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The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and

plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of

ubiquitination and subsequent selective degradation in controlling ABA signaling. We present updated information

on the components of the ABA signaling pathway modified by different E3 ligases.

abscisic acid  ubiquitination  E3 ubiquitin ligases

1. Introduction

Plants are often subjected to various detrimental environmental stressors. Despite their sessile lifestyle, plants are

able to maintain their internal equilibrium when exposed to external challenges. This balance, called homeostasis,

can be achieved by internal mechanisms that alter cell metabolism, thanks to which the whole organism can

maintain relatively constant conditions. Such rapid and appropriate genetic and metabolic acclimation, which is a

crucial issue for plants’ survival, is maintained due to the coordinated action of plant hormones and cellular

degradation mechanisms influencing proteostasis.

Protein homeostasis (or proteostasis) integrates cellular pathways that mediate biogenesis, folding, trafficking, and

the degradation of polypeptides to maintain the required concentrations of all proteins that compose the proteome.

This field has been intensively investigated by numerous research groups . Proteins are often tagged for removal

by ubiquitination. Polyubiquitinated proteins and protein aggregates are degraded via the ubiquitin–proteasome

system (UPS) pathway and via the autophagy–vacuolar route. The UPS pathway is restricted in its ability to

degrade aggregated proteins, which are too large to pass through the narrow proteasome entrance channel .

Thus, autophagy represents a major mechanism in plants for degrading macromolecular ubiquitinated protein

aggregates as a response to stressors .

Phytohormones are not only involved in protein degradation mechanisms, but also play a pivotal role in plant

responses to various stimuli. Although the relationships between them are poorly understood, it is generally

accepted that extensive crosstalk and multiple regulatory loops are responsible for maintaining the balance of

growth and stress responses .

Phytohormones are master regulators of plant growth, development, and stress response. Of them, abscisic acid

(ABA) is rapidly accumulated in plants in response to abiotic stress . Similarly to most other hormones, ABA is

involved in developmental processes, including seed maturation, seed dormancy and germination, primary root
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growth, and flowering time control, and in the response to adverse environmental stressors . Plants exposed to

abiotic stress quickly activate the ABA signaling cascade, resulting in the activation of ABA-responsive transcription

factors and the induction of ABA-responding genes. However, after achieving stress tolerance, it is necessary to

terminate (or attenuate) the ABA pathway. The balance is maintained by the selective degradation of specific

components of the ABA signaling pathway upon their tagging for decay by ubiquitination. Conventional degradation

of the tagged components takes place via the proteasome; however, increasing evidence demonstrates a

significant role of autophagy in controlling ABA signaling . In addition to this interplay with

degradation systems, an additional layer of complexity is provided by extensive crosstalk between ABA and other

phytohormones .

2. Principles of ABA Perception and Signaling and Their
Control by Selective Degradation Systems

Reversible protein phosphorylation is a post-translational modification catalyzed by protein kinases and

phosphatases. It acts as a molecular switch for almost all key events of cell metabolism and signaling in

eukaryotes. Additionally, in the field of ABA signal transduction, protein kinases and phosphatases play pivotal

roles, forming a reversible protein phosphorylation cascade, including ABA receptors (pyrabactin

resistance/regulatory components of ABA receptor (PYR/RCAR)), type 2C protein phosphatases (PP2Cs), protein

kinases (Snf1 (sucrose-non-fermentation 1)-related kinases subfamily 2, SnRK2s), and downstream targets. The

key function of RCARs is to indirectly control the activity of SnRK2s, which phosphorylate numerous stress-

activated targets in the response to ABA, including ABA-responsive transcription factors (TFs) . This is

accomplished through a negative regulatory pathway, involving RCARs, PP2C, and SnRK2 proteins and E3

ubiquitin ligases (Figure 1).
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Figure 1. Abscisic acid (ABA) signaling in stress and growth. In growth-promoting conditions, ABA receptors

(RCARs), protein kinases (SnRK2s) dephosphorylated by type 2C protein phosphatases (PP2Cs), and ABA-

responsive transcription factors (TF) are marked for degradation with ubiquitin (Ub) by specific E3 ligases (E3). In

stress conditions, ABA accumulates and binds to RCARs, allowing for interaction with PP2Cs to inhibit

phosphatase activity. SnRK2s are released to phosphorylate and control the activity of downstream targets to

trigger physiological responses. Blue circles indicate ubiquitination, yellow circles indicate phosphorylation events.

When ABA accumulates in cells in response to environmental stress or developmental cues, ABA binds to RCARs

and triggers a conformational change that allows the binary complex (receptor–ABA) to physically interact with

PP2Cs and inhibit its phosphatase activity. The various RCAR–PP2C heterodimers preclude binding of SnRK2s to

PP2Cs, thus stimulating SnRK2s kinase activity. Consequently, SnRK2s are released to phosphorylate and control

the activity of downstream factors to trigger physiological responses .

3. Role of Ubiquitination and Selective Degradation in ABA
Perception and Signaling

[19]
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Ubiquitination is (next to phosphorylation) another reversible, post-translational modification, originally discovered

as a critical element in highly regulated proteolysis and regarded as essential for many other cellular processes.

Ubiquitin (Ub) serves as a reusable tag that decides the cellular fate of the proteins and is recognized by numerous

Ub-binding proteins directing the target proteins for selective turnover . Ub, often in the form of polymeric

chains, is covalently attached to the target proteins through a three-step E1–E2–E3 conjugation cascade (Figure

2).

Figure 2. The ubiquitination cascade. Ubiquitin-activating enzyme (E1) activates ubiquitin (Ub) in an ATP-

dependent manner, and next the thioester-linked Ub is transferred to Ub-conjugating enzyme (E2). Subsequently,

E2 enzymes catalyze the attachment of Ub to a substrate using Ub ligase (E3). E3s, responsible for substrate

recognition, transfer Ub either directly from E2 or form an E3–Ub intermediate prior to the transfer.

The process starts with E1 (or Ub-activating enzyme) in which Ub is activated in an ATP-dependent manner,

through a thioester bond between the C-terminus of Ub and a cysteine residue of E1, and next the thioester-linked

Ub is transferred onto a cysteine residue of E2 (or Ub-conjugating enzyme) by transesterification to form an

unstable E2–Ub intermediate. Next, E2 enzymes catalyze the attachment of Ub to lysine (Lys) residues of target

[20][21][22]
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proteins using an E3 (or Ub ligase). E3 enzymes are responsible for substrate recognition and either directly

transfer the Ub to the substrates from E2 or form an E3–Ub intermediate prior to the transfer. In successive rounds,

additional Ub moieties can be attached to one of the seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33,

Lys48, and Lys63) or the N-terminal methionine (Met1) of Ub to produce poly-Ub chains. The end-product is a Ub–

protein conjugate that contains an isopeptide bond between the C-terminal glycine residue of Ub and one of the

Lys residues in the substrate. These structurally distinct ubiquitylation patterns are recognized by various effector

proteins harboring a ubiquitin-binding domain (UBD) to result in diverse downstream signals. For example, poly-Ub

chains are linked by Lys48 target substrates to the 26S proteasome for degradation, whereas poly-Ub chains are

linked by Lys63 direct substrates to autophagosomes, both with the concomitant release of Ub moieties for reuse

.

The E3 Ub ligases can be classified into single- and multi-subunit groups . The single-subunit group includes

several subfamilies based upon their mechanisms of action and the presence of specific domains: HECT

(homology to E6–AP C terminus), RING (really interesting new gene), and U-box type E3s. The multi-subunit

group, cullin-RING box1-ligases (CRLs), are further divided into four subfamilies: SCF (S phase kinase-associated

protein 1–cullin 1–F-box), BTB (Bric-a-brac–Tramtrack–Broad complex), DDB (DNA damage-binding domain-

containing), and APC (anaphase-promoting complex).

Three E2 enzymes, UBC32, UBC33, and UBC34 play a negative role in drought stress response and ABA

signaling , and numerous E3 ligases are involved in the inhibition of ABA signaling in optimal conditions, ABA

induction upon environmental stress, and ABA attenuation after achieving stress tolerance . The currently known

components of ABA perception and signaling and E3 ligases involved in the process are listed in Table 1.

Table 1. ABA pathway components targeted by E3 ligases.

Pathway Component Specific Target E3 Ligase [References]
(Remarks)

ABA Receptors

RCAR1/PYL9
DDA1 ; REA1 ; PUB22 ;

PUB23 

RCAR3/PYL8 RIFP1 ; DDA1 

RCAR10/PYL4
DDA1 ; RSL1 ; UBC26 (E2)-

RFA4 (E3) ; RFA1 

RCAR11/PYR1 RSL1 ; RFA1 ; RFA4 

Type 2C protein phosphatases
(PP2C) ABI1

PUB12 ; PUB13 ; BPM3 ;
BPM5 ; UBC27/AIRP3 ; COP1

ABI2 RGLG1 ; RGLG5 
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Pathway Component Specific Target E3 Ligase [References]
(Remarks)

HAB1 BPM3 ; BPM5 

HAB2/NHL29 RGLG1 ; RGLG5 

AHG1 PIR1.2 ; PIR2 

AHG3/PP2CA
RGLG1 ; RGLG5 ; PIR1.2 ;

PIR2 ; COP1 ; BPM3 ; BPM5

HAI1/SAG113 PIR1.2 ; PIR2 

HAI3 PIR1.2 ; PIR2 

SnRK2 kinases
SnRK2.3/SRK2I PP2-B11 

SnRK2.6/OST1 HOS15 

ABA-responsive transcription
factors

ABI5
DWA1 ; DWA2 ; KEG ; ABD1

; COP9 

ABI3 AIP2 

ABI4 COP1 

ABF1 KEG 

ABF2/AREB1 KEG 

ABF3/AREB2 KEG 

DREB2 DRIP1 ; DRIP2 ; BPM2 

HB6 BTB1-6/BPM1-6 

MYB96 MIEL1  (Myb96 activates ABI4)

MYB30 RHA2b ; MIEL1 

RAV1 BPM1 

Other regulatory and signaling
factors and ABA-responding

genes

ADA2B SKIP24/At1g08710 

ATP1/SDIRIP1
AIRIP2 ; AIRP1 ; SDIR1

; (SDIRIP1 activates ABI5)
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Pathway Component Specific Target E3 Ligase [References]
(Remarks)

ACD11
XBAT35.2 ; (ACD11 is one of

ABA-responding genes)

RD21
AIRP3/LOG2 ; (positive role in

ABA responses; RD21 is Cys
protease)

CIPK26 KEG 

PP2A CHIP 
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