CRISPR-Cas9-Based Genome Engineering in Animals | Encyclopedia.pub

CRISPR-Cas9-Based Genome Engineering in
Animals

Subjects: Agriculture, Dairy & Animal Science
Contributor: Syed Azmal Ali

Genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short
span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food
production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome
engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate
allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female),
male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and
disease resistance) and their wellbeing (e.g., hornlessness).

genome editing ZFNs TALANS CRISPR-Cas9 guide RNA livestock precision

specificity

| 1. Introduction

Genome editing is the captivating genetic engineering approach with enormous potential in the biomedical
application of gene function manipulation. It ensures the ability to treat or anticipate various genetic disorders
through deletion, addition, or base change at a specific location of the desired organismal genome’s gene of
interest (GOI). The ideal genome-editing approach needs to effectively alter a genomic sequence, showing higher
DNA sequence specificity with less or no off-target effects. The strategy of genome engineering has to possible
change genomic sequence, also should have higher DNA sequence specificity with fewer or no off-target effects.
The idea of genome engineering begins with the enhancement of several specific molecular tools. They work as
precise molecular scissor, known as Zinc Finger Nucleases (ZFN) I, Translation Activator-Like Effector Nucleases
(TALENSs) @ MegNs (Meganucleases), and CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/CRISPR-associated nuclease (Cas) 9) BI4IE (Figure 1).
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Figure 1. Diagrammatic illustration of various genome editing methodologies which is possible since the evolution
of multiple precise molecular techniques. They work as exact molecular scissor, majorly, ZFNs (Zinc finger
nucleases), TALENs (Translation activator-like effector nucleases), MegNs (Meganucleases), and CRISPR-Cas9
(Clustered regularly interspaced short palindromic repeats-CRISPR-associated system). Here, ZF: Zinc Finger, and

PAM; protospacer adjacent motif.

CRISPR-Cas9, a bacterial antiviral framework, is the recently developed modern era of technology with gigantic
potential capabilities. Shockingly, the thought of the strategy is motivated and adaptive from the single-celled
microscopic organisms (bacteria) and archaea 81 \where this life forms a utilisation endogenous CRISPR system
as the versatile immune strategy. In essence, this is a defence mechanism against viruses or other pathogens’
genetic sequences WEIRILALLLA noreover, these microbes are specialised in building up heritable memory of
past assaulted phage or other pathogens through this strategy to cut up and devastate invader’s DNA in peace and

long-term prospects 231,

2. Adaptation of Adoptive Mechanism as CRISPR Editing
System

CRISPR-Cas mediated immune response in microscopic organisms is noteworthy and comprises three
mechanistic steps: spacer acquisition/adaptation, crRNA (CRISPR RNA) biogenesis/expression, and target
interference. The molecular mechanism is specified all the way through each level; in the first stage, microbes
capture a part of the hereditary/genetic material of viruses and integrate it as the primary spacer into the CRISPR
cluster. In this way, it permits bacteria to remain immune against viruses or closely related ones in the future

through making a genetic memory. During crRNA biogenesis, rehashed viruses’ assault triggers the entire CRISPR
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cluster expression to specific pre-crRNA (pre-CRISPR RNA), which assists into mature crRNA by ribonuclease
RNase Ill and taken after binding with trans-activating crRNA (tracrRNA) through a direct repeat. Each crRNA
contains a distinctive sequence for target interference; all crRNA and tracrRNA make a complex with Cas nuclease
protein to form a ribonucleoprotein effector complex. The crRNA acts as a guide to superintend this effector
complex to impair the viruses BI4I13] Few studies have shown ‘how the prokaryotic CRISPR—Cas system can be
utilised as a perfectional and exact molecular scissor after a couple of manipulations in crRNA', since single guide
RNA (g-RNA) replaces the necessity of both the crRNA and tracrRNA. Therefore, effective gene editing through
CRISPR employs two critical components: a g-RNA and the Cas9 protein 1811171,

For a long time, transgenesis in mammalian cells and especially embryos contains hurdles, mainly for large
animals such as livestock. Since the discovery of the engineered nucleases adopted allows us, by adding a site-
specific double-stranded break (DSB), to make precise the genetic manipulation of specific genes or sequences by
means of HR (Homologous Recombination) and NHEJ (Non-Homologous End Joining) repair pathways [18l,
However, site-specific Cas9 generated DSB effectively stimulated the HR pathway approximately 10,000-fold in the
lower organism 22129 |n contrast, the competitive NHEJ route for DSB repair, is routinely favoured and leads, as
much as possible, to minor insertions or deletions (indels) in mammals 2221, For the development of biomedical
models, therapeutic trials, and joint breeding, site-specific genome manipulation is a critical method. Although
preliminary research on the use of engineered nucleases for precise genetic engineering of food animal species
focused on ZFN [23I24251[26]127] ' meganucleases 28, and TALENs [2BJBELBE2] | ater, CRISPR/Cas9 gradually

emerged as the tool of choice due to its easy architecture and implementation [23134],

To begin, gene editing technology was developed in the late twentieth century and is still evolving. Despite this, the
whole subject has garnered considerable attention since its discovery. The first gene editing technique that
established a foundation in the area of recombinant DNA technology was ZFN, launched in 1991 and widely
utilized for many decades 33, Additionally, another gene editing technique known as TALENs was developed in
2009 in response to the discovery of the genome-targeting capacity of TAL effectors (TALE) [2€l. Later that year,
another interesting genome modification technique, termed CRISPR, was discovered (Figure 1). It synthesizes a
combination of short directed RNAs (guide RNA) and Cas-9 nuclease and is forced to build a tailored
endonuclease for each target, a need that TALEN and ZFN cannot meet (Figure 2). Since this discovery, the
entrance barrier to genome editing has been substantially reduced, allowing for more user participation and
creativity 8. The CRISPR/Cas9 protein complex (tracrRNA) requires two RNA transcripts: the crRNA and the
trans-acting CRISPR RNA BZ38] when this dual RNA restriction is reconfigured as a single-guide RNA (sgRNA) of

19-24 bp, Cas9 is functional and effective in generating DSB into the target gene’s DNA sequence 37,
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Figure 2. This picture is depicting the adopted functional CRISPR complex containing single guide RNA and Cas9
protein. It is the reconfiguration of natural dual RNA (tracrRNA and crRNA) system to a single-guide RNA (sgRNA)
of 19-24 bp, which is good enough to program Cas9 to introduce DSB in target DNAs in vivo. PAM; protospacer

adjacent motif.

3. Bioinformatics Tool Used to Design sgRNA for Gene
Editing

As per previous studies, CRISPR/Cas9 protein recognises PAM sequence, sgRNA act to help to identify target loci
followed by activation of endonuclease activity to cleave at a specific site. Cas9 enzyme cleavage activity varies
significantly among different locations and cell types, owing to several factors that can affect the linking and
cleavage potential of the sgRNA—Cas9 system. Therefore, various investigations have revealed that all included
guide RNA characteristic (like composition, position and GC content), physical attributes (like melting temperature,
and secondary structure formation) and chromatin remodelling for differential gene expression, together affecting

the sgRNA efficiency. Various characterising tools were created to design highly efficient guide RNAs (Figure 3).
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Figure 3. Time scale-based evolutionary representation of various Web-based sgRNA design tools from the past

year to present.

| 4. Guide RNA Sequence Features

Target sequence nucleotide constitution is one of the concerning factors of sgRNA efficiency and specificity for the
genome editing activites by Cas9 B2, The broad-scale screening of CRISPR-based editing in mammals
demonstrated that cytosine is more favourable at the cleavage position (-3 position proximal to PAM 49, Similarly,
guanine is most advantageous at site 1 and 2 ahead of the PAM sequence, whereas GC content of the
downstream sequence of the PAM region, especially 4-13 bases, come up with sgRNA efficiency. Contrarily,
thymine is not likely preferred at +/-4 nucleotides which neighbours the PAM 1],

However, sequence upstream to PAMs sequence may not influence sgRNA efficiency. The downstream line, on the
other hand, is expected to have a major impact on efficiency 2. Based on this valuable information, various
efficiency models have been generated. The energetics related to the emergence of the guide RNA, DNA, and Cas
protein complex are customary and might elucidate to eliminate biases between distinctive models, because a few
energetics approaches may better outline the Cas nuclease editing effectiveness 42143l44] - Fyrthermore, other
factors, such as genetic and epigenetic properties, including gene position, chromatin accessibility, and expression,
are also essential constraints that influence Cas nuclease activity and sgRNA binding 2. However, various studies
have investigated that nucleosomes negatively affect Cas9 target cleavage activity; on the other hand, DNase |
hypersensitivity and epigenome markers affect guide RNA efficacy 431146l Keeping all property mentioned above
and their effects on efficiency, numerous computational tools for evaluating guide RNA efficiency and prediction of

its specificity have been created so far (Table 1).

Table 1. Computational tools are available for the design of sgRNAs to evaluation of guide RNA efficiency and

prediction of its specificity. All the links were accessed on 7 June 2021.

Evaluation Guide RNA

o Link to Access the Algorithms
Efficiency

E-CRISP (Cas9) http://www.e-crisp.org/E-CRISP/

CRISPRscan (Cas9,

https://www.crisprscan.org/gene/
Cpfl)

evaluateCrispr (Cas9) https://eu.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE
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Evaluation Guide RNA

o Link to Access the Algorithms
Efficiency

sgRNAScorer (Cas9,
https://sgrnascorer.cancer.gov/

Cpfl)

SSC (Cas9) http://cistrome.org/SSC/

WU-CRISPR (Cas9) http://crisprdb.org/wu-crispr/

Azimuth (Cas9) https://github.com/MicrosoftResearch/Azimuth

CRISPRater (Cas9) http://www.leukemia-research.de/resources/crisprater/

CRISPRpred (Cas9) https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3531-9

CASPER (Cas9, Cpfl) https://pubmed.ncbi.nim.nih.gov/28968798/

DeepCpfl (Cpfl) http://deepcrispr.info/

TSAM (Cas9) https://pubmed.ncbi.nIm.nih.gov/29672669/
TUSCAN (Cas9) https://github.com/BauerLab/TUSCAN
UCRISPR (Cas9) https://github.com/Vfold-RNA/UCRISPR

Predict guide RNA specificity

CasOT (Cas9) http://eendb.zfgenetics.org/casot/

Cas-OFFinder (custom) http://www.rgenome.net/cas-offinder
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Evaluation Guide RNA ) )
Link to Access the Algorithms

Efficiency
sgRNAcas9 (Cas9) http://www.biootools.com/
FlashFry (custom) https://aaronmck.github.io/FlashFry/
Crisflash (Cas9) https://github.com/crisflash/crisflash
MIT (Cas9) https://crispr.mit.edu
CCTop (Cas9, Cpfl) https://cctop.cos.uni-heidelberg.de:8043/
CFD (Cas9) https://www.genscript.com/gRNA-detail/mouse/11537/Cas9/Cfd-CRISPR-guide-

RNA.html

https://www.genscript.com/gRNA-detail/mouse/11537/Cas9/Cfd-CRISPR-guide-

CRISPROoff (Cas9)

RNA.html
UCRISPR (Cas9) https://github.com/Vfold-RNA/UCRISPR
CRISTA (Cas9) https://crista.tau.ac.il/
, , , , a, N.V.;
Elevation (Cas9) https://github.com/microsoft/Elevation
TAL
DeepCRISPR (Cas9) http://deepcrispr.info/DeepSpCas9/

4. Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.;
Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007,
315, 1709-1712.

5. Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes.

| sufeRifferentdechanism for the Transport CRISPR System

6. Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The
Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic

https://encyclopedia.pub/entry/15279 7/13



CRISPR-Cas9-Based Genome Engineering in Animals | Encyclopedia.pub

TheAditigeRest 2a4d inB® cOIR/5-HPBaberative thought in gene editing. Adopted CRISPR-Cas can be utilised in

B AR BARaRa S, B RIS PRIALRE TARHE & Sl oY bAMERaSng drknasa (ESionease
straé%g_e/a aﬁjfnf%elfoi%of RNP (ribonuclease protein complex). For detailed information around the CRISPR-Cas

transport systems, it would be ideal to follow the recent review article by Lino et al. 2748 (Figure 4A).
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Figure 4. Different Methods of Delivering CRISPR/Cas9 into Cells. Schematic demonstration of in vivo

15 Makarova, K.S.; Wolf, Y.1.; Koonin, E.V. Classification and nomenclature of CRISPR-Cas systems:
CRISPR/Cas delivery modes and vehicles in" numerous biological frameworks. Frameworks utilised to deliver

Where from here? CRISPR J. 2018, 1, 325-336,
CRISPR/Cas components can be separated into two major categories, CRISPR/Cas delivery mode and delivery
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microtechnologies, the physical method for transfection is in higher demand. For instance, nanostructure-mediated

electroporation permits miniaturisation or shortened the physical transfection method to enhance transfection
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