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The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing

challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been

introduced to reduce labor requirements and to ensure efficient management operations. Applications of sensors, computer

vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reported. Some

advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency

identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects.

Advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and

future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production.

agricultural mechanization  artificial intelligence  computer vision  remote sensing  sensor fusion

1. Introduction

The nursery and greenhouse industry contributes nearly $14 billion in annual sales to the U.S. economy . This industry

produces more than 2000 ornamental plant species, covering most of the U.S.’ ornamental plants . Nurseries are, in

general, open-air operations where plants grow in the ground or in containers . Greenhouses are typically enclosed

environments where growth conditions (e.g., lighting, temperature, humidity, and irrigation) can be controlled . Rapidly

increasing production cost due to the increased labor expense, difficulty in obtaining skilled labor, and inappropriate

application of agricultural resources are rising concerns for the ornamental industry . Operations such as planting,

growing, and harvesting nursery crops are heavily dependent on labor. These operations account for 43% of total production

expenses . It is becoming increasingly difficult for the industry to obtain such labor, especially the skilled workforce required

to grow ornamental crops . Conventional practices apply agricultural resources (such as water, nutrients, fertilizers, and

pesticides) excessively and inefficiently, increasing production costs. These conventional approaches not only increase the

production cost but are also responsible for contaminating the environment and the ecosystem. The industry must look for

alternative solutions, such as automated crop management technologies, to reduce labor needs and ensure the efficient use

of crop production resources.

In the current decade, sensing and automation technologies have been continually increasing their impact on different crop

management operations . These technologies are categorized into two groups: ground-based and aerial-based.

Ground-based crop harvesting technologies have been tested on various crops, including sweet pepper , lettuce ,

tomato , strawberries , apples , and cherries . Ground-based technologies have also been explored widely in

automatic disease detection in different crops, such as: powdery mildew on strawberry leaves ; leaf blotch, stripe rust,

powdery mildew, leaf rust, black chaff, and smut on wheat leaves ; Alternaria leaf spot, brown spot, mosaic, grey spot and

rust on apple leaves ; and anthracnose, brown spot, mites, black rot, downy mildew, and leaf blight on grape leaves .

Recent evolutions in unmanned aerial vehicles (UAVs) show the potential of using them in different agricultural operations,

thereby consuming less time than ground-based systems . Until now, UAVs used for agriculture have been limited to only

remote sensing applications, due to limited payload capacity and battery life. UAVs have been used in various crop

management applications, including automatic canker disease monitoring in citrus , weed detection in wheat and oat fields

, detecting and mapping tree seedlings and individual plants , and yield estimation in cotton . However, the

success of sensing and automation technologies largely depends on the types of sensors used to acquire crop data and the

processing algorithms used to extract valuable information.
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2. Smart Irrigation

Smart or precision irrigation technology determines the water requirement of crops using set-point control (using soil moisture

data) or model-based control (using crop and environmental data) to maximize irrigation efficiency . It helps reduce

excessive water application while maintaining crop growth and development. Sensors-based irrigation technologies have

been tested in different nurseries, including greenhouse, container, pot-in-pot, and field nurseries .

Table 1 presents different sensor applications for automatic irrigation management in different nurseries. Wireless sensor

networks (WSNs) were used to control irrigation water flow in three container-based nurseries . Experiments were

conducted in two phases: first, EM50R nodes with EC-5 sensors were used to monitor soil moisture; and second, nR5 nodes

were used to monitor and control irrigation. The WSNs-based technology reduced water use by about 20% to 25%. Kim et al.

 tested soil moisture and EC sensors to monitor and automatically implement irrigation protocols. Substrate moisture data

were measured to reduce water usage of hydrangea by as much as 83%. Coates et al.  used a VH400 (Vegetronix, Sandy,

UT, USA) sensor to monitor soil water content in container nurseries where pots contain hydrangea plants. Even though the

VH400 sensor costs half as much as standard EC-5 sensors, the authors concluded the VH400 was unsuitable for nursery

crop monitoring because its output varied by up to 29%. This type of sensor (VH400) shows a high sensitivity of ~34 mV

rather than ~5 mV using EC-5 per % volumetric water content. Lea-Cox et al.  used a hybrid system consisting of a 12-

node CMU network (developed by Carnegie Mellon University, United States) and Decagon Ech20 moisture sensors

(Decagon Devices Inc., Pullman, WA, USA) to control water applications in real-time in a container nursery. The system was

also tested in a greenhouse where a six-node CMU network was used. The results reported that both networks performed

well, but encountered some networking challenges at remote sites. The authors noted the CMU network node is less costly

than the commercial Decagon Ech20 sensor, but showed similar performance. Wheeler et al.  also tested a smart irrigation

system in a container nursery and greenhouse. They used Decagon soil moisture sensors along with an nR5 wireless node to

control irrigation. The study reported a water use reduction of approximately 50% when compared to grower-controlled

irrigation. The same sensor system was trialed previously by Wheeler et al.  in a floriculture greenhouse.

The WSNs are also used in pot-in-pot nurseries. Belayneh et al.  used this technology to control irrigation in dogwood

(planted in 15-gal containers) and red maple (planted in 30-gal containers) nurseries. The EM50R nodes were used to

monitor data from soil moisture, and environmental sensors and nR5 nodes were used for irrigation control. Volumetric water

content-based sensors were utilized for monitoring soil moisture. The sensors were inserted at a 6-inch depth for dogwood

and at 6 and 12 inches depth for red maple. The results showed that the WSNs-based irrigation method reduced water usage

by ~34% and ~63% for red maple and dogwood, respectively. Lea-Cox and Belayneh  developed a smart battery-operated

nR5 wireless sensor node using a series of soil moisture and environmental sensors to irrigate dogwood and red maple

nursery blocks. The study reduced daily water application by about 62.9%. The authors concluded that this sensor-based

irrigation technology resulted in nearly a three-fold increase in the efficiency of water without reducing the quality or growth of

trees.

Internet-of-Things (IoT)-based smart irrigation systems have also been used for ornamental crop production. Banda-Chávez

et al.  developed an IoT-based sensor network to activate the irrigation system to irrigate ornamental plant using an IoT

platform and soil moisture sensors (YL-69). In addition, Beeson and Brooks  used an evapotranspiration (ETo) model-

based smart irrigation system for wax-leaf privet. The study reported that this model-based irrigation system could reduce

water application by about 22.22% annually, compared to the traditional overhead irrigation method. Although a limited

number of studies have reported on the IoT-based automatic irrigation systems used for the ornamental industry, trends and

current successes of this technology for other crop industries show promising potential for ornamental crop production.

Although studies have reported the potential of using sensors-based technology for irrigation management, many factors

impede this technology’s efficacy. Sensor-to-sensor variability in a particular environment could be one of them. The greatest

variability among sensor readings occurred at volumetric water content levels just below the water-holding capacity of the

substrate. Therefore, finding sensor-to-sensor variability in a particular nursery condition can greatly increase confidence in

the data. Sensor positioning is another important factor that directly affects efficacy. Accurate positioning is needed in nursery
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conditions, particularly when measuring soil moisture content in container production. Sensors need to be placed in that part

of the root zone where active water uptake occurs. Determination of optimal sensor numbers is another factor in specifying

sensors for a nursery environment. The optimal number of sensors for a particular nursery depends primarily on the accuracy

and repeatability of the sensors, variation among sensors, spatial variability of the nursery environment, and cost.

Table 1. Summary of studies reported for smart nursery irrigation.

3. Plant Stress Detection

Detection of stresses such as drought, disease infection, and pest pressure, recognizes unfavorable condition or substance

that affects the growth, development or production of plants or crops using sensors and advanced technologies . This

detection helps growers to identify problems and take preventive actions before stresses significantly damage plants or crops.

Two types of stresses have been identified in ornamental crop production: abiotic plant stress and biotic plant stress. Abiotic

plant stress includes drought, nutrient deficiency, salinity problems, floods, etc., while biotic stress refers to damage caused

by fungi, bacteria, insects, or weeds. Sensors, including RGB, thermal, and spectral, have been utilized to monitor stresses in

ornamental crop production .

Table 2 represents different ornamental plant disease detection using advanced sensing technologies. Red-green-blue (RGB)

imaging sensors with a spectrum range of 400–700 nm (visible range) are used to monitor ornamental plant stresses due to

their affordability and application in other cropping systems. Velázquez-López et al.  developed an image processing-based

powdery mildew disease detection system for rose plants by using the Open CV library. The system detected powdery mildew

by converting RGB images to hue, saturation, and value (HSV) color space and achieved the highest disease region matching

of 93.2% by segmenting with V channel using close captured images (captured at 10 cm from the rose canopies). This is

considered a major limitation, especially for real-time disease detection, where multiple diseases would be present.

Nuanmeesri  advanced the image processing technique from traditional image segmentation to deep learning-based

detection in order to identify up to 15 different diseases. A hybrid deep learning model built by fusing convolutional neural

networks (CNNs) and a support vector machine (SVM) were used. Researchers also tested the image registration approach

Crop Nursery Types Soil Sensor Types Water
Saving References

Ornamentals Container
Capacitance-based

(WSNs)
20% to

25%
Chappell et al.

Hydrangea Container
Capacitance-based

(WSNs)
Not

Reported
Coates et al.

Red Maple and Cherokee Princess
Container and
Greenhouse

Matric potential and
capacitance sensors

(WSNs)

Not
Reported

Lea-Cox et al.

Hydrangea Container
Electrical conductivity

(WSNs)
As much
as 83%

Kim et al. 

Woody Ornamental Plants: Oakleaf
Hydrangea, Japanese Andromeda,

Catawba Rosebay and Mountain Laurel

Container and
Greenhouse

Capacitance-based
(WSNs)

50%
Wheeler et al.

Dogwood and Red Maple Pot-in-pot
Capacitance-based

(WSNs)
34% to

63%
Belayneh et al.

Dogwood and Red Maple Pot-in-pot
Capacitance-based

(WSNs)
62.9%

Lea-Cox and
Belayneh 

Ornamental plants Pots in indoor
Capacitance-based

(IoT)
Not

Reported
Banda-Chávez

et al. 

[29]

[33]

[28]

[32]

[31]

[34]

[35]

[36]

[38]

[39][40][41][42]

[39]

[43]



Sensing and Automation Technologies for Ornamental Crops | Encyclopedia.pub

https://encyclopedia.pub/entry/41222 4/13

of two imaging media for ornamental crop disease detection. Minaei et al.  registered RGB and thermal images to detect

powdery mildew and gray mold disease on roses for developing a site-specific spraying system. A few studies have compared

RGB imaging with spectral imaging for tulip disease detection . The results reported that a spectral imaging system

achieved better detection accuracies than RGB imaging while detecting tulip breaking virus (TBV).

Hyperspectral imaging is a powerful tool that uses imaging and spectroscopy for detecting stresses at the early stage,

gathering and processing feature information from a wide spectrum of light. Researchers have used hyperspectral sensors for

ornamental crops, but mainly in laboratory applications due to their vulnerability in real-time field applications . Polder et al.

 identified Botrytis infected Cyclamen plants with selected features (bands) of 497, 635, 744, 839, 604, 728, 542, and 467

nm in a controlled greenhouse environment. Poona and Ismail  selected wavebands located across VIS, red edge, NIR,

and SWIR regions to detect Fusarium circinatum infection in Pinus radiata seedlings at the asymptomatic stage. The study

concluded that random forest (RF) is a good machine learning (ML) classifier to discriminate disease infection from spectral

bands. Heim et al.  also used RF to differentiate myrtle rust-infected lemon myrtle plants and achieved an overall accuracy

of 90%. The spectral wavebands (545, 555, 1505, and 2195 nm) were selected for discrimination. Considering hyperspectral

systems’ slow data processing and expense, some studies have tried to find an alternative to hyperspectral imaging. A few

studies have used the multispectral imaging system instead because of its faster data processing ability. Polder et al.  used

an RGB-NIR-based multispectral system (range 500–750 nm) to detect TBV disease in tulips and achieved a classification

accuracy of 92%. They employed a linear discriminant classifier along with R, G, B, and NIR features to segment the plant

and the soil. The author used features such the fraction of red pixels, mean normalized red value, mean normalized green

value, and ratio of contour pixels of spots to classify disease in tulips. Pethybridge et al.  assessed ray blight disease

(caused by Phoma ligulicola) intensity using a hand-held multispectral radiometer with 485, 560, 660, 830, and 1650 nm

spectral band sensors. The study used vegetation indices, including normalized difference vegetative index (NDVI), green

normalized difference vegetative index (GNDVI), difference vegetative index, and renormalized difference vegetative index to

assess ray blight disease.

Thermal imaging has also been tested for stress detection in ornamental plants, a technique which depicts the spatial

distribution of temperature differences in a captured scene by converting infrared (IR) radiation into visible images. Jafari et al.

 classified asymptomatic powdery mildew and gray mold disease on roses by fusing thermal images with visible-range

captured images. Valuable thermal features were extracted, and artificial neural networks (ANN) and SVM were used to

classify healthy and disease-infected rose plants. The thermal features include maximum, minimum, median, mode, standard

deviation, maximum difference in temperature, skewness, kurtosis, sum of squared errors, and so on. Studies have been

conducted for disease stress detection using thermal imaging; however, this type of sensing is more practical for water stress

detection. Before conducting the above experiment, Jafari et al.  attempted to classify Botrytis cinerea infection on rose

using thermal spectra and radial-basis neural networks. Buitrago et al.  analyzed the infrared spectra of plants for water

stress detection and concluded that spectral changes in plant regions had a direct connection with the microstructure and

biochemistry of leaves.

Stress detection technologies are widely used in other crop industries, especially for agronomic crops (such as corn and

soybean) and tree fruits (such as apple and citrus), but very few experiments have been conducted for ornamental crops

(mostly in the floriculture industry). Very limited research, almost no studies, have been conducted for the woody ornamental

industry. A few studies have been conducted to detect stress using RGB sensors because RGB cameras do not require deep

technical knowledge to operate or use. Spectral sensors are necessary to detect stress at an asymptomatic or early stage.

Spectral sensors have a huge potential for the ornamental industry, but not much progress has been previously reported.

Currently, UAVs are very popular for crop stress detection and monitoring, but the applications of these systems are also very

limited for the ornamental crop industry.

Table 2. Summary of studies reported for plant stress detection.

[42]

[40][44]

[40]

[45]

[41]

[46]

[40]

[47]

[48]

[49]

[50]



Sensing and Automation Technologies for Ornamental Crops | Encyclopedia.pub

https://encyclopedia.pub/entry/41222 5/13

Crop Stress Type Imaging Type Processing Method Accuracies References

Rose
Powdery
mildew

RGB (a video camera:
Everio)

Images were
converted to HSV, and

then segmentation
performed to extract
the disease region

Highest 93.2% of
disease region

matching

Velázquez-
López et al.

Rose

Fifteen
different

rose
diseases

Color images
downloaded from the
Google search engine

and ChromeDriver

A hybrid deep learning
model (CNNs with

SVM)

90.26% accuracy,
90.59% precision,
92.44% recall, and
91.50% F1-score

Nuanmeesri

Rose
Powdery

mildew and
gray mold

RGB (Canon 550D
Kiss X4);

Thermal camera (ITI-
P400)

Image registration of
visible and thermal
images and then
segmentation to

segment diseased
area

Not reported
Minaei et al.

Tulip
Tulip

breaking
virus

RGB (Nikon D70 with
a NIKON 18–70 mm
zoom lens); Spectral

camera (Specim,
spectrum from 430 to

900 nm with a
resolution of 4.5 nm)

Spatial information
was extracted after
segmentation, and
then Fisher’s linear

discriminant analysis
(LDA) used for the

detection

Best results of 9, 18
and 29% detection

error were achieved for
Barcelona, Monte

Carlo, Yokohama tulip
variety, respective
using the spectral

camera

Polder et al.

Tulip
Tulip

breaking
virus

RGB (Prosilica
GC2450 and

GC2450); RGB-NIR
multispectral (JAI

AD120GE);
Multispectral (using
six-band filter wheel,
range 500-750 nm)

Plant segmented by
thresholding the
excessive-green

image ((2G–R–B) > 0)
and then LDA for TBV

classification

92% of TBV-diseased
plants were accurately
classified using RGB-

NIR multispectral
system

Polder et al.

Cyclamen Botrytis
Hyperspectral imaging

(400–1000 nm)

Selected most
discriminating

wavelengths and then
applied LDA

90% of pixels were
classified correctly

Polder et al.

Pinus
radiata

seedlings

Pitch
canker

disease (F.
circinatum
infection)

Hyperspectral imaging
(600–2500 nm)

Wavebands were
selected using the

Boruta algorithm, and
then Random forests

were used for
discriminating infected

seedlings

0.82 and 0.84 KHAT
values for healthy-

infected and infected
damaged

discrimination,
respectively

Poona and
Ismail 

Lemon
myrtle

Myrtle rust
Hyperspectral imaging

(350–2500 nm)

Four wavebands were
chosen, and RF was

applied for
discrimination

90% of overall
accuracy

Heim et al.

Pyrethrum
Ray blight
disease

Multispectral
radiometer

Reflectance was
measured, and data
were analyzed using
regression analysis

Not reported
Pethybridge

et al. 

Rose Powdery
mildew and
gray mold

Infrared thermal
camera (ITI-P400)

Image registration and
then segmentation
were performed to

extract features, and
finally, neuro-fuzzy

92.3% and 92.59%
estimation rates were
achieved for powdery
mildew and gray mold,

respectively

Jafari et al.
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4. Smart Spraying

Management of different pests and diseases is essential to ensure high quality ornamental nursery crop production meeting

the market’s requirements . Traditional management techniques include pruning the infected branches, removing dead or

infected plants, monitoring diseases, trapping insects, growing pest-resistant cultivars, and pesticide applications . Foliar

pesticide application is the most effective method for preventing pest infestations and ensuring healthy and unblemished

nursery plants . In the United States, the greenhouse and nursery industries use about 1.3 million kg of pesticides every

year, saving billions worth of crops . Conventionally, radial air-assisted sprayers are the most used spray equipment for

pesticide application in ornamental nurseries . These sprayers apply pesticides to the entire field regardless of the plant

structure, plant growth stage, and absence of plants in rows, thus, resulting in under- or over-spraying  as well as

contaminating the environment, wasting pesticides, and increasing production cost . This problem is more critical for the

nursery industry, as there is great diversity in canopy structures and densities found in nursery crops. In field nursery

production, it is a common practice that trees of different ages and cultivars are planted in the same row. The traditional

sprayers cannot adjust sprayer settings to match the target tree requirements, reducing application efficiency. One way to

improve spraying efficiency is to use sensing technologies to identify target trees for precise spraying applications, also

referred to as smart/variable-rate-intelligent spraying.

Smart spraying is defined as the precise application of pesticides, performed by controlling the spray output of each nozzle

based on the presence, structure, and canopy density of plants as obtained from sensors such as ultrasound, laser, and

cameras . In recent years, significant research has been conducted to develop smart spraying systems for the nursery

industry. Different sensors, such as ultrasonic and laser, have been utilized to measure the canopy parameters for intelligent

spraying in nursery crops. The initial efforts for smart nursery spraying were reported back in 2010 by a team of scientists

from the United States . The authors developed two precision sprayer prototypes: a hydraulic boom sprayer with an

ultrasonic sensor for small narrow trees such as liners and an air-assisted sprayer with a laser scanner for other ornamental

nursery species. The authors compared the spray consumption between a sensor-based sprayer and a conventional air blast

sprayer at three growing stages and four travel speeds (3.2, 4.8, 6.4, and 8.0 km/h). The sensor-based air-assisted sprayer

applied 70%, 66%, and 52% fewer chemicals at different growth stages than conventional spraying. The results also reported

a uniform spray deposit and coverage regardless of changes in the canopy size and travel speed. Jeon and Zhu 

developed an ultrasonic-sensed real-time variable-rate vertical boom sprayer for nursery liners. The sprayer consisted of two

booms with five pairs of equally spaced nozzles, with the ultrasonic sensor mounted 0.35 m ahead of the nozzles. Field tests

were conducted for six different liner species at travel speeds from 3.2 to 8.0 km/h. The spray nozzles were triggered

successfully from 4.5 to 12.5 cm ahead of the target, and the effects of travel speed on mean spray coverage and deposit

were insignificant.

Laser sensing is another technology used for precision spraying for many tree crops. A few studies have been reported that

utilize laser scanning for smart spraying applications in nurseries. Chen et al.  developed a variable-rate air-assisted

sprayer using a laser scanner. The authors reported that the spray coverage differences inside the canopies were not

statistically significant at 3.2 and 6.4 km/h travel speeds. Liu et al.  used a laser scanner to develop an intelligent variable-

rate air-assisted sprayer and tested the system in a commercial nursery and grapevine orchard. The authors reported that the

new sprayer reduced chemical usage by more than 50% compared to the conventional sprayer at a travel speed of 3.2 to 8.0

km/h. Shen et al.  developed an air-assisted laser-guided sprayer for Japanese maple nursery trees. The new sprayer

consisted of a 270° radial-range laser scanner, embedded controller, and pulse-width-modulated (PWM) nozzles. The authors

Crop Stress Type Imaging Type Processing Method Accuracies References
classifiers were used

for classification

Rose
Botrytis
cinerea
infection

Infrared thermal
camera (ITI-P400)

Analyzed extracted
thermal features with
radial-basis neural

networks

96.4% correct
estimation rate

Jafari et al.
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reported an accurate measurement of different trees and control of nozzles to match trees independently. The spray usage

was reduced by 12 to 43%, compared to the conventional spraying. In addition, a few studies have been reported for field

validation of precision sprayers to control different diseases. Zhu et al.  validated the laser-guided air-assisted sprayer and

reported a chemical saving of about 36% and 30% in the Prairifire crabapple and Honey locust nurseries, respectively. Chen

et al.  also conducted a performance comparison of laser-guided air-assisted sprayers with conventional sprayers in

commercial nurseries with different test plants. The author reported 56% and 52% chemical savings for two nurseries.

Similarly, a few other studies have compared the performance of smart laser-guided sprayers with conventional sprayers and

reported promising results for effective disease control in different nursery crops .

Smart spraying for nursery crops using different sensing technologies, mainly ultrasonic and laser, has been reported in the

last decade. Ultrasonic and laser sensors were integrated with conventional sprayers to detect the target (e.g., canopies).

Although ultrasonic sensor-based sprayers exhibit significant chemical savings, their accuracy varies with temperature,

humidity, and detection distance . On the other hand, laser sensors are less influenced by weather conditions when

detecting and measuring target characteristics . Moreover, the nursery industry encounters several unique challenges,

such as the lack of crop uniformity, varying shapes, sizes, growth patterns, and harvest schedules. Most existing sprayers

have been developed for the orchard environment ; modifications may be required to make them usable for ornamental

nursery crop production. Another challenge for the ornamental industry is its high aesthetic thresholds allowing for no visible

infections. Thus, efforts are required to develop a smart spraying system based on the requirements of the nursery industry.

5. Plant Biometrics and Identification

Information on plant physiology and responses to biotic/abiotic stresses are critical to determine the management practices

required to improve productivity and sustainability in the nursery industry. Plant biometry (e.g., structural information) can

assist in understanding the plant’s growth differences in diverse environments . Cultivar identification of nursery plants is

also important for breeding, reproduction, and cultivation . Plant biometry is a classification system that distinguishes a

plant by defining its authenticity using physiological characteristics. The defined biometric for an individual plant should be

universal, distinctive, permanent, and collectible .

Different sensors, including cameras and LiDAR, have been utilized for nursery plant biometrics. The research for nursery

plant identification using camera imaging systems started in the 1990s. Shearer and Holmes  used a camera vision system

to identify tree species in the nursery. The study used color co-occurrence matrices derived from intensity, saturation, and hue

to identify seven common containerized nursery plants. A total of 33 texture features were used for the analysis, and the

reported classification accuracy was 91%. She et al.  developed a high-resolution imaging system to classify containerized

Perennial peanut and Fire chief arborvitae plants for counting. he authors found that the classification accuracy of plants with

flowers was higher (97%) than those without flowers (96%). Leiva et al.  developed an unmanned aircraft system (UAS)-

based imaging system for counting container-grown Fire Chief arborvitae. The author developed a custom counting algorithm

and tested it on different backgrounds, including gravel and black fabric. The reported results indicated counting errors of 8%

and 2% for gravel and black fabric backgrounds, respectively.

In another study, the authors used a depth camera for height measurements of nursery plants . The authors implemented

Ghostnet–YoloV4 Network for measuring height and counting different nursery plants, including spruce, Mongolian scotch

pine, and Manchurian ash. They achieved an accuracy of more than 92% for measurement and counting. Gini et al.  used

a UAS-based multispectral imaging system to classify eleven nursery plant species. The author implemented multiple grey

level co-occurrence matrix algorithms to perform textural analysis of acquired images. A principal component analysis was

used after feature extraction, achieving a classification accuracy of 87% for the selected plants. Likewise, a few studies have

reported the application of LiDAR sensors to identify nursery plants. Weiss et al.  developed a method for identifying

nursery plant species using a LiDAR sensor and supervised machine learning. The author used multiple machine learning

classifiers and 83 features to identify six containerized nursery plant species, and achieved an accuracy of more than 98%.
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Similarly, LiDAR and light curtain sensors were used to develop a stem detection and classification system for almond nursery

plants . The authors developed a custom segmentation and thresholding algorithm, and the reported detection accuracies

with the LiDAR and light curtain sensors were 95.7% and 99.48%, respectively. The success rates for dead/alive plant

detection for the LiDAR and light curtain sensors were 93.75% and 94.16%, respectively. Additionally, a few other studies

have reported the application of machine vision approaches using different machine learning and deep learning

methodologies for detecting and classifying different flower nurseries .

Nursery crop management is time-consuming and labor-intensive, bringing a great need for automation, especially for large

nursery production areas. Sensing-based plant biometrics, identification, and recognition are promising but challenging tasks.

The rapid advancements in sensing, computation, artificial Intelligence (AI), and data analytics have allowed more detailed

investigations in this domain. Research has been reported to identify tree species for management operations and counting

plants for inventory control using different types of sensors, including RGB, multispectral, LiDAR, etc. A few recent studies

have utilized state-of-art deep learning techniques for nursery plant classification; however, more efforts are needed to

facilitate the growers’ use of such techniques for the profitability and sustainability of the nursery industry.

6. Other Significant Works

The economics of production practices associated with fertilizer inputs, pest control needs, and labor requirements affect the

nursery industry. Most nursery production operations are labor intensive. According to Gunjal et al. , labor accounts for 70%

of the costs for nursery production. Though a few operations in nursery production have been mechanized, many others have

not been automated. Advanced sensing and mechanization/automation could reduce resource consumption and labor

dependence . In this context, the ornamental nursery industry has witnessed some progress in different sensing,

automation, and robotic applications. Li et al.  developed a trimming robot for ornamental plants. The design includes a

knife system and a rotary base, allowing the knife to rotate 360 degrees to cut the plants into the desired shape. The robot

was tested for five different nursery plant species (Aglaia odorata, Murraya exotica, Camellia oleifera, Osmanthus fragrans,

and Radermachera sinica), and results indicated that the overall performance was above 93% with the time taken as 8.89 s.

Zhang et al.  developed a path-planning scheme for a watering robot for containerized ornamental nursery plants. The

authors optimized the robot’s path planning using a genetic algorithm with neighbor exchanging to test different watering

strategies, and achieved promising results in terms of water savings. Sharma and Borse  developed an autonomous

mobile robot to carry out different production operations in the nursery. The robot featured multiple sensor modules, including

camera and climate monitoring, to perform real-time growth monitoring, disease detection, and the spraying of fertilizer,

pesticide, and water. The platform was also equipped with a Zigbee communication framework to transmit the sensed data to

the central control system. The system achieved the desired results for disease detection and growth monitoring; however, no

technical details are provided. Similarly, a conceptual design of a cable-driven parallel robot (CDPR) to perform different

operations, including seeding, weeding, and nutrition monitoring for plant nurseries has been presented . The authors

performed the operational and path planning simulation to execute seeding and weeding operations. Additionally, a pretrained

VGG16 model was used for weed identification, and results showed promise, with an accuracy of 96.29% achieved during

testing. Despite some progress, the status of research-based findings for robotic applications in the nursery industry lags far

behind its contemporary industries.
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