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Conventional chemotherapy is the most common therapeutic method for treating cancer by the application of small
toxic molecules that interact with DNA and cause cell death. Unfortunately, these chemotherapeutic agents are
non-selective and can damage both cancer and healthy tissues, producing diverse side effects, and they can have
a short circulation half-life and limited targeting. Many synthetic polymers have found application as nanocarriers of
intelligent drug delivery systems (DDSs). Their unique physicochemical properties allow them to carry drugs with
high efficiency, specifically target cancer tissue and control drug release. In recent years, considerable efforts have
been made to design smart nanoplatforms, including amphiphilic block copolymers, polymer-drug conjugates and

in particular pH- and redox-stimuli-responsive nanopatrticles (NPs).

block copolymers polymer-drug conjugates polymeric nanocarriers cancer therapy

| 1. Introduction

After cardiovascular diseases, cancer is the second leading cause of death worldwide [@. Conventional
chemotherapy is the most commonly used approach in cancer treatment, along with surgery, irradiation and
immunotherapy 2. It is based on the application of small toxic chemotherapeutic molecules that interact with DNA
molecules, modify them and induce cell death in cancer tissues [Bll4l. Cancer cells have altered lipid and amino acid
metabolic pathways, glycolysis, and redox homeostasis L, Indeed, altered energy metabolism with upregulated
glucose transporter expression, disrupted redox homeostasis with upregulated glutathione transferase (GST) and
high telomerase activityare responses that maintain DNA integrity, retaining replication, proliferation and cancer cell
resistance WEIEl chemotherapy has many disadvantages, including drug toxicity, rapid degradation, low specificity
and limited targeting. In the last few decades, nanomedicine has assumed an important role in cancer therapy
based on diverse tailor-made drug delivery systems (DDSs) . Nanomedicine produces materials with sizes
ranging from 1-100 nm, which are used as drug nanocarriers with exceptional properties, such as their size,
solubility, hydrophilicity, high specificity and a suitable drug-release profile. Nanocarriers also have an enhanced

permeability and retention effect (EPR) due to their accumulation in cancer tissue with leaky vasculature [,

Chemotherapeutics are mostly drugs that are poorly soluble in water with a limited delivery to the target tissue.
Encapsulation or entrapment of drugs in nanocarriers facilitates their transport in the circulation to the cancer
tissue, inhibiting their rapid biodegradation and improving their bioavailability . Moreover, nanocarriers with

incorporated drugs provide a longer circulation half-life of drugs, increasing their efficacy and enabling a lower dose
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of application &8, Compared with natural polymers, synthetic nanocarriers can be tailored to control the release of

encapsulated drugs by modifying their structure 29,

| 2. Polymeric Nanoparticles (NPs)

Polymeric NPs are particles obtained from natural, semi-synthetic or synthetic polymers. Polymeric hanosystems
are produced by a polymerization reaction of many monomer units, and under certain conditions, they can be
organized and self-assemble with ananometric size (10-100 nm) L9RLIZ pye to the high diversity of their

properties, NPs attract great attention as multifunctional nanocarriers in DDSs EIi24]

Depending on the preparation method, drugs can be entrapped, encapsulated or bound to polymeric NPs in the
form of a nanosphere, a nanocapsule or a drug conjugate (Figure 1) RILY Nanospheres are colloidal particles
that entrap the drug inside their matrix by physical dispersion or by adsorption on the particle surface, while
nanocapsules are systems consisting of a core cavity with an encapsulated drug and polymeric shell surrounding
it. Polymeric capsules can be designed by the conjugation of targeting ligands that increase selectivity for cancer
cells and improve intracellular drug delivery, as well as reducing different side effects and drug toxicity. Targeting
ligands of polymeric capsules are commonly monoclonal antibodies (mAbs) or antibody fragments, aptamers,
peptides and small molecules, such as folic acid, which are conjugated to the shell-forming block [23I[141[15][16][17][18]
(291 These ligands are specifically bound to antigens or receptors that are overexpressed on the cancer cell 22 and
they enable cellular selectivity and intracellular delivery of polymeric micelles 18], Different designed polymeric
capsules suitable for targeting the release of drugs are shown in Figure 1. The efficacy of polymeric carriers
modified with targeting ligands depends on the ligand properties, such as their density and binding affinities to
receptors, which can enhance receptor internalization and the biodistribution of drugs. Drug-conjugates have a
drug that is chemically bonded to the polymer through a linker/spacer. The bond drug-linker/spacer is a common

breakage-point when the drug is released at the target site (Figure 1).
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Figure 1. Schematic illustration of multifunctional drug delivery systems.

Natural polymers are biopolymers, including different classes of polysaccharides and proteins, which, due to their
biocompatibility and biodegradability, are particularly suitable for medical applications, as in cell-based
transplantation, tissue engineering and gene therapy [10] (Figure 2). Natural polymers can be combined with
synthetic molecules through the chemical modification of their functional groups and so-called semi-synthetic

polymers can mimic human tissue components. In formulations of controlled DDSs, synthetic polymers attract
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more attention than biopolymers due to the considerable potential for the design of their structure and modifications
of their physicochemical properties (Figure 2) [&. Synthetic polymeric micelles exhibita high capacityto incorporate
a broad range of bioactive molecules, such as antisense oligonucleotides (21] plasmid DNA [22] proteins (23] small
interfering ribonucleic acids (siRNAs) 24 messenger RNAs (mMRNAs) [23] and photosensitizers 28, by tailoring the
core-forming segments of the block copolymers. In fact, several poly-ion complex (PIC) micelles have been
designed that incorporate negatively charged biomolecules by electrostatic interaction with positively charged block
copolymers 2127 |n addition, they can be stabilized by the covalent crosslinking of their core through disulfide
bonds 28, which can be cleaved under specific intracellular conditions, enabling the complexes to escape from
endosomal compartments after endocytosis and to deliver the biomolecules to subcellular destinations 22 without
drug degradation. By introducing hydrophobic molecules such as cholesterol to the core Y, PIC micelles become
more stable, with a longer half-life in the bloodstream, allowing for the delivery of intact biomolecules to therapeutic
targets. PIC micelles obtained from block copolymers with a core-forming polycation such as polyaspartamides,

support enhanced delivery of biomacromolecules to the cytosol of cells, and the gene transfection in vitro and in
vivo [251129][301[311[32][33][34](35]
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Figure 2. Types of polymeric nanocarriers.

In recent years, the great potential of synthetic polymers as drug carriers has been highlighted, particularly
because of the possibility to develop DDSs with a target sustained/controlled release of drugs &. The
encapsulation of cancer drugs in polymeric micelles with modifications for cancer targeting and triggered release

results inmore efficient drug delivery (Figure 1).

In addition to biocompatibility and biodegradability, synthetic polymers used in DDSs should be activated at the site
of action, to be stable in blood circulation, to have low toxicity and immunogenicity, and to provide protection
fromthe degradation of drugs before the target tissue is reached. Additionally, it is necessary that polymer

nanocarriers of DDSscan be easily synthesized without impurities [£l.

3. Amphiphilic Block Copolymers as Carriers in Drug
Delivery Systems

3.1. Hydrophobic and Hydrophilic Polymeric Nanocarriers

Polymeric micelles are the most common nanocarriers of DDSs as regards the original core-shell structure . They
consist of amphiphilic block copolymers with hydrophilic and hydrophobic units that self-assemble in water solution
at the critical micelle concentration (CMC). Micellar polymeric units can be formed in different ways, such as

diblock copolymers (A-B), triblock copolymers (A-B-A) and copolymer conjugates (Figure 2) [,

The hydrophobic core is suitable for encapsulating poorly water-soluble drugs, and the pharmacokinetics of drug
release can be controlled by its modification. The most frequently used hydrophobic polymers for core formation of
NPs are: poly(e-caprolactone) (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), poly(propylene
oxide) (PPO) and poly(aspartic acid) (PAsp) (Figure 2). The hydrophilic polymers that are most frequently
considered for the hydrophilic shell of NPs in DDS include poly(ethylene glycol) (PEG), poly(glutamic acid) (PGA),
poly(ethyleneimine) (PEI), N-(2-hydroxypropyl)methacrylamide (HPMA) and poly(acrylamide) (PAM) (Figure 2). A
frequently used hydrophilic polymer of DDSs is PEG, which providesdistinctstability to NPs due to the reduction of

nonspecific interactions with blood proteins, thus preventing their aggregation 361,

3.2. Block Copolymers of DDSs in Cancer Therapy

Poly(ethylene glycol)-b-poly(e-caprolactone)(PEG-PCL) is a polyether-polyester diblock copolymer, synthesized by
ring-opening polymerization of e-caprolactone and PEG [BZ. |t is suitable for a variety of DDSs because ofits high
biocompatibility, biodegradability and low toxicityy Many DDSs based on PEG-PCL with different
hydrophilic/hydrophobic ratios (PEG/PCL) have been obtained, enablinghigher cellular internalization
byincreasingPEGcontribution(PEG/PCL = 5/5) [28. Cirpanli et al. have recently developed PEG-PCL nanocarriers
for the controlled delivery of camptothecin (CPT), whose active lactone form was maintained by drug entrapment to
hydrophobic PCL, preventing drug hydrolysis in the carboxylate inactive form (Table 1) B2, Furthermore, Hu et
al.have designed a nanoplatform with paclitaxel (PTX) encapsulated in a triblock PCL-PEG-PCL copolymer that in
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combination with circadian chrono-modulated chemotherapy confirmed sustained drug release and a lower
cytotoxic effect compared with free PTX injection ©9. Hong et al. obtained image-guided polymeric micelles,
including a folate-conjugated PEG-b-PCL copolymer loaded with doxorubicin (DOX) and superparamagnetic iron
oxide nanoparticles (SPIONs) 41, Active targeting was achieved by the conjugation of folic acid to the PEG-b-PCL
shell-forming block, allowing micelles to specifically bind to receptors for folic acid that are overexpressed on the
tumor cells. Drug-delivery efficiency and diagnostics were considerably improved by the combination of active
tumor targeting and imaging in human hepatic carcinoma cells (Bel 7402 cells). Bel 7402 cells overexpress surface
receptors for folic acid that bind these folate-conjugated polymeric micelles, providing targeted delivery of DOX to
the cancer cells and exhibiting high inhibition of proliferation as compared to non-targeted micelles. The epidermal
growth factor receptor (EGFR) is a transmembrane glycoprotein with an intracellular tyrosine kinase domain, which
is overexpressed on the cells of solid cancers [42. Lee et al. developed EGF-receptor-targeted PEG-b-PCL
micelles with incorporated DOX and labeled with 111In. Images were taken with micro-SPECT/CT intratumoral
distribution of both targeted and non-targeted micelles confirmedenhanced accumulation in tumor tissue with the
targeted micelles (T-BCM) as compared to non-targeted micelles (NT-BCM) 3,

Table 1. Polymeric-anticancer drug nanoparticles (NPs), their loading mode and function.

Polymer Drug Loading Mode Function Reference

) Colon, breast, ovarian, lung 5
PEG-PCL Camptothecin (CPT) Entrapment ) [39]
and brain cancers

Lung cancers in combination
PCL-

Paclitaxel (PTX) Encapsulation with chrono-modulated [49]
PEG-PCL
chemotherapy
PLGA- ) ) Breast, pancreatic and ovarian "
Paclitaxel (PTX) Encapsulation ) [44]
PEG and brain cancers
PLGA- Doxorubicin(DOX)- Metformin ] Multidrug resistance P388 e
Encapsulation ] [45]
TPGS (Met) cancer cell lines
PEG- . . . - 46][47][48
. Cisplatin Encapsulation Solid cancers [46][47][48]
u
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Polymer Drug Loading Mode Function Reference
mMPEG-
PLGA- Doxorubicin(DOX) Encapsulation Breast cancer [49]
PGlu
PEG- ) [50][51][52]
7 Paclitaxel (PTX) Entrapment Advanced stomach cancer
Sp
PEO-b- . . 53]
Doxorubicin Entrapment Pancreatic cancer
PAsp
PEO- Metastatic adenocarcinoma of
PPO- Doxorubicin. Encapsulation the esophagus and [541(55]
PEO gastroesophageal junction
PCLLA-
PEG- Doxorubicin (DOX) Encapsulation Breast cancer =
PCLLA
PEI-PLA Paclitaxel (PTX) Entrapment Lung cancer 7]
Colorectal, metastatic breast
Camptothecin (CPT)SN38 Copolymer-drug cancer, platinum-resistant [581159](60]
PEG . - : . [61][62][63]
Irinotecan (C-11) conjugation ovarian cancer and metastatic
cervical cancer
o Copolymer-drug [64][65]
HPMA Doxorubicin (DOX) ] ) Lung and breast cancer
conjugation
Copolymer-dru
HPMA Paclitaxel (PTX) P y _ g Solid cancers (66l
conjugation
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