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Underwater exploration, much like space exploration, has been at the frontier of science and engineering ventures.

Some of the early robotic systems sent by humans to explore marine life are known as remotely operated vehicles

(ROVs).  ROVs are underwater robots, manually operated by a pilot, using tethered communication. Soft robots

made from compliant materials can achieve shrinking and bending motion that allow them to navigate within

narrow areas. The ability of soft robots to deform, change their shapes, exhibit infinite degrees of freedom, and

perform complex motion, makes them a suitable candidate for the basis of biological emulation, especially that of

underwater creatures, which are one of the sources of biomimetic inspiration for robotic and engineering systems.

Soft Robotics  Underwater Robots  Design  Modeling  Control

Reinforcement Learning

1. Introduction

Underwater exploration, much like space exploration, has been at the frontier of science and engineering ventures.

As with the many Mars missions, where rovers and mobile robots are deployed instead of humans, deep

underwater missions are mostly carried out using underwater robots. However, to this day, delving deep within the

oceans of our planet still poses many challenges for these robotic systems. Some of the early robotic systems sent

by humans to explore marine life are known as remotely operated vehicles (ROVs) . ROVs are underwater

robots, manually operated by a pilot, using tethered communication. They mainly have a rigid body hull and are

actuated using electric thrusters. Autonomous underwater vehicles (AUVs) are similar to ROVs but differ in that

they are untethered and do not require a pilot or an operator, as they are programmed to autonomously perform

specific tasks. Both ROVs and AUVs vary in size, depending on the type of tasks they are manufactured to

perform.

These underwater robotic systems are used to execute a wide range of underwater applications such as

maintenance and monitoring applications. Such applications include underwater pipe inspection, offshore

infrastructure repairs, and condition monitoring. Biological applications include seabed and abyssal exploration,

sample gathering from marine environments such as coral reefs, and ecological aquatic phenomena monitoring

and data collection . More specifically, repairing and sampling tasks are carried out using underwater vehicle

manipulator systems (UVMSs). UVMSs are unmanned underwater vehicles (UUVs) such as ROVs and AUVs that

are equipped with different types of underwater manipulators that are suitable for the mentioned tasks . The

majority of manipulators used for underwater applications are actuated using hydraulic or electric systems. They
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can be used for the installation and maintenance 0f infrastructure such as pipes and cables , salvaging debris

and sunken objects, mineral exploration , and biological samples gathering .

2. Underwater Locomotion

Marine environments can seem extraterrestrial for humans at times. Hence, the study of the locomotion techniques

and the morphology of aquatic creatures is essential. These types of biological studies offer insights providing keys

toward the successful mimicry of these marine creatures. The aquatic environment plays a large role in defining the

types of underwater locomotion, as governed by the four main forces acting on bodies underwater : vertical

weight and buoyancy alongside hydrodynamic lift, and horizontal thrust and drag (Figure 1a). Fish are able to

generate lift and thrust in order to swim. They can achieve swimming using their fins or swimming propulsors

(Figure 1b). According to the motion of these fins, fish swimming methods can be classified into several

categories.

Figure 1. (a) The underwater forces acting on the fish during swimming. (b) Fish anatomy showing the different

fins fish use to swim and stabilize.

The two main categorizations of fish motion are based on which fins are performing the bending motion and the

frequency at which the fins move. In terms of the first category, fish use their body and/or caudal fin to generate

thrust (BCF). Examples include carangiform and anguilliform such as tuna and eel. Other types of fish use their

median and/or paired fins (MPF). Examples include rajiform and labriform such as batoids. The frequency of

movement of the fish’s body and fins indicates whether the motion is undulatory or oscillatory. During undulatory

motion, the fish’s body performs a wave-shaped pattern, whereas oscillatory swimming uses only swivel-like

motion.

Additional underwater locomotion modes fall outside the previous categorizations . One example is the jet

propulsion performed by jellyfish, octopus, and squid. Drag-induced swimming is exhibited by turtles as they

generate thrust by moving their flippers in the opposing direction of motion. Friction-based crawling is performed by

crustaceans, and echinoderms such as starfish use adhesive-based crawling.
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In terms of assessing swimming performance, one of the most important metrics is the swimming speed of fish

and, in particular, the critical swimming speed (U ), which is commonly measured in centimeters per second

(cm/s) or body lengths per second (BL/s) . One of the main factors that affects fish swimming speed is the tail

beat frequency in Hertz (Hz). It relates to the fish’s velocity through the stride length, which is the distance traveled

by the fish per tail beat, expressed as ratio of the body length (L) . The Reynolds number (Re) and Strouhal

number (St) are also important factors to assess the hydrodynamic performance of the fish’s swimming. Several

robotic fish platforms inspired from actual fish morphology and swimming, such as tuna, use the same metrics to

assess their robots’ performance . Another important factor is to analyze the efficiency of fish

propulsion. However, it is hard to establish an accurate measure of propulsive efficiency for real biological fish. In

general, efficiency is defined as the ratio of useful output to total input. For a self-propelled body, the measure of

such work depends on the drag the body needs to overcome to move, which is hard to quantify as it differs with the

shape of the body, as well as the body-propulsor hydrodynamics [24]. It is also challenging to determine input

power in fish, which relates to muscle shaft power and the fish’s metabolism and oxygen (fuel) consumption [25]. A

common metric used to quantify the fitness of fish and their efficiency is the cost of transport (COT), defined as the

energy expended per traveled distance. The COT is a good indication of the fish’s swimming efficiency, and there

have been several attempts to define and normalize COT for fish propulsive efficiency [24,26,27,28].

3. Challenges and Potentials of Soft Robots

3.1. Design

3.1.1. Bioinspiration

Since its inception, the field of robotics has drawn inspiration from nature. The main aspect of nature imitation in

robotics is apparent in the design and structure of the robots’ bodies that aim to mimic biological systems. By

looking at the knowledge gained through biomechanics studies, living creatures with mobile abilities are mainly

classified into two groups based on their body structure: vertebrates and invertebrates. Vertebrates include fish,

mammals, birds, amphibians, and reptiles; invertebrates include crustaceans (crab, lobster), echinoderms (starfish,

sea urchin), coelenterates (jellyfish), arachnids, molluscs (octopus, squid), insects, and worms, among others .

The challenge of building robotic systems with motion capabilities similar to those of these creatures lies in their

body construction, which exhibits compliance ranging from only a few parts such as an elephant’s trunk or

mammals’ organs, to completely soft and deformable bodies in the case of some invertebrates such as jellyfish.

The main contributor to this compliance is the elastic nature of the building blocks of these bodies such as

muscles, tendons, skin, tissues, and cartilages, as they are known for having low Young’s modulus (less than one

gigapascal) .

Some attempts have been made to mimic some of these animals using hard materials. However, due to the limited

degrees of freedom offered by conventional rigid robots compared to the infinite degrees and redundancy of soft

bodies, different structures with continuum deformations had to be implemented. In contrast to conventional non-

crit
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redundant rigid robots, discrete hyper-redundant and hard continuum robots offer large to infinite degrees of

freedom, which brings them closer to mimicking vertebrates’ motion . Common examples include tendon-

driven continuum manipulators . One of the first underwater robots to employ a structure of discrete

multiple rigid-link sections actuated by tendons is the RoboTuna robotic fish ; The VCUUV prototype, inspired by

RoboTuna, uses hydraulic actuation to drive an articulated tail . Other serial multi-joint biomimetic fish robots

have been developed to imitate carangiform swimming .

Despite providing more degrees of freedom than rigid robots, hard continuum robots still lack the shape

adaptability offered by soft robots, which would help bring robots closer to their bioinspired creatures. The

Compliant Robotic Tuna (CRT)  is an example of a biomimetic fish robot having a servo-actuated compliant

body and tail and is able to perform swimming maneuvers. The Soft Robotic Fish (SoFi)  is a marine exploration

robot capable of 3D swimming that imitates fish motion. It is driven by a soft fluidic actuator and has a buoyancy

control unit for depth adjustment. Other marine creatures such as batoids were also mimicked, as in the case of the

stingray robot with a soft silicone outer body and pectoral fins .

3.1.2. Design Optimization

Even when taking inspiration from nature, designing soft robots with the desired mechanical behaviors that allow

them to perform specific tasks presents another challenge. The complexity of such robotic systems, due to their

unconventional components from materials to actuation, makes it hard to use currently known design and

simulation tools to build soft robots . Optimization techniques have been proposed to help automate the

design process, and bridge the gap between simulation, fabrication, and the actual performance of soft robots. The

general optimization framework can be summarized as choosing the design behavior to be optimized, such as

crawling or grasping; identifying the design variables to be optimized, such as the material and the actuation; and

defining the constraints of the system. The optimization process iteratively evaluates the design candidates using

analysis tools and searches for the optimal design.

One approach uses evolutionary optimization algorithms to automate the design and manufacturing of freeform soft

robots. This approach uses voxel-based dynamic simulation to evaluate the morphology and locomotion of the

robot . Voxels are soft cubic blocks with specific parameters, such as stiffness and Poisson’s ratio, that undergo

volumetric change when forces are applied to them. Another voxel-based method aims to optimize the morphology

to achieve adaptability using the property of criticality, which allows the robot to perform more diverse tasks .

Another conceptual design approach provides a spatial grammar to build soft robots and optimize their design for

locomotion and actuation . The spatial grammar generates sub-assemblies of interconnected balls based on a

set of defined rules. The generated models are then evaluated and optimized in terms of locomotion abilities.

Performing design optimization for underwater soft robots is an even more challenging problem, as the effect of the

environment on the robot’s morphology needs to be taken into account. DiffAqua , a computational design

pipeline, relies on differentiable simulation to perform gradient-based optimization for the geometry and control of
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soft underwater swimmers. The benefits of exploiting the morphology of soft robots and optimizing it to simplify the

control are further discussed in the upcoming modeling and control sections.

Fabricating and assessing these designs are also challenging processes due to the traditional manufacturing

methods being unsuitable for these unconventional soft materials. Additive manufacturing (AM) is one of the

impactful technologies that helped enable this process . One approach is to use AM to only fabricate the mold

that would be used to pour the soft material in them. A more hybrid approach takes advantage of AM techniques,

such as the fused filament fabrication (FFF) method, in addition to molding techniques to fabricate and assemble

complex soft robotic systems. The third approach is the total additive manufacturing (TAM) approach. It exploits all

the benefits of AM to fabricate soft robots, whether by 3D printing multiple soft parts and assemble them, or

manufacturing the complete soft robot as a whole part. Such advances in 3D printing techniques for soft materials

increased the ability to produce and test different designs of soft robots and optimize their morphological and

material parameters.

3.2. Actuation

The actuation of soft robots poses several challenges due to the large number of degrees of freedom resulting from

the large deformation of the soft materials that constitute them, making them underactuated systems that are

harder to control. In addition, most conventional robotics actuators, such as DC motors, are bulky and rigid, which

contradicts the main reason for developing soft robots with high compliance. Nonetheless, some soft robots use

servo motors and gear pumps for fluidic actuation, while others use more unconventional actuators such as smart

actuators, chemical reactions, and stiffness modulation .

One common actuation method is the use of tendon wires that are anchored at several points in the body of the

soft material. These cables are driven by applying tension to them using electric motors such as servos, causing

the connected soft material to deform, resulting in different motions or shape changes of the soft body. One

example is the bioinspired octopus’s arm  made of silicone that is driven using cables. It can perform crawling

motion and grasping similar to actual octopus tentacles. The use of traditional motors provides a large actuation

force, especially in underwater applications where a powerful enough thrust is needed for locomotion. The shape

deformation can be approximately determined through the displacement of the anchoring points of the cables.

Fluidic Elastomer Actuators (FEAs) is another type of soft actuators that rely mainly on fluid pressure . The

actuators are made from hyperelastic materials with embedded channels that expand due to the applied pressure.

One of the early implementations is the Pneumatic Artificial Muscles (PAMs), most notably the McKibben artificial

muscle actuator , which is made from a flexible elastomer tube constrained by a reinforced fiber to limit its

extension but allow it to expand when pressurized, providing considerable force. Other types of fluidic elastomers

use various means of pressurization, including pneumatic sources using compressed air , pressurized gas

such as CO  , or chemical pressure generation , as well as hydraulic sources . The multigait

crawling robot  has pneumatic actuators with a Pneu-Net (PN) architecture. The PNs are composed of a

series of extensible chambers that inflate when pressurized and an inextensible layer that constrains the expansion
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of the chambers, causing the elastomer to bend. The geometrical parameters of the chambers and the constraining

layer guide the deformation of the elastomer, affecting its bending and twisting motion. Underwater applications

using fluidic elastomers include a biomimetic autonomous fish with a bidirectional pneumatic elastomer , an

extended version of the former fish using a hydraulically pressurized elastomer instead , and an underwater

crawling robot having bellow fluidic actuators as legs . The completely soft Octobot  relies on totally soft

microfluidic logic to control gas generation through chemical fuel decomposition, causing actuation. The use of

fluidic actuators is advantageous for obtaining high material deformation and the ability to arrange actuators in an

agonist-antagonist form, similar to muscle pairs. However, they are slow and have delayed response, and their

pressurization units can be hard to embed inside soft robots.

Another actuation approach is the use of different types of smart materials. Smart materials are distinct in their

response to external thermal or electric stimuli, causing deformation or stiffness change to the material.

Electroactive polymers (EAPs) use electric stimuli to deform. Dielectric elastomer actuators (DEAs) are a type of

EAPs that comprise two compliant electrodes that are compressed when high voltage is applied to them .

Compression force can be used to induce motion . Another type of EAPs used for soft robots’ actuation is

ionic polymer metal composite (IPMC). It is composed of Nafion polymer and electrodes. Applying voltage to the

electrodes causes the polymer to deform due to the ionization process and the motion of ions between the two

electrodes . Shape memory alloys (SMAs) are smart materials that react to heat stimuli. When applying

high temperature to the SMA, it deforms into a certain shape and is restored to its original shape after heat is

removed. The heat is usually provided through electrical heating using high voltage. SMAs are used as actuators in

soft robotics, as they can be embedded to drive a soft material such as polydimethylsiloxane (PDMS) .

The use of smart actuators is prominent in underwater robotics  due to the favorable operating conditions for

smart materials in water. In addition, smart materials can be directly embedded within the elastically deformable

body of the robots, making them a good option for biomimetic applications. For example, biomimicry of jellyfish was

implemented using DEAs  and using SMAs in the case of Robojelly . Manta ray biomimetic robots were

actuated using IPMCs  as well as SMAs . A biomimetic crawling starfish used actuated legs made from

embedded SMA wires cast in PDMS . Another group developed a soft robotic arm inspired by octopus tentacles

using cables and SMA springs . The SMA springs help mimic the muscular hydrostat of the octopus’s arm by

providing transversal contraction. Smart actuators provide an advantage in terms of their compact size and weight,

and high actuation biomimicry resembling real fish swimming modes. However, they require high-voltage sources

and are hard to control. The various soft robotic platforms are shown in Table 1, classifying their biomimetic

inspiration, actuation types, swimming modes, and level of compliance.

Table 1. Classification of various underwater soft robotic systems.
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Reference Robot Biomimicry Actuation Swimming Compliance

Multi-Joint
Fish

Carangiform
Fish

Electric Actuators
(Servomotors)

BCF Undulation Medium[26]
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Reference Robot Biomimicry Actuation Swimming Compliance

Biomimetic
Fish

Fish IPMC
BCF/MPF
Oscillation

Medium

SoFi Fish
FEA

(Pneumatic/Hydraulic)
BCF Undulation High

Stingray
Robot

Stingray
Electric Actuators

(Servomotors)
MPF Undulation Medium

Octopus Arm Octopus Motor-driven Cables Crawling High

Octopus Arm Octopus
Motor-Driven

Cables/SMA Springs
- High

Octopus
Robot

Octopus
Motor-Driven
Cables/SMA

Crawling Medium

Cuttlefish
Robot

Cuttlefish DEA Jet Propulsion Medium

Robojelly Jellyfish SMA Propulsion High

Octobot Octopus
FEA (Chemical

Reaction)
- High

Morphing
Underwater

Walking
Robot

- FEA (Hydraulic) Walking/Crawling Medium

Jellyfish-
Inspired Soft

Robot
Jellyfish DEA Propulsion High

Robotic
Manta Ray

Manta Ray IPMC MPF Undulation Medium

Micro
Biomimetic
Manta Ray

Manta Ray SMA MPF Undulation Medium

Starfish
Robot

Starfish SMA Wires Propulsion High

Starfish-Like
Soft Robot

Starfish SMA Crawling High

RoboScallop Scallop FEA Jet Propulsion Medium

Eel-like Leptocephalus Fluid Electrode DEA BCF Undulation High
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3.3. Modeling

The modeling and control phase is the most challenging part of building functional soft robotic systems capable of

performing complex tasks and intelligently interacting with their own environment. All the well-established modeling

techniques for rigid robots cannot be applied to soft robots due to their continuum property and their complex non-

linear dynamics inherent from their elastic behavior. As conventional kinematic and dynamic modeling methods are

inapplicable, new approaches for modeling and control of soft robots are being developed (Figure 2).
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Figure 2. An overview of the different modeling and control techniques used in soft robotics.

These modeling approaches can be separated into two main categories: model-based approaches and model-free

data-driven methods. While the former relies on formulating either an exactly accurate or a simplified approximate

model of a soft robot, the latter tries to implicitly learn the behavior of the robot using input and output data

collected directly from the actual system.

The main goal of the modeling process is to map the soft robot’s actuation space to the configuration or task

space. Since continuum soft robots are infinite-dimensional systems, formulating such models becomes highly

difficult. Instead, the modeling methods rely on approximations and assumptions to reduce the system to a finite-

dimensional one. The most commonly used simplification for kinematic modeling is the constant curvature (CC)

method . It assumes that the soft robot has constant strain along its whole length . The piecewise constant

curvature (PCC) method is an extended version of the CC that assumes the strain to be piecewise constant, with

each segment of the soft structure having a constant strain . A further extension is the variable curvature (VC)

, which models each section as a CC. The PCC approximation is mainly valid for cable-driven soft

manipulators. However, it cannot capture all the complex dynamics of soft structures, as it is a steady-state model.
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Numerical techniques have also been used for modeling soft robots. The Cosserat rod theory is one of these

numerical methods , accurately representing the tension, shearing, bending, and torsion of rods. A different

numerical approach for modeling soft robots is the finite element method (FEM), which yields more accurate results

but at the cost of high computational requirements . The method relies on discretizing the structure into a large

number of nodes, called mesh, and iteratively solving the differential equations governing the behavior of these

nodes, until the model converges. However, the use of FEM for real-time control is difficult, so control approaches

based on real-time FEM have been proposed . An approach combining kinematic modeling using PCC

and Denavit–Hartenberg (DH) parameters with FEM analysis was also used to model a soft pneumatic actuator

(SPA) . The problem with the FEM is the high dimensional space of the obtained model. A common solution is to

reduce the domain of the model in order to achieve high computational efficiency, without sacrificing accuracy 

. The reduced-order model can help with the development of low-order controllers and observers based on a

linearized model of the system . One group developed a dynamic simulation tool for articulated soft robots

based on numerical simulation methods for slender structures . Another method uses genetic algorithms for

dynamic parameters estimation of an octopus-inspired robot .

Controllers developed from the static kinematic models obtained using the described methods are considered

static controllers that discard the underlying dynamics of the system. Developing high-order dynamic models for

soft robots is difficult and computationally expensive for controllers. A first-order dynamic modeling approach is

proposed to reduce the computational space without affecting the controller’s performance .

The model-free methods for modeling soft robots mainly use data-driven machine learning and deep learning

techniques to find a mapping between the inputs and outputs of the soft system . Input actuation signals and

robot states can be obtained by sensors, either embedded or external visual tracking sensors. The data can then

be used with different supervised learning, unsupervised learning, and reinforcement learning techniques to

develop models and controllers for soft robots. Examples of commonly used techniques include feedforward neural

network (FNN) , recurrent neural network (RNN) , convolutional neural network (CNN) , and

echo state network (ESN) , based on the reservoir computing framework. FNNs are widely used for modeling

soft systems. One approach is the use of an FNN to model the work envelope of an SPA with a variable inclination

angle . Another group used FEM-generated training data to learn the kinematic model of a 3D motion SPA

using an FNN . An RNN used sensory data from cPDMS resistive sensors and a load cell to predict the

deformation and force models of a soft pneumatic finger . A reservoir computing approach with the ESN

architecture was used to model the 2D motion of a bioinspired turtle actuated through soft pneumatic flippers .

Learning-based techniques also proved to be successful in learning the dynamic models of soft robots. One

approach involved using a nonlinear autoregressive exogenous (NARX) model to develop a dynamic model for a

soft manipulator, which was used to implement a task space controller . A deep neural network (DNN) model

learned the non-linear dynamics for a single degree of freedom inflatable pneumatic robot. The model was used to

implement a model predictive control (MPC) algorithm for pressure control .
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Models of soft robots developed using the discussed approaches are used to develop kinematic and dynamic

control for these complex systems. Model-based controllers rely on models obtained from analytical kinematic

methods such as PCC, whereas model-free controllers use data-driven techniques . Different control algorithms

are used, depending on the level at which the controller operates. Low-level controllers drive the actuators,

whereas mid-level ones are responsible for the kinematic and dynamic control, and high-level control involves

advanced trajectory and path planning for tasks such as obstacle avoidance.

The main task of soft robots’ controllers is to manage the whole-body deformation of the robot; it may also include

controlling the exact position and orientation of an end effector in the case of soft manipulators. One approach

uses open-loop control for a soft manipulator . The implemented open-loop dynamic controller uses a data-

driven model with only mechanical feedback. The swimming eel-like robot  was modeled using the

geometrically exact beam theory with a torque control algorithm. A different approach uses an energy-shaping

approach to develop the control law for a soft continuum manipulator . MPC is another technique that was

employed for the control of large-scale soft robots . The MPC algorithm relies on a PCC model alongside a

kinematic representation for efficient state prediction. A model reference predictive adaptive control (MRPAC) was

also implemented on the same model and showed robustness to model uncertainties. Closed-loop control methods

have also been demonstrated for the position control of soft robots .

One of the most promising approaches for model-free control in the robotics field, in general, is reinforcement

learning (RL), which has been proven successful for soft robots . RL can be described as an iterative learning

process where the agent takes an action, its new state is observed, and a response in the form of a reward

function is given to it based on the resulting interaction with its environment. When the agent learns a policy to map

appropriate state-action pairs, then the learning is successful. RL can be implemented regardless of whether a

model of the system is known. The use of deep reinforcement learning (DRL) and imitation learning algorithms in

the development of soft robots has been shown in several experimental examples. DRL methods are now

integrated with soft robots in various applications such as biomedical and edible robotics. Some research focused

on the deep Q-network (DQN) algorithm, which was used in a soft robotic fish used for underwater exploration .

Other common algorithms are deep deterministic policy gradient (DDPG), normalized advantage function (NAF),

and advantage actor-critic (A2C). However, problems arise from the differences between the simulation

environments where the robots are trained and the real-world environment. The use of generative adversarial

network (GAN) is a suggested solution to help perform domain adaptation and narrow the gap between the

simulation and real-world environments. Imitation learning is also beneficial when it is difficult to formulate a reward

function to train a DRL model. The imitation learning algorithms use demonstrations constructed by an expert agent

that are transferred to the soft robot. The most common imitation learning approaches are behavior cloning,

inverse reinforcement learning, and generative adversarial imitation learning. The future scope is the combination

of both deep reinforcement learning and imitation learning algorithms to benefit from both approaches and train

better agents. One example is a soft artificial-muscle-driven robot mimicking cuttlefish actuated by a dielectric

elastomer (DE) membrane . The robot uses reinforcement learning to provide the actuation. To simplify the

problem, only two actions are considered, with only two voltage amplitudes: 0 and 6.8 kV. The robot is trained

through trial-and-error interaction with its environment in order to find an optimal policy to maximize its reward
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function, which is the displacement at each time step. The displacement is monitored using a camera and then fed

to the reinforcement learning algorithm.

Applying reinforcement learning with soft robots is a costly operation due to their non-linear hyperelastic properties.

To overcome this issue, the reinforcement learning approach used to control the Honeycomb Pneu-Nets Soft Robot

ignores the specific properties of the materials and the structural characteristics of the robot , concentrating

only on the geometric model, which simplifies the modeling task. Another challenge to implementing RL is the lack

of accurate simulators for soft robots. To overcome this problem, researchers performed the training process on

both the simulation as well as the physical hardware to obtain a more realistic control policy that works well with the

actual robot. The reinforcement learning framework consists of two parts: formulating the set of representations for

the robot’s states and actions, and the training process to search for accurate results in the problem space. The

physical hardware uses air pumps and valves to achieve the actuation needed and uses the OptiTrack motion

capture system for visual sensing to determine the actual state of the robot. Two methods of control were used to

execute the learned RL policy: open-loop and closed-loop. The closed-loop method obtains the actual robot state

from the sensor as the input to the trained control policy function, while in the open-loop method, the robot’s state

is obtained from the simulator, leading to some errors.

Despite providing a good solution in many cases, RL may be impractical to implement when the reward function

cannot be clearly defined. Imitation learning solves this issue by using demonstrations performed by an expert

agent. One group used imitation learning to perform motion control and trajectory planning for soft continuum

robots . They proposed the learning from demonstration (LfD) approach and implemented it on the Bionic

Handling Assistant (BHA) robot, which resembles an elephant trunk. One of the simplest methods to implement LfD

is kinesthetic teaching, which is achieved by directly recording demonstrations on the target robot to collect the

position and orientation data of the end effector. The problem of using kinesthetic teaching with soft robots arises

from the dynamic complexity of non-linear elasticity associated with these soft materials. They proposed an active

compliant control to record the demonstrations during kinesthetic teaching, then encoded the recorded data with a

task-parametrized Gaussian mixture model (TP-GMM).

A similar approach was used with the soft cylindrical robot arm STIFF-FLOP . However, the researchers

worked on transferring the movement patterns of an octopus arm to the STIFF-FLOP. The octopus arm movements

were obtained from a database of the cartesian position of several octopuses’ arms with an average of 100 points

along the arm. They exploited several methods for the representation of the octopus reaching motion to help

transfer the arm movements to the soft robot. They considered spatiotemporal representation and dynamical

movement primitives to allow for a more robust movement transfer. They then used Gaussian mixture regression

(GMR) for encoding, and applied a self-refinement algorithm with a weighted reward function according to different

tasks.

Following a similar thought process to imitation learning, a trending new paradigm called morphological

computation aims to learn from living creatures, but on the level of morphology instead of the locomotion level.

Morphological computation is a process related to embodied intelligence, where some of the computation needed
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for actuation and perception is conducted automatically by the body of the living creature instead of sending

sensory information to the brain and waiting for a control signal . Morphological computation can be exploited in

the context of soft robots to offload some of the control to the body. This process is possible owing to the adaptable

compliance exhibited by soft materials, which act as a reservoir computer that can process inputs from its

environment and take appropriate actions.

A morphological computation framework with a mathematical realization was proposed using a reservoir of

recurrent non-linear mass-spring systems, which is a model for actual physical soft bodies . The model

demonstrated the ability to learn the end-effector trajectory of a robotic arm. The group also showed that adding

feedback to the morphological computation system allows it to perform autonomous periodic patterns such as the

ones responsible for locomotion .
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