial nematode homolog of *Caenorhabditis elegans* daf-7 and human transforming growth factor beta, expressed in microfilarial and adult stages of *Brugia malayi*. *Infect. Immun.* 2000, 68, 6402–6410.

45. Gomez-Escobar, N.; van den Biggelaar, A.; Maizels, R. A member of the TGF- β receptor gene family in the parasitic nematode *Brugia pahangi*. *Gene* 1997, 199, 101–109.

46. Dissous, C.; Khayath, N.; Vicogne, J.; Capron, M. Growth factor receptors in helminth parasites: Signalling and host-parasite relationships. *FEBS Lett.* 2006, 580, 2968–2975.

47. Korten, S.; Büttner, D.W.; Schmetz, C.; Hoerauf, A.; Mand, S.; Brattig, N. The nematode parasite *Onchocerca volvulus* generates the transforming growth factor-beta (TGF-beta). *Parasitol. Res.* 2009, 105, 731–741.

48. Freitas, T.C.; Arasu, P. Cloning and characterisation of genes encoding two transforming growth factor-beta-like ligands from the hookworm, *Ancylostoma caninum*. *Int. J. Parasitol.* 2005, 35, 1477–1487.

49. Arasu, P. In vitro reactivation of *Ancylostoma caninum* tissue-arrested third-stage larvae by transforming growth factor-beta. *J. Parasitol.* 2001, 87, 733–738.

50. He, L.; Gasser, R.B.; Korhonen, P.K.; Di, W.; Li, F.; Zhang, H.; Li, F.; Zhou, Y.; Fang, R.; Zhao, J.; et al. A TGF- β type I receptor-like molecule with a key functional role in *Haemonchus contortus* development. *Int. J. Parasitol.* 2008, 48, 1023–1033.

51. He, L.; Gasser, R.B.; Li, T.; Di, W.; Li, F.; Zhang, H.; Zhou, C.; Fang, R.; Hu, M.A. TGF- β type II receptor that associates with developmental transition in *Haemonchus contortus* in vitro. *PLoS Negl. Trop. Dis.* 2019, 13, e0007913.

52. Colak, S.; Ten Dijke, P. Targeting TGF- β signaling in cancer. *Trends Cancer* 2017, 3, 56–71.

53. Di, W.; Liu, L.; Zhang, T.; Li, F.; He, L.; Wang, C.; Ahmad, A.A.; Hassan, M.; Fang, R.; Hu, M. A DAF-3 co-Smad molecule functions in *Haemonchus contortus* development. *Parasit. Vectors* 2019, 12, 609.

54. He, L.; Liu, H.; Zhang, B.Y.; Li, F.F.; Di, W.D.; Wang, C.Q.; Zhou, C.X.; Liu, L.; Li, T.T.; Zhang, T.; et al. A daf-7-related TGF- β ligand (Hc-tgh-2) shows important regulations on the development of *Haemonchus contortus*. *Parasit. Vectors* 2020, 13, 326.

55. McSorley, H.J.; Grainger, J.R.; Harcus, Y.; Murray, J.; Nisbet, A.J.; Knox, D.P.; Maizels, R.M. daf-7-related TGF-beta homologues from Trichostrongyloid nematodes show contrasting life-cycle expression patterns. *Parasitology* 2010, 137, 159–171.

56. Reynolds, L.A.; Filbey, K.J.; Maizels, R.M. Immunity to the model intestinal helminth parasite *Heligmosomoides polygyrus*. *Semin. Immunopathol.* 2012, 34, 829–846.

57. Maizels, R.M.; Smits, H.H.; McSorley, H.J. Modulation of host immunity by helminths: The expanding repertoire of parasite effector molecules. *Immunity* 2018, 49, 801–818.

58. Johnston, C.J.C.; Smyth, D.J.; Kodali, R.B.; White, M.P.J.; Harcus, Y.; Filbey, K.J.; Hewitson, J.P.; Hinck, C.S.; Ivens, A.; Kemter, A.M.; et al. A structurally distinct TGF- β mimic from an intestinal helminth parasite potently induces regulatory T cells. *Nat. Commun.* 2017, 8, 1741.

59. Smyth, D.J.; Harcus, Y.; White, M.P.J.; Gregory, W.F.; Nahler, J.; Stephens, I.; Toke-Bjolgerud, E.; Hewitson, J.P.; Ivens, A.; McSorley, H.J.; et al. TGF- β mimic proteins form an extended gene family in the murine parasite *Heligmosomoides polygyrus*. *Int. J. Parasitol.* 2018, 48, 379–385.

60. Mukundan, A.; Byeon, C.H.; Hinck, C.S.; Cunningham, K.; Campion, T.; Smyth, D.J.; Maizels, R.M.; Hinck, A.P. Convergent evolution of a parasite-encoded complement control protein-scaffold

to mimic binding of mammalian TGF- β to its receptors, T β RI and T β RII. *J. Biol. Chem.* 2022, 298, 101994.

Retrieved from <https://encyclopedia.pub/entry/history/show/80905>