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Underwater exploration, much like space exploration, has been at the frontier of science and engineering ventures.
Some of the early robotic systems sent by humans to explore marine life are known as remotely operated vehicles
(ROVs). ROVs are underwater robots, manually operated by a pilot, using tethered communication. Soft robots
made from compliant materials can achieve shrinking and bending motion that allow them to navigate within
narrow areas. The ability of soft robots to deform, change their shapes, exhibit infinite degrees of freedom, and
perform complex motion, makes them a suitable candidate for the basis of biological emulation, especially that of

underwater creatures, which are one of the sources of biomimetic inspiration for robotic and engineering systems.

Soft Robotics Underwater Robots Design Modeling Control

Reinforcement Learning

| 1. Introduction

Underwater exploration, much like space exploration, has been at the frontier of science and engineering ventures.
As with the many Mars missions, where rovers and mobile robots are deployed instead of humans, deep
underwater missions are mostly carried out using underwater robots. However, to this day, delving deep within the
oceans of our planet still poses many challenges for these robotic systems. Some of the early robotic systems sent
by humans to explore marine life are known as remotely operated vehicles (ROVs) . ROVs are underwater
robots, manually operated by a pilot, using tethered communication. They mainly have a rigid body hull and are
actuated using electric thrusters. Autonomous underwater vehicles (AUVs) are similar to ROVs but differ in that
they are untethered and do not require a pilot or an operator, as they are programmed to autonomously perform
specific tasks. Both ROVs and AUVs vary in size, depending on the type of tasks they are manufactured to

perform.

These underwater robotic systems are used to execute a wide range of underwater applications such as
maintenance and monitoring applications. Such applications include underwater pipe inspection, offshore
infrastructure repairs, and condition monitoring. Biological applications include seabed and abyssal exploration,
sample gathering from marine environments such as coral reefs, and ecological aquatic phenomena monitoring
and data collection 2. More specifically, repairing and sampling tasks are carried out using underwater vehicle
manipulator systems (UVMSs). UVMSs are unmanned underwater vehicles (UUVs) such as ROVs and AUVs that
are equipped with different types of underwater manipulators that are suitable for the mentioned tasks Bl The

majority of manipulators used for underwater applications are actuated using hydraulic or electric systems. They

https://encyclopedia.pub/entry/19230 1/17



Underwater Soft Robotics | Encyclopedia.pub

can be used for the installation and maintenance Of infrastructure such as pipes and cables !, salvaging debris

and sunken objects, mineral exploration !, and biological samples gathering (8.

| 2. Underwater Locomotion

Marine environments can seem extraterrestrial for humans at times. Hence, the study of the locomotion techniques
and the morphology of aquatic creatures is essential. These types of biological studies offer insights providing keys
toward the successful mimicry of these marine creatures. The aquatic environment plays a large role in defining the
types of underwater locomotion, as governed by the four main forces acting on bodies underwater [Z: vertical
weight and buoyancy alongside hydrodynamic lift, and horizontal thrust and drag (Figure 1a). Fish are able to
generate lift and thrust in order to swim. They can achieve swimming using their fins or swimming propulsors

(Figure 1b). According to the motion of these fins, fish swimming methods can be classified into several

categories.
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Figure 1. (a) The underwater forces acting on the fish during swimming. (b) Fish anatomy showing the different

fins fish use to swim and stabilize.

The two main categorizations of fish motion are based on which fins are performing the bending motion and the
frequency at which the fins move. In terms of the first category, fish use their body and/or caudal fin to generate
thrust (BCF). Examples include carangiform and anguilliform such as tuna and eel. Other types of fish use their
median and/or paired fins (MPF). Examples include rajiform and labriform such as batoids. The frequency of
movement of the fish’s body and fins indicates whether the motion is undulatory or oscillatory. During undulatory
motion, the fish’'s body performs a wave-shaped pattern, whereas oscillatory swimming uses only swivel-like

motion.

Additional underwater locomotion modes fall outside the previous categorizations [&. One example is the jet
propulsion performed by jellyfish, octopus, and squid. Drag-induced swimming is exhibited by turtles as they
generate thrust by moving their flippers in the opposing direction of motion. Friction-based crawling is performed by

crustaceans, and echinoderms such as starfish use adhesive-based crawling.
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In terms of assessing swimming performance, one of the most important metrics is the swimming speed of fish
and, in particular, the critical swimming speed (U.), which is commonly measured in centimeters per second
(cm/s) or body lengths per second (BL/s) 219, One of the main factors that affects fish swimming speed is the tail
beat frequency in Hertz (Hz). It relates to the fish’s velocity through the stride length, which is the distance traveled
by the fish per tail beat, expressed as ratio of the body length (L) 212 The Reynolds number (Re) and Strouhal
number (St) are also important factors to assess the hydrodynamic performance of the fish’'s swimming. Several
robotic fish platforms inspired from actual fish morphology and swimming, such as tuna, use the same metrics to
assess their robots’ performance [3I4IISI16] - Another important factor is to analyze the efficiency of fish
propulsion. However, it is hard to establish an accurate measure of propulsive efficiency for real biological fish. In
general, efficiency is defined as the ratio of useful output to total input. For a self-propelled body, the measure of
such work depends on the drag the body needs to overcome to move, which is hard to quantify as it differs with the
shape of the body, as well as the body-propulsor hydrodynamics [24]. It is also challenging to determine input
power in fish, which relates to muscle shaft power and the fish’'s metabolism and oxygen (fuel) consumption [25]. A
common metric used to quantify the fitness of fish and their efficiency is the cost of transport (COT), defined as the
energy expended per traveled distance. The COT is a good indication of the fish’s swimming efficiency, and there

have been several attempts to define and normalize COT for fish propulsive efficiency [24,26,27,28].

| 3. Challenges and Potentials of Soft Robots
3.1. Design

3.1.1. Bioinspiration

Since its inception, the field of robotics has drawn inspiration from nature. The main aspect of nature imitation in
robotics is apparent in the design and structure of the robots’ bodies that aim to mimic biological systems. By
looking at the knowledge gained through biomechanics studies, living creatures with mobile abilities are mainly
classified into two groups based on their body structure: vertebrates and invertebrates. Vertebrates include fish,
mammals, birds, amphibians, and reptiles; invertebrates include crustaceans (crab, lobster), echinoderms (starfish,

sea urchin), coelenterates (jellyfish), arachnids, molluscs (octopus, squid), insects, and worms, among others 17,

The challenge of building robotic systems with motion capabilities similar to those of these creatures lies in their
body construction, which exhibits compliance ranging from only a few parts such as an elephant’s trunk or
mammals’ organs, to completely soft and deformable bodies in the case of some invertebrates such as jellyfish.
The main contributor to this compliance is the elastic nature of the building blocks of these bodies such as
muscles, tendons, skin, tissues, and cartilages, as they are known for having low Young’'s modulus (less than one

gigapascal) (18],

Some attempts have been made to mimic some of these animals using hard materials. However, due to the limited
degrees of freedom offered by conventional rigid robots compared to the infinite degrees and redundancy of soft

bodies, different structures with continuum deformations had to be implemented. In contrast to conventional non-
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redundant rigid robots, discrete hyper-redundant and hard continuum robots offer large to infinite degrees of
freedom, which brings them closer to mimicking vertebrates’ motion 2229 Common examples include tendon-
driven continuum manipulators 2122231 One of the first underwater robots to employ a structure of discrete
multiple rigid-link sections actuated by tendons is the RoboTuna robotic fish [24; The VCUUV prototype, inspired by
RoboTuna, uses hydraulic actuation to drive an articulated tail 22, Other serial multi-joint biomimetic fish robots

have been developed to imitate carangiform swimming 28127,

Despite providing more degrees of freedom than rigid robots, hard continuum robots still lack the shape
adaptability offered by soft robots, which would help bring robots closer to their bioinspired creatures. The
Compliant Robotic Tuna (CRT) [28 is an example of a biomimetic fish robot having a servo-actuated compliant
body and tail and is able to perform swimming maneuvers. The Soft Robotic Fish (SoFi) 22 is a marine exploration
robot capable of 3D swimming that imitates fish motion. It is driven by a soft fluidic actuator and has a buoyancy
control unit for depth adjustment. Other marine creatures such as batoids were also mimicked, as in the case of the

stingray robot with a soft silicone outer body and pectoral fins 29,
3.1.2. Design Optimization

Even when taking inspiration from nature, designing soft robots with the desired mechanical behaviors that allow
them to perform specific tasks presents another challenge. The complexity of such robotic systems, due to their
unconventional components from materials to actuation, makes it hard to use currently known design and
simulation tools to build soft robots B1[32l Optimization techniques have been proposed to help automate the
design process, and bridge the gap between simulation, fabrication, and the actual performance of soft robots. The
general optimization framework can be summarized as choosing the design behavior to be optimized, such as
crawling or grasping; identifying the design variables to be optimized, such as the material and the actuation; and
defining the constraints of the system. The optimization process iteratively evaluates the design candidates using

analysis tools and searches for the optimal design.

One approach uses evolutionary optimization algorithms to automate the design and manufacturing of freeform soft
robots. This approach uses voxel-based dynamic simulation to evaluate the morphology and locomotion of the
robot 23, Voxels are soft cubic blocks with specific parameters, such as stiffness and Poisson’s ratio, that undergo
volumetric change when forces are applied to them. Another voxel-based method aims to optimize the morphology

to achieve adaptability using the property of criticality, which allows the robot to perform more diverse tasks (241,

Another conceptual design approach provides a spatial grammar to build soft robots and optimize their design for
locomotion and actuation 2], The spatial grammar generates sub-assemblies of interconnected balls based on a

set of defined rules. The generated models are then evaluated and optimized in terms of locomotion abilities.

Performing design optimization for underwater soft robots is an even more challenging problem, as the effect of the
environment on the robot’s morphology needs to be taken into account. DiffAqua 38, a computational design

pipeline, relies on differentiable simulation to perform gradient-based optimization for the geometry and control of
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soft underwater swimmers. The benefits of exploiting the morphology of soft robots and optimizing it to simplify the

control are further discussed in the upcoming modeling and control sections.

Fabricating and assessing these designs are also challenging processes due to the traditional manufacturing
methods being unsuitable for these unconventional soft materials. Additive manufacturing (AM) is one of the
impactful technologies that helped enable this process 738 One approach is to use AM to only fabricate the mold
that would be used to pour the soft material in them. A more hybrid approach takes advantage of AM techniques,
such as the fused filament fabrication (FFF) method, in addition to molding techniques to fabricate and assemble
complex soft robotic systems. The third approach is the total additive manufacturing (TAM) approach. It exploits all
the benefits of AM to fabricate soft robots, whether by 3D printing multiple soft parts and assemble them, or
manufacturing the complete soft robot as a whole part. Such advances in 3D printing techniques for soft materials
increased the ability to produce and test different designs of soft robots and optimize their morphological and

material parameters.

3.2. Actuation

The actuation of soft robots poses several challenges due to the large number of degrees of freedom resulting from
the large deformation of the soft materials that constitute them, making them underactuated systems that are
harder to control. In addition, most conventional robotics actuators, such as DC motors, are bulky and rigid, which
contradicts the main reason for developing soft robots with high compliance. Nonetheless, some soft robots use
servo motors and gear pumps for fluidic actuation, while others use more unconventional actuators such as smart

actuators, chemical reactions, and stiffness modulation 22,

One common actuation method is the use of tendon wires that are anchored at several points in the body of the
soft material. These cables are driven by applying tension to them using electric motors such as servos, causing
the connected soft material to deform, resulting in different motions or shape changes of the soft body. One
example is the bioinspired octopus’s arm “9 made of silicone that is driven using cables. It can perform crawling
motion and grasping similar to actual octopus tentacles. The use of traditional motors provides a large actuation
force, especially in underwater applications where a powerful enough thrust is needed for locomotion. The shape

deformation can be approximately determined through the displacement of the anchoring points of the cables.

Fluidic Elastomer Actuators (FEAs) is another type of soft actuators that rely mainly on fluid pressure 1. The
actuators are made from hyperelastic materials with embedded channels that expand due to the applied pressure.
One of the early implementations is the Pneumatic Artificial Muscles (PAMs), most notably the McKibben artificial
muscle actuator #2431 which is made from a flexible elastomer tube constrained by a reinforced fiber to limit its
extension but allow it to expand when pressurized, providing considerable force. Other types of fluidic elastomers
use various means of pressurization, including pneumatic sources using compressed air 4445 pressurized gas
such as CO, 48l47148] or chemical pressure generation 4239 as well as hydraulic sources BUB2IB3] The multigait
crawling robot 241481 has pneumatic actuators with a Pneu-Net (PN) architecture. The PNs are composed of a

series of extensible chambers that inflate when pressurized and an inextensible layer that constrains the expansion
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of the chambers, causing the elastomer to bend. The geometrical parameters of the chambers and the constraining
layer guide the deformation of the elastomer, affecting its bending and twisting motion. Underwater applications
using fluidic elastomers include a biomimetic autonomous fish with a bidirectional pneumatic elastomer 48, an
extended version of the former fish using a hydraulically pressurized elastomer instead 22, and an underwater
crawling robot having bellow fluidic actuators as legs 3. The completely soft Octobot B9 relies on totally soft
microfluidic logic to control gas generation through chemical fuel decomposition, causing actuation. The use of
fluidic actuators is advantageous for obtaining high material deformation and the ability to arrange actuators in an
agonist-antagonist form, similar to muscle pairs. However, they are slow and have delayed response, and their

pressurization units can be hard to embed inside soft robots.

Another actuation approach is the use of different types of smart materials. Smart materials are distinct in their
response to external thermal or electric stimuli, causing deformation or stiffness change to the material.
Electroactive polymers (EAPS) use electric stimuli to deform. Dielectric elastomer actuators (DEAS) are a type of
EAPs that comprise two compliant electrodes that are compressed when high voltage is applied to them (4],
Compression force can be used to induce motion B2IB8, Another type of EAPs used for soft robots’ actuation is
ionic polymer metal composite (IPMC). It is composed of Nafion polymer and electrodes. Applying voltage to the
electrodes causes the polymer to deform due to the ionization process and the motion of ions between the two
electrodes BZB8IEA Shape memory alloys (SMAs) are smart materials that react to heat stimuli. When applying
high temperature to the SMA, it deforms into a certain shape and is restored to its original shape after heat is
removed. The heat is usually provided through electrical heating using high voltage. SMAs are used as actuators in

soft robotics, as they can be embedded to drive a soft material such as polydimethylsiloxane (PDMS) [6261],

The use of smart actuators is prominent in underwater robotics 82 due to the favorable operating conditions for
smart materials in water. In addition, smart materials can be directly embedded within the elastically deformable
body of the robots, making them a good option for biomimetic applications. For example, biomimicry of jellyfish was
implemented using DEAs B8 and using SMAs in the case of Robojelly 83, Manta ray biomimetic robots were
actuated using IPMCs 7 as well as SMAs 4. A biomimetic crawling starfish used actuated legs made from
embedded SMA wires cast in PDMS 89, Another group developed a soft robotic arm inspired by octopus tentacles
using cables and SMA springs 81, The SMA springs help mimic the muscular hydrostat of the octopus’s arm by
providing transversal contraction. Smart actuators provide an advantage in terms of their compact size and weight,
and high actuation biomimicry resembling real fish swimming modes. However, they require high-voltage sources
and are hard to control. The various soft robotic platforms are shown in Table 1, classifying their biomimetic

inspiration, actuation types, swimming modes, and level of compliance.

Table 1. Classification of various underwater soft robotic systems.

Reference Robot Biomimicry Actuation Swimming Compliance
[26] Multl.-Jomt Carar?glform Electric Actuators BCE Undulation Medium
Fish Fish (Servomotors)
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soft/ftstahso O fecappotash iobetsisgd.dVthNDds. M@k tieavorkGIweope of an SPA with a variable inclination

angle 1941 Another group used FEM-generated training data to learn the kinematic model of a 3D motion SPA

36. Ma, P; Du, IL-Zhang, J.Z.; Wu,’K.; Spielberg, A.; Katzschmann, R.K.; Matusik, W. DiffAqua: A

using an FNN 199 ‘Ap N .used sensory data from cPDMS resistive sensors and a load cell to predict the
ifferentiable Computational Design Pipeline for S?lfg_z}Jnderwater Swimmers with Shape

deformation and force, models of a soft (S)neumatic finger . A reservoir computing approach with the ESN
Interpolation. arXiv 2021, arXiv:2104.00837. .
architecture was used to model the 2D motion of a bioinspired turtle actuated through soft pneumatic flippers 28,

37. Walker, S.; Yirmibesoglu, O.; Daalkhaijav, U.; Mengug, Y. Additive manufacturing of soft robots. In
LedRohptieBysterhsicuns Alsonuoned S kefsnerssEigevidearingtdndagiindhis Neidrs| e dof2@boigOne
apBe&=-h3’H9olved using a nonlinear autoregressive exogenous (NARX) model to develop a dynamic model for a

soft manipulator, which was used to implement a task space controller 293 A deep neural network (DNN% model
38. Stano, G.; Percoco, G. Additive _manufacturmg aimed to soft robots fabrication: A review. Extrem.
learned the non-linear dynamics for a single degree of freedom inflatable pneumatic robot. The model was used to

~ Mech. Lett. 2021, 42, 101079. _
implement a model predictive control (MPC) algorithm for pressure control [£08],

39. Coyle, S.; Majidi, C.; LeDuc, P.; Hsia, K.J. Bio-inspired soft robotics: Material selection, actuation,
3.4,3QBtr@l. Extrem. Mech. Lett. 2018, 22, 51-59.
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AQo@adistt, dft hotelldeMblohet sy Mazdiotaisddd blgehaere8 areasshl, t€.¢ddvatop, hémnatictapdstynamic
coriiginspiredes chitiplex Gystevesmn enidahbastaingonteadlensfoslg aft rolodéss Blodvsgir&tvon Biaipical RKiodhate
mefd88@Ach as PCC, whereas model-free controllers use data-driven techniques . Different control algorithms

PSRBT R, 1§48 "RASRNERSh, BB B2 BLfSREIR Bt AR
ISR, P R08R RS, 1R RoBBRT B LS RETElS P ALIEIRE S RRRls RSB e el mvolves
advanced tr%j[ector andrPath planni %for tasks SLiCh obsiaﬁlle avoidance. . . .

manufa urlnél, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater.

2017, 19, 1700016. , . : .
The ma|7n task of soft ro%ots’ controllers is to manage the whole-body deformation of the robot; it may also include

4én@bitng @1 exdanpedoicoh BnhdVieestrion eritaanenmedediog iof tMckabbear gofeuraaitiolariici@henasplesch

uselE bfetams cRatwttoAatenit AR puE2oQIBL Ohe implemented open-loop dynamic controller uses a data-
. . . . . _ . [&] .

AN e, DTS antr 2ohtor DI MAKIBBE P a RS Misdie robdfSclatsies IERe the

geo&)ertﬁirco I)é )(/eéf"}c'{/l%%a.\radB(éﬁ)r%Ov’viihsggtgrque control algorithm. A different approach uses an energy-shaping

approach to develop the control law for a soft continuum manipulator 199 MPC is another technique that was
4ebFRNRIGnR Eontls \iiarGe- SRS, S8k MR LBIATHRIRKERS Ay bYiiMIaERE9 o) B P EQGRedbt M¥ABSIde a
kindthai hiteraiclesafariMoMHitigaitssat FrRAt:5FO& Al AtadnaChrebrti0adapt08 ARFAAVEEIRS: was

ASYBRIAESAtS B R PABIDMSRE! RNASHANRE FSbustiesHoradghiarRe @B CPsesdroRrgntrol methods
have3{8in BB eI HEQIHARARS o5 RSO Re iRl Alis Tty BRsS - BT oceedings of the 2014 IEEE

International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May—7 June
Ona@{&h%énc?iéaéo_ralfg‘@ approaches for model-free control in the robotics field, in general, is reinforcement

learning (RL), which has been proven successful for soft robots 23, RL can be described as an iterative learning

48 odedevivichagt TgennenkerdReResh, s @allowarkis \dBs&rvedVeRdRORa odse WhiiRSIdaa G 98w M
fun@isastignbruBtethakeAsafd aheliRPi &R 2hdiskenvironment. When the agent lears a policy to map

APAREF R SR U PR T BENRIR 1B S RSt dRtaFRB P I RISTRNE FRABNIBRRRE PRediché
modRl Rl ioTy HAM EnkBRYBelNeIdeh O HaTRARBIR AT AFTEISPANRS (R MR MEATA FERTE A SigR
theB@Yﬂﬂﬂ@‘i‘ﬁfglb@r@?@é?ﬁ?%ﬁ%Oﬁ%?rbﬁ.hﬁ‘ﬂHSiﬂ. several experimental examples. DRL methods are now

integrated with soft robots in various applications such as biomedical and edible robotics. Some research focused
48 MRS G ARG Ao, ThiaioRomey TSP Lo RRUG R GRRARYE ST RIGARS DRIeAhA Ba
Oth%?iggrmr%%iCa%'cz)irﬁh%ngez{rg G gggoégfersn(w)iﬁils%i%bp%tlic%oél'rg{di]éht7 al)_glzG), normalized advantage function (NAF),
4@ pdVa@dye Glatamcxtic WAREiddsywa/n.; RelleDs Sufsendbite tbeotifariehass-wangerhghsicaimulation
enviEssets gdreseatientdppRobetitcsiiRdsazt che Spainyetd BoxintiHedt|boeguseeomaeneraver agyersarial
netyRE—BABN) is a suggested solution to help perform domain adaptation and narrow the gap between the
simulatjon and real-world environments. Imitation learning is also beneficial when it is difficult to formulate a reward
50. Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood,
function to train a DRL model. The imitation learning algorithims use demonstrations constructed by an expert agent

R.J. An integrated design and tabrication strategy for entirely soft, autonomous robots. Nature

I
that_are_transferred to the soft robot. The most common imitation I)(/aarning approaches are behavior cloning,
- 2016, 536, 451-455. _ o _ _ o

inverse reinforcement learning, and generative adversarial imitation learning. The future scope is the combination

Sdf. omizasdnamorbelte P R Maile aAd, iDasaokItleB-hingRiGeithrkey (i® dhditandie: aett adndarheeltrabedia
betté@\dgehtsINdn eredliniesPhteerOtifidERhRIRRIdMieinaben alikrrieaneemh lataliganbiRebatscni
elaSysie&MBE)IRREMbRaEEDNTKOFBBoOuded QitedesmOdtleRmimP 48 pad¥ide the actuation. To simplify the
problem, only two actions are considered, with only two voltage amplitudes: 0 and 6.8 kV. The robot is trained

through trial-and-error interaction with its environment in order to find an optimal policy to maximize its reward
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T e e R O A Mot U
. Lett. ﬁ019, 4. 4163-41609. _ _ 114 .
ignores "the ‘specific properfies of the materials and the structural characteristics of the robot 2141 concentrating

5dhiyzarothé geamétridingdél, lnbdindy, sSimBléieewoibielec iask|astmhee chaitiaions amaehinitifypRlicatiocnmck
of ancBeifteRobatgoisdier lshélkoByst. ROAerdora0@NRGRoblem, researchers performed the training process on

SRS PYIR188 % YN AR AL Y62 ARG R PSR B HRRIP AR S et i dpe
B AT S a e S PR EiR A B HER 818, 9 Taigg atons for
the robot's states and actions, and the training process to search for accurate results in the problem space. The

ShysiRaistiaRGRRe GseBaYaBufps ldnPvalRdheVachic@hd addhRRnthedded: ahB!igeMAE dplixtistk motion
capfeP ke SRTFARQIA LN RAIM I dictR IR AR LiRIcit-0spRRICIIRROHR ARTIREIS oFEaRoRARAtLAd to

exetdiHB. 1d&fed RL policy: open-loop and closed-loop. The closed-loop method obtains the actual robot state

SO HESPSNAS e MBYH SRR Hne BRIt Sutiomuhis fajhs ARerdaasymsHeh dignihetmstale
is obGHAG ISR TRIRMIAGE RESMALO O8RS N Eano Mater. 2012, 3, 296-308.
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5809, 77 HEEYPPreRgsRd 21 SRR (S A8 PEBRHON sfh hoPRMEA%Y 3 IKpACIBREH ol Afle aerBiaic
HapdjipphosHepfRIENAREOINKNICN AEERMRIEE A AlSPN2b 11k Qass0ispg simplest methods to implement LD

is kinesthetic teaching, which is achieved by directly recording demonstrations on the target robot to collect the

6[())ds‘|1ti|8h |;;I|I’i o?%gta%o;npﬁ!izﬁg (()%'ih'\e/zl%cr)\d%ﬁec ionrf ﬁi.él‘pwdb%ﬁl‘o?vﬁlsﬁg; Igggghé]ﬂéa\gé%ﬁflinsghvw %%R?gggsogrises
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conga%%'czzomrol to record the demonstrations during kinesthetic teaching, then encoded the recorded data with a
6iask-pasuieCizadiSacheti) Wixteamaolel (B2 : Ghavigheri, L.; Follador, M.; Dario, P. Soft robot arm

inspired by the octopus. Adv. Robot. 2012, 26, 709-727.
A similar approach was used with the soft cylindrical robot arm STIFF-FLOP 181 However, the researchers

B ok oMY Enstefifidtnk 0BGt HattblA0 oMVt b6 e tdIRY e KpMR oEi8Hs Tl 5il@ments
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(GMR) for encoding, and applied a self-refinement algorithm with a weighted reward function according to different
64. Wang, Z.; Wang, Y.; Li, J.; Hang, G. A micro biomimetic manta ray robot fish actuated by SMA. In

tasks.
Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO),

Fol OVWHS ’aC hsllrr]nalra%'gt_hggg te%‘?&gs‘?sr %goi%igﬁo% 8I%gﬁwjrr§g],'33 trending new paradigm called morphological
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