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Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional
disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act
on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation
of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and

memory behavior.

ethanol binge drinking adolescence adenosine caffeine

| 1. Introduction

Ethanol is the most commonly used drug by adolescents, mainly consumed through a binge drinking pattern.
According to the National Institute on Alcohol Abuse and Alcoholism (NIAAA), binge drinking consumption is
characterized by approximately 0.08% grams of alcohol/dL, which corresponds to the intake of four drinks for
women and five drinks for men during 2 h . Evidence from human and laboratory animal studies highlighted the
profound structural and functional neurodevelopment processes modifying synaptic plasticity and dendritic
connectivity during adolescence . This on-going neuronal maturation predisposes the central nervous system
(CNS) to harmful consequences of drugs (i.e., ethanol), eliciting anxiety and depressive symptoms as well as
cognitive deficits BBl These ethanol-induced behavioral changes in adolescents result from disturbances in
homeostasis of several brain regions, such as the prefrontal cortex, hippocampus, and limbic system, which
aggravates adolescent risk behavior 8. In addition, ethanol also negatively affects the mesocorticolimbic pathway,
which is part of the reward and reinforcement circuitry. Activation of the dopaminergic system signaling on the
ventral tegmental area and nucleus accumbens, concomitant to hyperactivation of the glutamatergic system in

limbic structures, trigger neurotoxicity mechanisms and behavioral alterations, especially in the immature brain [
8]

Although caffeine has multiple molecular targets, it was first proposed by Bertil Fredholm late last century that
caffeine mostly acts through the antagonism of adenosine receptors [&. Indeed, it was recently confirmed that the
ability of caffeine to control synaptic transmission and plasticity in hippocampal circuits is critically and solely
dependent on the antagonism of adenosine receptors 9. Adenosine is a prototypical neuromodulator released in

an activity-dependent manner, with a parallel role in fine-tuning neuronal function under physiological conditions
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and controlling neurodegeneration in different neuropsychiatric conditions 1. Adenosine signals through
adenosine receptors, namely Al, A2A, A2B, and A3 (121, These four metabotropic receptors can recruit numerous
transduction pathways, in particular, the formation of intracellular cyclic adenosine monophosphate (CAMP).
Adenosine Al and A3 receptors are coupled to Gi/Go protein, resulting in the inhibition of adenylate cyclase activity
and consequent reduction of cAMP formation, whereas A2A and A2B receptors are coupled to Gs proteins,

activating adenylate cyclase that increases cAMP production 3],

Adenosine receptors have a wide but heterogenous distribution in the brain. Adenosine Al receptors (A1R) are the
most abundant adenosine receptor subtype, with higher levels in the limbic cortex and thalamus. A1R potently
inhibit glutamatergic transmission throughout the brain, as well as dopamine release in corticostriatal neurocircuits
(241151 On the other hand, adenosine A2A receptors (A2AR) are sparsely but widely distributed throughout the brain
to selectively control synaptic plasticity processes LEIIL7II8] and they are more densely located in the basal ganglia
to integrate dopaminergic modulation of corticostriatal glutamatergic transmission 122021 These adenosine
receptors interact with dopamine receptors as A1/D1 and A2A/D2 receptor heterodimers, respectively 22, to

efficiently regulate the mesocorticolimbic system and control addiction circuits 23],

The molecular mechanisms associated with drug abuse involve multiple processes ranging from neurotransmitter
reuptake blockade, increase in excitatory neurotransmitters release, as well as high extracellular monoamine levels
in synapses (reviewed in ref. [24l). Ethanol increases the synaptic levels of adenosine through direct and indirect
processes 23126127 physiologically, the bidirectional equilibrative nucleoside transporters (ENT1) regulate
adenosine intracellular and synaptic levels, and ethanol inhibits the activity of ENT1 (a direct mechanism),
increasing adenosine levels in the synaptic cleft 281, Chronic exposure to ethanol triggers neuroadaptations in the

densities of A1 and A2A receptors, which may contribute to ethanol abuse and neurotoxicity [281271129]

The indirect process is a result of ethanol metabolism to acetaldehyde by alcohol dehydrogenase, CYP2E1 and
catalase enzymatic systems. Subsequently, acetaldehyde is converted to acetate, catalyzed by aldehyde
dehydrogenase B9, The acetate produced is recycled to form the neurotransmitter acetylcholine by an active

process (i.e., adenosine triphosphate consumption), increasing the levels of intracellular adenosine B9,

| 2. Ethanol versus Adenosine Effects on Anxiety

Ethanol is a drug commonly used in early adolescence, a period where curiosity, novelty, and risk-taking are
prevalent B, Such early ethanol intake predisposes these adolescent consumers to a higher probability of ethanol
abuse or dependence in adulthood since binge drinking leads to an escalating consumption of alcohol, culminating
in a heavy drinking pattern of use, aggravating the neurotoxicological effects of ethanol 223134l Epidemiological
studies have demonstrated that binge ethanol drinking induces mood and anxiety disorders in adolescents, either
upon daily or episodic consumption [32I381 Spear [@ reported that ethanol toxicological consequences are
intensified among adolescents as a result of modifications in brain maturation and behaviors that are observed in

both clinical and experimental studies.
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Reduction and disruption of the integrity of the white matter, as well as a decrease of connectivity between the
prefrontal cortex and limbic regions, i.e., mesolimbic and mesocortical pathways mediated by dopamine signaling,
have been found following adolescent ethanol exposure 237, These structural and molecular dysfunctions trigger
long-lasting anxiety-like behavior in adulthood. Previous studies have indicated that anxiety-like behavior in rodents
is present in several animal models involving ethanol consumption, including the development of social anxiety in
male rodents 8 anxiogenic effects in elevated plus-maze in adolescent animal exposure to adulthood 3249 jn
the light-dark box 21 and open field paradigms [22143]144]

Some studies suggest that ethanol may increase adenosine levels in the brain by acetate-oxidation (acetyl-CoA to
ATP) and inhibition of cellular uptake by ENT-1 blockade 2. This overactivity of the adenosine system may result
in different excitatory mechanisms by alteration of the balance between adenosine Al (inhibitory) and A2A
(excitatory) receptors, consequently affecting other neurotransmitters involved in anxiety 2!, As mentioned above,
A1R are widespread in the brain, with the highest expression in the hippocampus, cerebral and cerebellar cortex,
and thalamic nuclei €. Additionally, A1R are moderately expressed in the caudate-putamen and nucleus
accumbens, acting presynaptically and postsynaptically 24, In turn, A2AR have the highest density in basal ganglia

and are also present in the extended amygdala and hypothalamus that are involved in the modulation of anxiety
and stress [47148],

The exploration of anxiety-like behavior (elevated plus maze and open field test) at several time points after
withdrawal of ethanol intake following an intraperitoneal administration of an acute ethanol dose (4 g/kg) revealed a
more pronounced alteration of anxiety between 12-18 h 29 the acute administration of an A1R agonist (CCPA:
0.05, 0.125, and 0.25 intraperitoneally) reduced of anxiogenic-like behavior in the elevated plus-maze, whereas the
administration of the selective A2AR agonist (DPMA) had no effect. Conversely, the selective A1R antagonist 8-
cyclopentyl-1,3-dipropylxanthine (DPCPX) triggered anxiety. These findings were also reported by another group
B9 ysing the A1R agonist R-N6-phenylisopropyladenosine (R-PIA) and the A2AR agonist 2-p-(2-carboxethyl)
phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680). Other studies also suggest the direct
involvement of adenosine on anxiety, since A1R knockout mice displayed increased anxiety and an aggressive
profile BLB2 These results indicate that AIR may be involved in anxiety-like behavior and emerges as a promising

pharmacological target to attenuate anxiety conditions 231,

A2AR knockout mice also display alterations of anxiety-like behaviors, and ADORA2A polymorphisms are
associated with social behavior and exploratory activity, eliciting anxiety-like behavior with the involvement of the
anterior cingulate cortex and amygdala BAIBSIEEIST Accordingly, the genetic deletion of neuronal A2AR prevents
stress-induced anxiety B8 whereas the overexpression of A2AR leads to an anxiogenic profile B9 This also

implies a role of A2AR in the control of anxiety [6261],

The researchers hypothesize that ethanol exposure induces hyperexcitability of the adenosinergic system in the
adolescent brain, eliciting two fundamental alterations: (i) disruption of brain maturation, promoting unbalance of
adenosine A1/A2A receptors, inducing anxiety behavior, and (ii) modifying adenosine-dependent neurotransmitter

levels and the activity of neurocircuits involved in anxiety.
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The impact of ethanol intake on the density and expression of adenosine receptors has resulted in somewhat
conflicting results. Thus, chronic heavy intermittent ethanol vapor exposure followed by withdrawal (blood ethanol
concentration 162.1-217.9 mg/dL) for 64 h, followed by 8 h of withdrawal or not, causes an overexpression of A1R
in the cerebral cortex, with no changes of A2AR density in the striatum (2], In contrast to these findings in adult
rodents, the intake of ethanol in adolescent mice triggers a persistent reduction of brain A1R density during
withdrawal (€3, A reduction of A1R expression and density in the cerebral cortex and cerebellum of the offspring of
dams exposed to ethanol was also observed ¢4, Notably, there is a positive correlation between A2AR affinity and
the A2AR/ALR affinity ratio but a negative correlation between A1R affinity and the potency (ED50) of adenosine
agonists to accentuate ethanol-induced motor incoordination 2. In general, noxious situations trigger a
downregulation of A1R and an upregulation of A2AR L1159

These adaptive changes are expected to contribute to an increase in excitatory glutamatergic synaptic
transmission BEI671 mainly by a reduction of ALR density, impairing inhibitory control in synapses, as reported in
experimental and clinical studies (8189 |n particular, both glutamatergic N-methyl-D-aspartate (NMDA) receptors
and voltage-sensitive calcium channels are controlled by the tonic activation of A1R Il a5 well as by A2AR 2],
implying that ethanol can imbalance the control of synaptic plasticity as well as of neurodegeneration that is

critically dependent on NMDA receptors and voltage-sensitive calcium channels [Z3],

Apart from this imbalanced adenosine modulation of plasticity that is critical for the development of additive
behaviors, adenosine modulation of reward circuitry is also altered [246974] Reward circuitry activation by
glutamatergic inputs from the cortex, as well as dopaminergic inputs from the ventral tegmental area with
projections to medium spiny neuron striatum, through heterodimers of A2A-D2 and A2A-mGIlu5 receptors, may be
probable pathophysiological mechanisms induced by ethanol abuse since this substance increases adenosine
levels causing hyperactivation of A2AR, with consequent increased release of dopamine and glutamate [24175I[76]
Consequently, neural excitotoxicity, changes in homeostatic regulation by oxidative stress, abuse risk, and several

behavioral alterations, such as anxiety, occur 27,

Adenosine receptors, in particular A2AR, control the activity of the hypothalamus—pituitary—adrenal (HPA) axis X1,
In particular, adenosine modulates different circuits of the pituitary gland 8. In the intermediate region, the
blockade of A2AR reduces proopiomelanocortin and alfa-MSH levels, reducing the activation of the HPA axis 29,
Conversely, the inhibition of A2AR in the anterior lobe of the pituitary hyperactivates the HPA axis, increasing
proopiomelanocortin, adrenocorticotropic hormone, and consequently blood corticosterone levels 2 which
characterizes the anxiety-related profile. However, further investigations focused on ethanol-induced anxiety versus

adenosinergic modulation of the HPA axis during adolescence should be undertake.

In summary, the knowledge of the balance between adenosine receptors (A1 and A2A) in the adolescent brain and
the control of neurotransmitters in different neurocircuits is a significative step toward elucidating the hypothesis.
Such well-outlined mechanisms may support critical strategies for neuroprotection or treatment of anxiety induced
by ethanol consumption in adolescents by pharmacological or genetic manipulations targeting adenosine

receptors.
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| 3. Ethanol versus Adenosine Effects on Depression

Depression is an affective disorder characterized by the presence of mood dysregulation typified by a depressed
mood (dysphoria) and reduced ability to have pleasure (anhedonia). Depressed patients may also present
cognitive impairment and somatic symptoms, leading to significant distress or impairment in general body system
functioning BYBLB2l Depressive disorders can be triggered by several etiologies, including drug abuse, such as
opioids, sedatives, stimulants, and hallucinogens, whereas depressive symptoms can appear during or shortly after

intoxication or discontinuation of the drug of abuse [EAB3][84][85],

Epidemiological studies have consistently concluded that alcohol intake in a binge pattern, mainly in late
adolescence, elevates the risk of developing depressive symptoms in young women between 20 to 30 years of
age, when the consumption occurs frequently, approximately 16% [8. Moreover, drinking habits are often
associated with depressive symptoms and suicide in young individuals, with circa 11.5% showing depressive
behavioral and 2.8% suicidal ideation [Zl. Ethanol is a CNS depressant which triggers depressive symptoms by
different molecular targets. According to Alasmari et al. [88 ethanol consumption elicits modifications in dopamine,
glutamate, and GABA neurotransmitter release. It is noteworthy that significant dopaminergic reductions in the
reward system or in neurotransmitter recruitment play a role in the progression of negative reinforcement, resulting
in psychoneuroimmunological neuroadaptations related to neuroinflammation and emotional disruption [B8I[E2[20]191]
It has also been reported that ethanol exposure reduces brain-derived neurotrophic factor (BDNF) in the
hippocampus [22I231194]  5ych alterations are more harmful during adolescence since, during brain maturation, an
unbalance of neuromodulatory mediators affects limbic circuitry, impairing the development of neurocircuitry in the

prefrontal cortex, leading to increased limbic reactivity and consequently changes in affective control 221281,

In addition, adolescent subjects present elevated amygdala activity and decreased fear extinction, mediated by
changes in prefrontal cortex—amygdala connectivity 2. Furthermore, the adolescent brain is particularly sensitive
to repeated ethanol exposure. Thus, ethanol neurotoxicity associated with enhanced emotional reactivity and poor

effective control displays augmented risk of emergence and exacerbation of emotional dysregulation, such as
depression [21261198]

An interesting study indicated a relationship between adenosine and the pathophysiology of alcoholism and
depression 4. |nhibitory mechanisms of adenosine in the CNS, which modulate excitability, neurotransmitter
release, and ion channel function regulation, play a role in mood changes in alcohol-exposed patients [24I[100](101]
In cell culture assays, ethanol acute exposure increases adenosine levels and contributes to intoxicating and/or
rewarding effects 19211031 High levels of adenosine hyperactivate A2AR signaling, which develops desensitization
across prolonged ethanol exposure 124, Another fundamental neuroadaptation consists of the reduction of the
plasma membrane nucleoside transporter ENT-1, which results in reduced extracellular and synaptic adenosine
levels (69104 pespite these findings, few studies have addressed the impact of alcohol exposure during

adolescence on the adenosine modulation system.
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Scarce studies have demonstrated that repeated ethanol administration (2.0 g/kg) in adolescent mice increased
the binding activity of CAMP response element-binding protein (CREB) in the prefrontal cortex and hippocampus
105] |t js well-defined that elevation of CREB expression in the dorsomedial striatum, olfactory bulb, and
GABAergic neurons of caudate-putamen, nucleus accumbens, and tuberculum olfactory, also occurs upon
recruitment of A2AR and is likely associated with negative behavioral changes (i.e., anxiety-like and depressive-like
phenotype) induced by heavy ethanol consumption in mice [2I[106],

Taken together, the available evidence is suggestive of the involvement of the adenosine modulation system in the
depressive-like profile induced by ethanol exposure during adolescence, namely through CREB overexpression
resulting from the overactivation of A2AR. It is noteworthy that A2AR hyperactivation directly influences A2A/D2
heterodimerization, as already mentioned above when discussing anxiety 071081  Accordingly, functional
interrelationships related to mesocortical and mesolimbic pathways of A2A/D2 receptor interactions that are
impaired by ethanol administrations may result in emotional, motivational, rewarding, and addiction behavior
disruption and learning dysfunction, which reinforces the putative role of the adenosine modulation system in

several neuropathologies, such as anxiety, drug addiction, schizophrenia, and depression 2209,

To support this link between A2AR modulation and depressive-like behavior through the influence of dopamine
levels, Coelho et al. B investigated the impact of A2AR overexpression in cortical areas for dopamine-related
behavior. These authors found that the hyperactivity of the A2AR pathway induces a depressive-like phenotype 2
[L10111] - Fyrthermore, Kaster et al. B8 reported that the chronic caffeine administration or selective adenosine
A2AR antagonism or genetic deletion of adenosine A2AR is able to prevent or revert mood and memory

dysfunction, as well as neurochemical and synaptic deficits induced by chronic stress.

In summary, acute and/or chronic ethanol exposure during adolescence disturbs the homeostasis of the adenosine
modulation system in the brain, contributing to hazardous symptoms related to depression. In addition,
overexpression of A2A/D2 receptors in mesocorticolimbic areas, preferably in the forebrain, has been associated

with depression behavior, which may explain the depressive signs seen in aging and chronic stress 52,

| 4. Ethanol versus Adenosine Effects on Cognition

Cognitive functioning depends on multiple integrated processes occurring in distinct areas of the CNS. For
instance, the acquisition of declarative (or spatial) memories begins in the hippocampus, through synaptic
changes, since damages to this structure compromise recent memory, while remote memories remain intact. This
fact suggests that cognitive storage occurs in other structures, such as the neocortex, which has been widely
pointed out as an important storage location [112M113I114] | tyrn, the targeting/selection of memories that will
become long-lasting is regulated by environmental factors and emotionality, among other factors, and this

modulation is operated by structures such as the prefrontal cortex amongst others [1131(115]

Classically, the neurotransmitters glutamate and acetylcholine play a fundamental role in memory processing (118

(1171 Nonetheless, other signaling systems robustly regulate memory acquisition, including the adenosine

https://encyclopedia.pub/entry/34214 6/19



Ethanol versus Adenosine on Emotional and Cognitive Disturbances | Encyclopedia.pub

modulation system. Imbalances in the adenosine system affect several CNS functions, including cognition,
whereas overactivation of adenosinergic receptors, especially the A1R and A2AR subtypes, elicit memory
impairment 98] Although it is complex to define the exact contribution of the different adenosine receptors to the
control of cognition since their responses differ upon homeostatic or pathological conditions [L18I119][120] 5
prominent role of A2AR seems evident: this is best heralded by the observation that the pharmacological
overactivation of A2AR 121 or the overexpression of A2AR in forebrain neurons 1221 or the opto-stimulation of the

A2AR transducing system 223l are each sufficient to cause a disruption of spatial reference memory performance.

In keeping with the hypothesis of a parallel an opposite deregulation of the A1IR/A2AR imbalance upon repeated
ethanol intake, the researchers propose that cognitive deficits may also be dependent on AIR/A2AR activity. Thus,
overactivation of ALR inhibits the release of glutamate and acetylcholine, impairing cognition processes, such as
memory acquisition and consolidation mediated by the hippocampus L1817 The overactivity of A1IR may lead to
cognitive impairment. Accordingly, acute treatment with micromolar doses of Al receptor agonists induced deficits
in memory acquisition and retention, whereas the administration of selective Al receptor antagonists reversed

these negative effects 1241,

Therefore, substances that promote an increase or imbalance in adenosine receptor activity may produce
mnemonic impairments, especially in critical periods of development/remodeling of the CNS 123, Epidemiological
data reveal that ethanol consumption, especially in a binge pattern, usually starts during adolescence [1231[126][127]

[128] and neural circuits in the immature brain are vulnerable to several factors that modulate brain function 2281,

Accordingly, the researchers reported that the cumulative four cycles of binge drinking paradigm (3 g/kg/day)
during adolescence impairs short-term memory in object recognition tasks in the immediate ethanol withdrawal
period 2. In agreement with this, other binge drinking studies during adolescence also found mnemonic disruption
by applying diverse cognitive tests [EI129L30131]  highlighting the potentially hazardous effects of binge-like

consumption on distinct types of memory.

Numerous pathophysiological mechanisms have been attributed to mnemonic abnormalities. Oxidative stress,
deficits of neurotrophin levels, glutamatergic hyperactivity, and reduction of neuronal viability and survival have
been considered as possible causes of memory impairments induced by adolescent alcohol binge drinking [Ell129]
(130I[131][132] ' Although all these previously described mechanisms induce mnemonic disturbances, the probable
involvement of the adenosine system should also be considered. Indeed, it was reported that the acetate
originating from ethanol metabolism could be incorporated into acetyl-coenzyme A, supporting the production of
cAMP and adenosine, thus bolstering adenosinergic signaling 331, In addition, alcohol consumption also inhibits
adenosine reuptake, which increases the extracellular levels of adenosine and, consequently, its actions 69 These
effects likely depend on the pattern of alcohol exposure. Acutely, alcohol increases adenosine levels, which leads
particularly to sedation and cognitive impairment 224, Chronic exposure seems to trigger a reduction of ENT-1
expression and an influx of adenosine, as mentioned above [102133] Both responses impair the balance of
influx/efflux of adenosine, thus reducing its regulatory activity, a reduction further aggravated by the early

heterologous desensitization of ALR and A2AR. Microdialysis studies detected a four-fold increase in adenosine
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levels in the brain parenchyma following ethanol exposure, which, among other responses, contributes to its
sedative/hypnotic properties, in addition to inducing cognitive disorders 1241 |n fact, animal and human studies
confirm the potential of ethanol to display memory impairment related to adenosine overactivity. Obviously, these
toxicological events can also occur in adolescents and adult individuals. Studies in zebrafish exploring the long-
term consequences of early ethanol exposure in distinct embryonic stages indicated the emergence of a mnemonic
impairment, which was reversed by acute administration of an ecto-5-nucleotidase inhibitor (an enzyme that
converts extracellular AMP into adenosine) 134l This emphasizes the influence of the adenosine system on

persistent cognitive deficits induced by ethanol exposure during neurodevelopment (1341,

However, there are some peculiarities related to maturing processes during adolescence, which might elicit
different results. For example, both increased expression of adenosine receptors and downregulation of their
reuptake seem to be associated with continuous consumption, accompanied by multiple episodes of withdrawal 22
[202] This fact is of relevance since the binge drinking, frequently performed by teenagers, is characterized by an
intermittent consumption, which provides favorable conditions for the occurrence of these mechanisms [1261(128]
Unfortunately, few approaches have assessed the relationship of this pattern of alcohol intake with adaptations of
the adenosine system affecting memory processing, especially during adolescence, which await further
investigations to unravel novel therapeutic strategies.
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