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Genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short

span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food

production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome

engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate

allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female),

male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and

disease resistance) and their wellbeing (e.g., hornlessness).

genome editing  ZFNs  TALANs  CRISPR-Cas9  guide RNA  livestock  precision

specificity

1. Introduction

Genome editing is the captivating genetic engineering approach with enormous potential in the biomedical

application of gene function manipulation. It ensures the ability to treat or anticipate various genetic disorders

through deletion, addition, or base change at a specific location of the desired organismal genome’s gene of

interest (GOI). The ideal genome-editing approach needs to effectively alter a genomic sequence, showing higher

DNA sequence specificity with less or no off-target effects. The strategy of genome engineering has to possible

change genomic sequence, also should have higher DNA sequence specificity with fewer or no off-target effects.

The idea of genome engineering begins with the enhancement of several specific molecular tools. They work as

precise molecular scissor, known as Zinc Finger Nucleases (ZFN) , Translation Activator-Like Effector Nucleases

(TALENs) , MegNs (Meganucleases), and CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR)/CRISPR-associated nuclease (Cas) 9)  (Figure 1).
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Figure 1. Diagrammatic illustration of various genome editing methodologies which is possible since the evolution

of multiple precise molecular techniques. They work as exact molecular scissor, majorly, ZFNs (Zinc finger

nucleases), TALENs (Translation activator-like effector nucleases), MegNs (Meganucleases), and CRISPR-Cas9

(Clustered regularly interspaced short palindromic repeats-CRISPR-associated system). Here, ZF: Zinc Finger, and

PAM; protospacer adjacent motif.

CRISPR-Cas9, a bacterial antiviral framework, is the recently developed modern era of technology with gigantic

potential capabilities. Shockingly, the thought of the strategy is motivated and adaptive from the single-celled

microscopic organisms (bacteria) and archaea , where this life forms a utilisation endogenous CRISPR system

as the versatile immune strategy. In essence, this is a defence mechanism against viruses or other pathogens’

genetic sequences . Moreover, these microbes are specialised in building up heritable memory of

past assaulted phage or other pathogens through this strategy to cut up and devastate invader’s DNA in peace and

long-term prospects .

2. Adaptation of Adoptive Mechanism as CRISPR Editing
System

CRISPR–Cas mediated immune response in microscopic organisms is noteworthy and comprises three

mechanistic steps: spacer acquisition/adaptation, crRNA (CRISPR RNA) biogenesis/expression, and target

interference. The molecular mechanism is specified all the way through each level; in the first stage, microbes

capture a part of the hereditary/genetic material of viruses and integrate it as the primary spacer into the CRISPR

cluster. In this way, it permits bacteria to remain immune against viruses or closely related ones in the future

through making a genetic memory. During crRNA biogenesis, rehashed viruses’ assault triggers the entire CRISPR
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cluster expression to specific pre-crRNA (pre-CRISPR RNA), which assists into mature crRNA by ribonuclease

RNase III and taken after binding with trans-activating crRNA (tracrRNA) through a direct repeat. Each crRNA

contains a distinctive sequence for target interference; all crRNA and tracrRNA make a complex with Cas nuclease

protein to form a ribonucleoprotein effector complex. The crRNA acts as a guide to superintend this effector

complex to impair the viruses . Few studies have shown ‘how the prokaryotic CRISPR–Cas system can be

utilised as a perfectional and exact molecular scissor after a couple of manipulations in crRNA’, since single guide

RNA (g-RNA) replaces the necessity of both the crRNA and tracrRNA. Therefore, effective gene editing through

CRISPR employs two critical components: a g-RNA and the Cas9 protein .

For a long time, transgenesis in mammalian cells and especially embryos contains hurdles, mainly for large

animals such as livestock. Since the discovery of the engineered nucleases adopted allows us, by adding a site-

specific double-stranded break (DSB), to make precise the genetic manipulation of specific genes or sequences by

means of HR (Homologous Recombination) and NHEJ (Non-Homologous End Joining) repair pathways .

However, site-specific Cas9 generated DSB effectively stimulated the HR pathway approximately 10,000-fold in the

lower organism . In contrast, the competitive NHEJ route for DSB repair, is routinely favoured and leads, as

much as possible, to minor insertions or deletions (indels) in mammals . For the development of biomedical

models, therapeutic trials, and joint breeding, site-specific genome manipulation is a critical method. Although

preliminary research on the use of engineered nucleases for precise genetic engineering of food animal species

focused on ZFN , meganucleases , and TALENs . Later, CRISPR/Cas9 gradually

emerged as the tool of choice due to its easy architecture and implementation .

To begin, gene editing technology was developed in the late twentieth century and is still evolving. Despite this, the

whole subject has garnered considerable attention since its discovery. The first gene editing technique that

established a foundation in the area of recombinant DNA technology was ZFN, launched in 1991 and widely

utilized for many decades . Additionally, another gene editing technique known as TALENs was developed in

2009 in response to the discovery of the genome-targeting capacity of TAL effectors (TALE) . Later that year,

another interesting genome modification technique, termed CRISPR, was discovered (Figure 1). It synthesizes a

combination of short directed RNAs (guide RNA) and Cas-9 nuclease and is forced to build a tailored

endonuclease for each target, a need that TALEN and ZFN cannot meet (Figure 2). Since this discovery, the

entrance barrier to genome editing has been substantially reduced, allowing for more user participation and

creativity . The CRISPR/Cas9 protein complex (tracrRNA) requires two RNA transcripts: the crRNA and the

trans-acting CRISPR RNA . When this dual RNA restriction is reconfigured as a single-guide RNA (sgRNA) of

19–24 bp, Cas9 is functional and effective in generating DSB into the target gene’s DNA sequence .
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Figure 2. This picture is depicting the adopted functional CRISPR complex containing single guide RNA and Cas9

protein. It is the reconfiguration of natural dual RNA (tracrRNA and crRNA) system to a single-guide RNA (sgRNA)

of 19–24 bp, which is good enough to program Cas9 to introduce DSB in target DNAs in vivo. PAM; protospacer

adjacent motif.

3. Bioinformatics Tool Used to Design sgRNA for Gene
Editing

As per previous studies, CRISPR/Cas9 protein recognises PAM sequence, sgRNA act to help to identify target loci

followed by activation of endonuclease activity to cleave at a specific site. Cas9 enzyme cleavage activity varies

significantly among different locations and cell types, owing to several factors that can affect the linking and

cleavage potential of the sgRNA–Cas9 system. Therefore, various investigations have revealed that all included

guide RNA characteristic (like composition, position and GC content), physical attributes (like melting temperature,

and secondary structure formation) and chromatin remodelling for differential gene expression, together affecting

the sgRNA efficiency. Various characterising tools were created to design highly efficient guide RNAs (Figure 3).
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Figure 3. Time scale-based evolutionary representation of various Web-based sgRNA design tools from the past

year to present.

4. Guide RNA Sequence Features

Target sequence nucleotide constitution is one of the concerning factors of sgRNA efficiency and specificity for the

genome editing activities by Cas9 . The broad-scale screening of CRISPR-based editing in mammals

demonstrated that cytosine is more favourable at the cleavage position (-3 position proximal to PAM . Similarly,

guanine is most advantageous at site 1 and 2 ahead of the PAM sequence, whereas GC content of the

downstream sequence of the PAM region, especially 4–13 bases, come up with sgRNA efficiency. Contrarily,

thymine is not likely preferred at +/−4 nucleotides which neighbours the PAM .

However, sequence upstream to PAMs sequence may not influence sgRNA efficiency. The downstream line, on the

other hand, is expected to have a major impact on efficiency . Based on this valuable information, various

efficiency models have been generated. The energetics related to the emergence of the guide RNA, DNA, and Cas

protein complex are customary and might elucidate to eliminate biases between distinctive models, because a few

energetics approaches may better outline the Cas nuclease editing effectiveness . Furthermore, other

factors, such as genetic and epigenetic properties, including gene position, chromatin accessibility, and expression,

are also essential constraints that influence Cas nuclease activity and sgRNA binding . However, various studies

have investigated that nucleosomes negatively affect Cas9 target cleavage activity; on the other hand, DNase I

hypersensitivity and epigenome markers affect guide RNA efficacy . Keeping all property mentioned above

and their effects on efficiency, numerous computational tools for evaluating guide RNA efficiency and prediction of

its specificity have been created so far (Table 1).

Table 1. Computational tools are available for the design of sgRNAs to evaluation of guide RNA efficiency and

prediction of its specificity. All the links were accessed on 7 June 2021.
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Evaluation Guide RNA

Efficiency
Link to Access the Algorithms

E-CRISP (Cas9) http://www.e-crisp.org/E-CRISP/

CRISPRscan (Cas9,

Cpf1)
https://www.crisprscan.org/gene/

evaluateCrispr (Cas9) https://eu.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE
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Evaluation Guide RNA

Efficiency
Link to Access the Algorithms

sgRNAScorer (Cas9,

Cpf1)
https://sgrnascorer.cancer.gov/

SSC (Cas9) http://cistrome.org/SSC/

WU-CRISPR (Cas9) http://crisprdb.org/wu-crispr/

Azimuth (Cas9) https://github.com/MicrosoftResearch/Azimuth

CRISPRater (Cas9) http://www.leukemia-research.de/resources/crisprater/

CRISPRpred (Cas9) https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3531-9

CASPER (Cas9, Cpf1) https://pubmed.ncbi.nlm.nih.gov/28968798/

DeepCpf1 (Cpf1) http://deepcrispr.info/

TSAM (Cas9) https://pubmed.ncbi.nlm.nih.gov/29672669/

TUSCAN (Cas9) https://github.com/BauerLab/TUSCAN

uCRISPR (Cas9) https://github.com/Vfold-RNA/uCRISPR

Predict guide RNA specificity

CasOT (Cas9) http://eendb.zfgenetics.org/casot/

Cas-OFFinder (custom) http://www.rgenome.net/cas-offinder
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5. A Different Mechanism for the Transport CRISPR System
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The delivery of Cas9 into cells is an imperative thought in gene editing. Adopted CRISPR–Cas can be utilised in

different ways or formats, for instance, m-RNA (direct transfection of sgRNA and Cas9 RNA), DNA (vector-based

strategy), and in the form of RNP (ribonuclease protein complex). For detailed information around the CRISPR-Cas

transport systems, it would be ideal to follow the recent review article by Lino et al.  (Figure 4A).

Figure 4. Different Methods of Delivering CRISPR/Cas9 into Cells. Schematic demonstration of in vivo

CRISPR/Cas delivery modes and vehicles in numerous biological frameworks. Frameworks utilised to deliver

CRISPR/Cas components can be separated into two major categories, CRISPR/Cas delivery mode and delivery

carrier. (A) Three CRISPR/Cas delivery models, including protein (Cas protein with guide RNA as a

ribonucleoprotein complex, RNP), DNA (plasmid encoding both the Cas protein and the gRNA), and RNA (mRNA

for Cas protein translation and a separate gRNA), (B) Can be delivered into mammalians, aquacultures or plants

by means of bacterial or viral vectors, chemical and physically directed delivery method, (C) To facilitate the

delivery of the CRISPR system in the cell, transfection is accomplished by creating a membrane pore, and (D)

Through the CRISPR framework, indel creation (knock out) or knock-in of a gene of interest in a targeted cell is

possible.

The delivery method for CRISPR is very much similar to the standard transfection method for nucleic acid.

CRISPR/Cas9 system delivery inside the cell usually conducts through either viral or chemical processes.

Generally, physical processes are taken on electrical or mechanical forces to form transient pores in the membrane

of cells, facilitating the update of CRISPR molecules. Moreover, recently, due to nanotechnology and

microtechnologies, the physical method for transfection is in higher demand. For instance, nanostructure-mediated

electroporation permits miniaturisation or shortened the physical transfection method to enhance transfection
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efficiency and precision . It has the advantage that it homogeneously treats cells with more minor or no viability

damage to cells than bulk electroporation. Usually, CRISPR/Cas9 protein complexes have to be delivered in the

cytoplasm of the transfected cells. To achieve efficient gene editing, CRISPR/Cas9 protein complexes must cross

both the cell membrane and the nuclear membrane. As a result, the nuclear localisation sequence (NLS) directs

the CRISPR/Cas9 system to the nucleus-encoded by the plasmid vector or the Cas9 protein. In the absence of an

NLS sequence or signal, the CRISPR/Cas9 complex only enters the nucleus at the time of cell division when the

membrane is disrupted .

6. Genome Editing in Ruminants Such as Cattle and Buffalos

It has been anticipated that in the population of 7.6 billion humans globally, every ninth individual (821 million

people) does not have sufficient food to cover an active life . Despite the lack of food, the human population is

expected to rise to 8.5 billion in 2030, 9.7 billion in 2050, and 11.2 billion in 2100 . As a result, the United

Nations’ Food and Agriculture Organization (FAO) predicts that total agricultural yield (crop yield and animal-based

products) should rise to 60% to fulfil global demand. More specifically, this percentage is further contributed to by

animal protein, such as meat production by 76%, and milk productivity will need to increase by 63%. In order to

achieve this ultimatum goal, a precise and practical approach should be used . Meanwhile, genomics targets for

genome engineering are possible by screening the differential expression using high throughput proteomics or

genomics techniques . In this regard, the generation of collective knowledge across the globe allows

one to share and build the more efficient farm animals breeds .

Genome-editing and transgenic innovations offer the chance for more significant gains over a shorter time. Until

now, genome editing investigation in cattle has centred fundamentally on enhancing the efficiency of food

productivity (e.g., meat and milk), animal health, and welfare (animal population, surveyed or hornlessness and

disease), generate all-male offspring, eradication of allergens from products (e.g., beta-lactoglobulin knock-out).

On the other hand, genome editing might be utilised to precisely knock-in valuable alleles (such as heat tolerance,

illness resistance), as well as haplotypes into our native locally well-adapted cattle breeds genome, subsequently

to improve their productivity . We recently used the buffalo mammary epithelial cells to understand lactogenic

signalling .

Early research was majorly focused on animal growth. Skeletal muscle gives meat for human utilisation or

consumption, consisting of muscle fibres, intramuscular adipose tissues, and connective tissues . The

importance of growth hormone (GH) and insulin-like growth factor I (IGF-I) in regulating body size in developing

animals has long been recognised. GH and IGF-I play an essential role in muscle growth, both before and after

birth . The GH–IGF axis (growth hormone-insulin-like growth factor axis), regulated by the pituitary gland and

liver, is responsible for muscle growth and body mass . GH, on the other hand, induces the development of IGF-

I in almost all tissues. The liver is the only organ that can primarily produce serum IGF-I. The pituitary gland

produces GH, which stimulates the development of IGF-I in other tissues (liver and muscle). Even though some

cIGF-I is released from other tissues, such as muscle, the liver is the most common source of circulating IGF-I

(cIGF-I). cIGF-I is a component of the negative feedback loop that controls GH secretion . IGF-1 derived from
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both muscle and liver plays a crucial role in myogenesis . At the same time, a mutation in the IGF-2 gene’s

regulatory function has been linked to increased muscle growth in pigs . In recent years, effective microinjection

of the GH and IGF-1 genes into pig zygotes has been reported. Later, two lines of GH-expressing transgene pigs

gained 11.1 and 13.7 percent more mass than control pigs . When transgenic technology is combined with

recent genome editing technology, it creates a new age or property for animal protein that could affect animal

welfare, while meeting human diet demands. The cloned pig, for example, that expresses the fat-1 gene from the

nematode C. elegans, has a lower ratio of n–6 to n–3 fatty acids. A higher ratio of n–6 to n–3 fatty acids has been

linked to poor bone health in humans. A lower ratio is related to healthier bone properties; thus, reducing both fatty

acids can have nutritional health benefits in a diet .

Furthermore, related modifications have been observed in pigs containing the C. elegans n–3 fatty acid desaturase

gene (encoded by the fat-1 gene) . Similar findings were obtained when CRISPR/Cas9 was used to insert

the fat-1 gene into the pig in the rosa 26 locus . This is in proximity with gene alteration (genetic manipulation),

which depends on the internalisation of the artificial gene (transgenes) to improve characteristic traits in animals.

The genome/gene editing method allows us to make precise and error-free modifications to a livestock animal’s

genome, to increase productivity, production, and infection resistance. In the genome editing region, targeted gene

editing of the myostatin gene is a popular goal for increasing growth and muscle production. They were first noticed

in heavily muscled sheep and cattle like Piedmontese and Belgian Blue cattle and the Texel sheep breed.

Additionally, it was discovered that decreased expression of the myostatin gene (also known as GDF8, or growth

differentiation factor 8) results in increased muscle growth. Single-nucleotide polymorphisms in the myostatin gene

trigger a fundamental genetic change. The Piedmontese and Belgian Blue have a single-nucleotide polymorphism

in the myostatin gene and an 11-bp deletion in the myostatin gene .
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