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RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood

regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were

found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists

of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs

(siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering

the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex.

Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi

due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher

eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved

adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell

activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development,

drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous

diversity this kingdom comprises. 
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1. Introduction

RNA interference (RNAi) or RNA silencing has been deeply studied in the last two decades, as its discovery

entailed a revolution in the understanding of the regulation of gene expression. This RNAi pathway, broadly

conserved in eukaryotes, uses small interfering RNAs (siRNAs) to suppress gene expression of homologous

sequences. These siRNAs, of 20–30 nucleotides (nt) long, are produced from double-stranded RNA (dsRNA) by an

RNase III called Dicer (Dcr) and loaded into an RNA-induced silencing complex (RISC), which contains an

Argonaute protein (Ago) that drives the selective degradation of homologous messenger RNAs (mRNA), as well as

translational or transcriptional repression of target sequences. Moreover, in fungi and other organisms, an RNA-

dependent RNA polymerase (Rdp or RdRP) generates dsRNA from certain single-stranded RNA (ssRNA) or from

the target messenger RNA, activating or amplifying the silencing response, respectively .

Fungi have proven to be excellent model organisms for the study of the RNAi pathway, since many of the

discoveries accomplished in these organisms were later extended to higher eukaryotes. In fact, one of the first

RNA silencing phenomena reported was found in Neurospora crassa, which is an essential model organism to

study modern genetics. N. crassa has developed different RNAi mechanisms, but the two that were originally found

are the best described. The first is called quelling, a post-transcriptional gene silencing (PTGS) guided by
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siRNAs , which suppresses transposons and virus infections . Quelling is triggered by the introduction of

transgenes homologous to an endogenous gene. After the transgene is transcribed, it follows a canonical pathway

to activate silencing, carried out by an Rdp protein (QDE-1), two Dicer-like proteins (Dcl1 or Dcl2), and an

Argonaute (QDE-2). The second mechanism is called meiotic silencing of unpaired DNA (MSUD) and is involved in

silencing genes that are not paired with their partner on the homologous chromosome during meiosis . This

mechanism is present not only in N. crassa but also in other ascomycetes, such as Gibberella zeae, and operates

during prophase I . Some of the elements involved in the canonical RNAi pathway, such as Dcl1, are necessary

for this other mechanism, as well as a MSUD-specific Rdp (SAD-1), a second Argonaute (SMS-2), and the helicase

SAD-3. These proteins form a multiprotein complex located at the perinuclear region that acts generating MSUD-

associated siRNAs (masiRNAs) . After these first discoveries in N. crassa, the RNAi mechanism was found in

several other fungi, such as Schizosaccharomyces pombe , Cryptococcus , or Mucor .

When RNAi was discovered, it was thought to be a defense system against exogenous and potentially harmful

DNA, including transposons, virus, and transgenes. However, very soon, its involvement in other cellular functions,

such as genome integrity or gene regulation, was found. Recent studies in fungal pathogens stated that the RNAi

pathway is also implicated in development, drug tolerance, and virulence. Thus, fungi have exploited RNAi to tune

their cellular processes, reaching unsuspected limits.

2. Defense against Viruses

The first predicted function of RNAi as a defense against viral infections would explain the conservation of the

pathway through the evolution of eukaryotes, since viral infections affect every phylum on the tree of life. This

mechanism has been widely explored in the ascomycete filamentous fungus  Cryphonectria parasitica . In

Aspergillus nidulans RNAi also acts as a defense mechanism against virus .

3. Control of Transposable Elements

Transposable elements (TEs) are described as DNA sequences that have the ability to change their position within

a genome. Although TEs were initially considered junk DNA, they have been associated with several
important activities since their discovery, including centromere function, genome reorganization, and
gene expression regulation . TEs are also considered “selfish” DNA because they try to be
perpetuated whilst the host tries to curtail their spread and, thus, their consequences on genome
integrity. As a result, many organisms have developed mechanisms to ensure the control of TE
activity . Some of those mechanisms are well described in the literature and include DNA
methylation , histone methylation , and heterochromatin-inducing protein . Another mechanism
that controls TE spread, probably the most ancient of all mentioned, is RNAi. Small RNAs associated
with proteins can act at the transcriptional or post-transcriptional level against TE activity. The role of
RNAi in TE repression has been well characterized in the plant kingdom  and other organisms,
such as Drosophila melanogaster and Caenorhabditis elegans . Studies on the RNAi role in TE
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control in fungi, such as  Neurospora crassa , Schizosaccharomyces pombe ,  Magnaporthe
oryzae , Mucor lusitanicus , or  Cryptococcus neoformans   have served to further
understand these mechanisms.

4. Regulation of Endogenous Genes

As described above, the development of RNAi mechanisms represents an evolutive advantage regarding the

defense against exogenous nucleic acids. However, specialization of those RNAi mechanisms has led to the

establishment of novel post-transcriptional regulation networks of endogenous genes according to the use of Rdp,

Dicer, and Argonaute proteins. The human pathogenic fungus M. lusitanicus, for instance, shows an
intricate RNAi mechanism as a function the interplay of the silencing proteins in three different
pathways, named the canonical, epimutational, and noncanonical RNAi pathways. The crosstalk of
the RNAi pathways creates a complex network that regulates both basic cellular activities, such as
metabolism or vegetative growth, and elaborated mechanisms, including sexual reproduction and
pathogenesis . N. crassa , Coprinopsis cinerea , Fusarium graminearum  and
Magnaporthe oryzae , also produce sRNAs that regulate endogenous genes. 

5. Heterochromatin Formation

Heterochromatin constitutes a highly condensed state of DNA. It is considered to have no transcriptional activity

due to the limited access of the regulatory proteins to the promoter regions . Generally, heterochromatin is

concentrated in the telomeric, centromeric, ribosomal, and mating type regions of the eukaryotic chromosome .

Heterochromatin assembly is strictly regulated for accurate chromosome segregation, maintenance of telomere

integrity, transcriptional silencing, and transposon control . Heterochromatin formation in S. pombe is
triggered by the production of siRNAs derived from centromeric regions with numerous repeats

. Remarkably, heterochromatin formation and the RNAi pathway can also regulate the epigenetic
inheritance of gene silencing in S. pombe .

6. Adaptation to Stressful Conditions

The epimutational pathway in M. lusitanicus was discovered after the emergence of isolates resistant to the

antifungal drug FK506 with no apparent mutations in the target genes . The isolates, called epimutants,
produced siRNAs from the mature mRNA of fkbA gene, which encodes FKBP12, the FK506-
interacting protein . Epimutants developing resistance to other antifungal agents, such as 5-
fluoroorotic acid (5-FOA), have also been isolated . Therefore, the epimutation process does not
appear to occur at a specific gene locus, suggesting it might constitute a general mechanism that
generates phenotypic plasticity in Mucor by silencing key genes and allowing rapid and reversible
adaptation to environmental stresses .
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7. Pathogenesis

RNAi has also been found to play an important role in pathogenesis, more thoroughly studied in plant pathogens.

Many crops with worldwide importance are susceptible to being infected by pathogenic fungi, which translates into

economic losses. Thus, alternative methods of infection control have been investigated, allowing a deeper

understanding of fungal pathogenesis and the involvement of RNAi. Some of those pathogenic fungi, such as

Colletotrichum gloeosporioides ,  M. oryzae , Sclerotinia sclerotiorum   have active RNAi pathways which

influences their pathogenicity. RNAi is also involved in virulence of animal pathogens, such as M. lusitanicus .

An important feature of fungal pathogenesis is the mechanism called cross-kingdom RNAi, which has evolved to

regulate the host–pathogen interaction. The existence of sRNA trafficking between the host and the pathogen and

silencing target genes of the counterparty in trans was first discovered in plants, but afterward extended to

mammal systems. Some fungal pathogens, such as Phytophthora sojae  or Botrytis cinerea , have been found

to produce sRNAs that function as RNA effectors to suppress host immunity.

8. Loss of RNAi

In essence, RNAi has crucial regulatory and defense roles in eukaryotes, suggesting that this key mechanism has

been positively selected through evolution in plants, nematodes, animals, and fungi. Yet, some members of the

fungal kingdom have lost key components of the RNAi pathway , resulting in its inactivation. A hypothesis to
explain this contradiction could be that those species may have other defensive mechanisms more
advantageous than RNAi. Alternatively, perhaps, this RNA-based mechanism constitutes a
disadvantage for them, forcing the survival of the RNAi-deficient species.
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