Battery Energy Storage Systems Ancillary Services | Encyclopedia.pub

Battery Energy Storage Systems Ancillary
Services

Subjects: Energy & Fuels
Contributor: Mukovhe Ratshitanga , Ayokunle Ayeleso , Senthil Krishnamurthy , Garrett Rose , Anges Akim Aminou

Moussavou , Marco Adonis

The battery energy storage system (BESS) is significant in providing ancillary services to the grid. The BESS plays
a crucial role in facilitating the integration of renewable energy sources (RESS) into the grid by compensating for
the fluctuations produced by RESs as intermittent resources. Ancillary services encompass all the services
necessary for the grid operator (transmission and distribution operator) to maintain the system’s integrity, stability,
and power quality. Grid operators ensure a reliable power supply, frequency, voltage, and power load within certain
limits.
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| 1. Introduction

The integration of renewable energy sources (RESs) and the optimization of energy grids relies heavily on energy
storage systems (ESSs) to function effectively since RESs are intermittent in nature and often create temporal
negative effects between energy availability and user demands. Additionally, ESS is critical for the stability of power
grids, the amalgamation of RESs, and optimizing the overall performance of energy systems. Batteries can be
used as an ESS in smoothing the power output and managing the ramp rate of RES power plants to reduce
unexpected voltage and power fluctuations on the electrical grid. Moreover, the above solutions are important for
managing the deployment of RES, electrified transportation advancements, and smart grid development. With the
deployment of RESs and enhanced electrified transportation, the marketplace for large-scale stationary energy
storage (ES) has experienced rapid growth 2 |n addition, various technologies of electrochemical energy
storage (EES) systems, for instance, electrochemical batteries, redox flow batteries, and other emerging storage
technologies, are being developed and researched to meet the growing demand for ES solutions. EESs offer
effective solutions thanks to their outstanding traits such as elevated energy concentration, flexibility, and scalability
[2. The EES also demonstrates favorable qualities in terms of ES power capacity and efficiency, making it suitable
for large-scale applications. In recent years, significant efforts have been made towards ES device research, which
includes prototyping and installations. These previous studies have been motivated by the potential of using ESSs
to attain better performance of power systems and improve power generation technologies, especially when used
in combination with renewable energies 1. The ESS performs a crucial role in redistributing energy and warranting

a reliable and stable power supply 4.
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| 2. Battery Energy Storage Systems

The development of the RES has led to the disruption of conventional power grid operations due to the
uncertainties and technical challenges faced by the intermittent nature of RES. This affects transmission grids and
creates frequency variations, voltage violations, and network congestion B, To address these issues, the ESS,
especially battery energy storage systems (BESSSs), is a potential solution that can contribute to grid stability. The
BESS offers many solutions, including suitable auxiliary services such as backup power supply, supporting peaking
capacity, and facilitating energy shifting 8. BESSs are also important for solving structural problems in the power
grid and improving its stability EIRILA |n the transition to 100% renewable energy networks, a larger renewable
energy capacity and ESSs are required to deal with the supply and demand mismatches caused by fluctuations

and uncertainty in renewable resources 4,

Battery technologies, such as Lead—Acid, Sodium—Sulphur (NaS), Lithium-lon (Li-ion), Nickel-Cadmium (NiCd),
Zinc—Bromide (ZnBr), and Vanadium redox flow battery (VRFB) can be used as BESSs and integrated with RES to
support different power systems. According to Kroposki et al. (2008) 1, batteries store electrical energy in the
form of chemical energy during periods of high RES and, subsequently, release it during periods of low energy
output to create a balance between supply and demand 1213l Furthermore, many batteries used with utility
connections have bi-directional converters, which allow energy to be stored and taken from the batteries. The
BESS can also provide an alternative solution to ensuring the sustainability of a fixed voltage and frequency
operation through ancillary services while using renewable energy sources 4. Some of the other benefits of BESS
include stabilizing fluctuating energy sources and load changes, reliability, enabling load-sharing operations,

reducing load spikes and electrical interference, and reducing the cost of ESS.

Other promising ES technologies have emerged over the years as potential solutions, which include compressed
air energy storage (CAES), superconducting magnetic energy storage (SMES), electrochemical capacitor energy
storage (ECES), and flywheel energy storage (FES) Bl Figure 1 depicts the different classifications of ESS used in
power systems and those that can be integrated with RES 28], The schematic diagram showing the technological

maturity of the ESS, particularly BESS technologies, is shown in Figure 2.

* Lead-Acid
= Sodium-Sulphur
Energy Storage Electrochemical Energy Battery energy storage » Lithium-lon
System (ESS) Storage (EES) system (BESS) * Nickel-Cadmium
= Zinc-Bromide

= Vanadium redox flow

Figure 1. Flowchart showing the ES conversion method.
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Figure 2. Technological maturity level of different energy storage systems.

| 3. BESS Ancillary Services

The BESS is significant in providing ancillary services to the grid. The BESS plays a crucial role in facilitating the
integration of RES into the grid by compensating for the fluctuations produced by RESs as intermittent resources
(131 Ancillary services encompass all the services necessary for the grid operator (transmission and distribution
operator) to maintain the system’s integrity, stability, and power quality 8. Grid operators ensure a reliable power
supply, frequency, voltage, and power load within certain limits. The schematic diagram of different ancillary

services in BESSs is shown in Figure 3 17,
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Figure 3. Ancillary services.

3.1. Evolution and Development of Bess Ancillary Services

Over recent years, research and development have demonstrated the significant evolution of grid ancillary
services. These research studies have focused on various crucial services required by the grid, including the
integration of RES and BESS, the impact of high-voltage and direct-current (HVDC) grids on ancillary services, the
utilization of electric vehicle grid integration systems (EVGI) and the evaluation of grid performance BIZI[18]19]120]
The exploration of distributed energy resource (DES) interconnection codes with PV inverters has also been
assessed 21, Ancillary services work on peak load shifting, frequency regulation, voltage support, smoothing
variable generation from renewables, and the optimization of power system operations 22, Furthermore, potential
control strategies have been explored for electric vehicles (EVs) to participate in ancillary services 23, Multiperiod
optimum power flow solutions for active distribution networks have been investigated by 212425 The feasibility of
using a BESS for ancillary services depends on battery investment costs, self-consumption advantages, grid

optimization, and applications, as shown in Figure 4 1326
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Figure 4. BESS applications in power systems [ZZ],
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The potential challenges that can be addressed by BESS ancillary services are shown in Figure 5. These

challenges involve battery degradation, economic concerns, environmental threats,

charging and discharging of BESS, and dynamic impacts (8.

regulatory barriers, the
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Figure 5. BESSs for ancillary challenges (€.

The following BESS ancillary services have been identified as a potential solution to provide support and overcome
some of the above challenges:

Frequency regulation.

Congestion relief.

\oltage support.

» Power smoothing (flow control between RES and the grid).

Peak shaving (demand-side energy management).

3.1.1. BESSs for Frequency Regulation

The BESS has shown remarkable effectiveness in offering diverse ancillary services to the grid and microgrid.
Among these services, it provides frequency regulation in response to changes in grid frequency, quickly adjusting
by either injecting or absorbing power. This dynamic response helps maintain a stable frequency within the desired

range, preserving grid stability and a reliable power supply 28!,
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One crucial feature of BESSs for frequency regulation is their optimal placement and storage system sizing. It was
observed that the optimal size of BESSs could result in a high-frequency control performance when utilizing the
Particle Swarm Optimization (PSO) algorithm compared to other sizing algorithms 22, The selection of the optimal
sizing of BESS depends on parameters such as load-shedding schemes and contingencies 29. To avoid
unnecessary power consumption by BESSs and the smoothing of power grid frequency, diverse control strategies
have been developed to enhance frequency regulation. These strategies aim to mitigate the fluctuations in
renewable energy generation and monitor the battery state of charge (SOC) 2. This system’s capacity limit is
controlled by a strategy that allows the BESS to switch between frequency regulation and the recharge control
strategy 39, Another approach to the control strategy regulates the frequency between BESS and traditional
generators by considering factors such as battery state of charge, the frequency modulation effect, and system
economy for optimum results. The BESS centralized control strategy is commonly utilized for frequency regulation
81 However, a distributed local control-based BESS has high output performances and effectiveness with a faster

response between the BESS and other power generation sources.

Frequency control in a microgrid is divided into three levels, namely, primary control, secondary control, and tertiary
control. The primary control employs the use of droop control without any communication network [B2I33l This
method uses fast stabilizing control actions and can be implemented by voltage and current loops B4, The
secondary control employs microgrid central controllers such as slow control loops and low bandwidth
communication systems. These systems are used to measure parameters at certain points of the microgrid and to
send back the control output information to each microgrid unit B4, The tertiary control employs the economic
dispatch of DES, which is related to economic optimization B2, This type of control exchanges relevant information

with the Distribution System Operator (DSO) and the optimization of microgrid operation within the utility grid B2,

Ref. 18 js study that covered the voltage and frequency regulation for both distribution and transmission grids. This
study addresses load-shedding challenges in South African power networks and offers a list of references related
to voltage control techniques. In addition, more studies have efficiently underlined BESS’s frequency regulation. It
has been shown in the all-island Irish transmission system that implementing the appropriate BESS capacity could
successfully decrease grid frequency fluctuations 22, Furthermore, economic models and the fuzzy logic theory
have also been conducted to optimize the frequency regulation strategy of BESSs. The BESS is vital for
maintaining stable power grid frequencies, particularly when RESs are involved. Strategic positioning, sizing, and

control methods are used to optimize the BESS’s effectiveness.

3.1.2. BESSs for Congestion Relief

The BESS presents an efficient alternative solution for congestion relief in power grids [8l. It overcomes the limits of
traditional methods, such as network configuration and load rescheduling €. Moreover, the BESS is utilized as a
black start for congestion relief in distribution grids 8. The following are some of the control strategies and

optimization techniques used in BESSs for congestion relief.
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Adaptive control algorithms have been developed to control the action of the BESS for voltage regulation and
congestion status in distribution grids. Likewise, coordinated control strategies integrating BESSs with other

devices, such as on-load tap changers, have been used for voltage regulation and congestion relief (8],

Real-time control frameworks and dispatch algorithms have been proposed to optimize the revenue of BESSs in
delivering grid services, including congestion relief 28], These frameworks underline the potential gains of using the
BESS for congestion management in power systems. Disruption can be alleviated by strategically deploying

BESSs in the transmission network, which can avoid the need for costly infrastructure upgrades B7,

3.1.3. BESSs for Voltage Support

The BESS has gained recognition for being a solution that contributes to voltage support in power systems,
especially when integrating a substantial amount of PV generation into the system [B8. The unstable nature of PV
generation often induces voltage fluctuations. Therefore, the BESS can be used to regulate and stabilize the
voltage levels of the system [8 An obstacle when employing the BESS for voltage support is the constant
charging/discharging cycles, which directly affect the system’s cost and longevity (€. The following methods can be
used to respond quickly to the fluctuations in PV power and maintain voltage stability. For example, the real-time
coordination control strategy has been developed to improve the performance of PV inverters and BESSs for
voltage regulation 8. The moving average algorithm has been commonly used to improve voltage support by
smoothing the PV power output. However, the constant charging/discharging implemented by this algorithm can
degrade the BESS's lifespan and create economic drawbacks [8. Another efficient control strategy has been
developed to dynamically adjust the charging and discharging power of the BESS accordingly to prevent premature
energy depletion and optimize its overall lifespan 8. Moreover, the interaction between step voltage regulators
(SVRs), PV inverters, and BESSs has been studied for voltage regulation without relying on electronic
communication 38 This interaction is established via a voltage margin control strategy, which guarantees

adequate voltage support within the system [28],

3.1.4. BESSs for Power Smoothing

The BESS offers fast response times, modularity, and scalability, making it suitable for applications in power
systems 27, Through fast discharging or charging, the fast-response time deals with the fluctuation in supply or
demand. Optimization control and management are essential for addressing RES integration challenges B2, The
integration effect of large-scale BESSs to tackle the problem of the fluctuation and intermittency of renewable
power to the grid has been previously investigated. The investigation findings showed that the BESS improved the
grid stability and transmission network’s operation 21,

The interaction of the BESS with PV systems performance has also been previously studied. In 29, their study
mitigated voltage unbalance and network losses by applying a battery-powered flow control algorithm and injecting
real and reactive power into the grid. Furthermore, BESS’s optimal planning and sizing for frequency control in
power grids have been widely considered when penetrating renewable RESs and the grid (8. Integrating the BESS

into the microgrid can deliver main and auxiliary services for reliable and efficient power flow control 411, In another
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study, ref. 13] investigated various types of BESS and RES usage in power systems. The objective was to generate
renewable energy using different scheduling periods. Their results showed that BESS can assist power distribution

suppliers by mitigating and smoothing the overall power fluctuations caused by RES intermittent issues.

3.1.5. BESS for Demand-Side Energy Management

The implementation of demand-side energy management (DSEM) programs through customer participation is an
important factor that is required to achieve total load optimization as well as a reduction in the microgrid investment
cost ¥2 The aim of DSEM programs is to change the energy consumption behavior of customers by consuming
less power during peak hours and more power in the off-peak hours 3. The DSEM can be divided into the
following two categories: the load demand response (LDR) and energy efficiency (EE). The goal is to reduce
customers’ peak energy demand, minimize energy consumption costs, reduce the peak-to-average ratio (PAR),
minimize user discomfort by changing the operating behavior of devices, and increase the use of energy generated

from local sources. Figure 6 depicts the classification of DSEM [43],

Load Demand m Enargy Efficiency

TIM
TIL

Figure 6. Classification of DSEM.

Load Demand Response
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The LDR program provides an avenue to control the load behavior on the network instead of the supplied power.
This is conducted through demand shifts and curtailment during the peak periods to reduce cost and maintain a
balance between the electric power and the load. The demand response (DR) is grouped into two categories as

follows: incentive-oriented or price-oriented programs.

The incentive-oriented program consists of direct load control (DLC), curtailable load (CL), and demand-side
bidding (DSB). In the DLC method, the main utilities regulate heavy customers’ loads and appliances during peak
demands by turning them off. Some of these heavy loads include air conditioners, microwaves, ovens,
refrigerators, and cooling devices. In the CL method, the main utility proposes demand adjustment schedules,
while the user controls the usage of appliances. Moreover, rewards are given to users who comply with these
schedules while penalty fees are levied on those who disobey them. In the DSB (load shifting) method, users can
adjust their loads to improve peak load shaving based on a bidding request in an electricity market 4. The loads
are shifted and distributed evenly without affecting the total consumed energy. Moreover, this program ensures that

demand and supply are maintained at the required level while increasing the system'’s efficiency.

The price-oriented program consists of the time of use (TOU), critical peak pricing (CPP), real-time pricing (RTP),

and inclined block rate (IBR), as shown in Figure 7 431,

Inclined block
rate

Figure 7. Flowchart diagram of the price-oriented DR.

The TOU program enables the main utility to remotely regulate customers’ appliances by setting different prices for
usage times. In this program, the cost of electricity is determined by how much electricity is consumed by the users
(441461 |n the CPP program, a flat pricing strategy or TOU tariff is used annually as an alternative option for small-
size peak load usage periods. According to Bakare et al. 2023 451, energy users who participate in DR programs
through the CPP method experience a significant reduction in the cost of energy usage, especially in countries
such as North America and Sweden. In the RTP program, spot pricing is implemented on an hourly basis. Hence,

energy users are notified hours or days ahead, depending on their electricity market schedules. One limitation of
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this method is that it is extremely difficult for energy users to actively enroll due to the vigorous back-and-forth

communication required by both the utilities (energy providers) and the consumers.

The control strategies often used in DR programs include peak load shaving, valley filling, load leveling, load

shifting, and energy arbitrage.
» Peak load shaving

Peak load shaving or clipping is a traditional DR technique that cuts some portion of users’ loads during peak hours
and when consumer demands are very high. BESS is commonly used in peak load shaving to effectively reduce
the power grid’s peak demand. Furthermore, during periods of high demand, the BESS can discharge stored
energy to meet the increased load, reducing the stress/tension on the grid and possibly avoiding the need for high-
cost infrastructure upgrades. The impacts of the peak load shaving and BESS strategies when used with RES in
the energy markets have been addressed in the literature. Ref. ¥4 investigated a residential microgrid, consisting
of 144 households, PV, a wind turbine, and BESS. They used a Lead—Acid BESS to overcome the fluctuations
caused by the intermittent nature of RES, while the DSM scheme was implemented to shift the peak loads by an
hour when the user demand was very low. The results obtained showed that the optimized renewables mix was
able to reduce demand fluctuations and improve energy balance. The peak load demand fluctuation per hour in the
microgrid was reduced by 19% (12% with renewables mix, 4.6% with a BESS, and 3.5% with DSEM), with one

renewable unit and four batteries per household, 83% PV panels and 17% wind turbines.

In another study, Li et al. (2019) 48] concentrated on synchronizing energy-intensive loads (EILs) with a BESS to
reduce peak shaving using an optimization framework. This framework includes the neural network algorithm that
balances the system operation expenses and wind energy curtailment costs. Papadopoulos et al. (2020) 42
investigated the economic viability of peak shaving with the BESS on real power, charging, and discharging rates.
The aim was to analyze the economics of grid-level energy storage for load-shaving applications and the potential
of peak shaving through BESSs for low-voltage enterprises with peak demand pricing. The results indicate the

economic benefits for certain end-users 49,
» Valley filling

Valley fillings are periods when low demand is experienced with respect to base loads. In this technique, the use of
the BESS and transferable loads can be used to curtail excess energy generation. The impacts of the valley filling
and BESS strategies in the energy markets have been addressed in the literature. Augusto et al. (2017a) Y
investigated a valley-filling strategy to restrict transferable loads to off-peak demand scenarios. Their results
highlighted the importance of DSEM measures with the reduced levelized cost of electricity to around 18%. Valley
fillings have also been investigated by B, where EVs from a PV/grid system were charged using a rule-based EM
system (REMIS).

e Load leveling
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Load leveling is the strategy required for large load fluctuations. In this method, the differences between the peak
and low demand profiles are significantly reduced. The impacts of the load leveling, and BESS strategies have
been addressed in the literature. Agamah and Ekonomou (2017a) 52 investigated the combination of Lithium-lon
BESSs and the peak demand schedule to improve load leveling and achieve peak demand reduction using genetic
algorithm combinatorial optimization (GACO) genetic algorithms. The result obtained showed that the peak load
demand was reduced to about 7.69% without combinatorial optimization (GA). When the GA and BESS

parameters were introduced, the peak load demand was reduced by 8%.
» Load shifting

Load shifting is a strategy that involves transferring load demands among different users based on the
transferability of such loads and supply availability. The impacts of the load shifting, and BESS strategies have
been addressed in the literature. Sepulveda et al. 2018 B3 presented a study that focused on the optimal
determination of the best site and size for BESSs in a PV/wind turbine distribution system. The proposed model
implemented a genetic algorithm and was tested using the IEEE 123 nodes system (OPENDSS) in MATLAB. The
results showed that the grid's power reverse flow was mitigated, and the cost of energy was reduced, specifically
with the BESS.

« Energy arbitrage

Energy arbitrage is a strategy that can be used to store energy at the time of excess production for use at a time
when the power supplies are very low. This strategy is mostly suitable for RES-based systems and can be
achieved with a BESS, supercapacitor, air, water, hydrogen, and EV storage 4. The impacts of energy arbitrage
and BESS strategies have been addressed in the literature. Salles et al. (2016) 23 presented a study that used
energy arbitrage technigues to improve revenue based on the price volatility in 7395 different electricity markets. In
another study, 8 investigated an extended-term BESS arbitrage problem using a bi-level BESS arbitrage solution
with high wind power penetration. The bi-level ES arbitrage model consists of an upper level where the ES
arbitrage revenue is maximized, with a lower level where the market clearing process is conducted. The simulation
result showed that the BESS power and energy ratings should be significantly reduced to achieve a medium-to-

high percentage of the optimum revenue.

Energy Efficiency

Energy efficiency is a system of DR that provides energy customers with a favorable service that can require less
energy consumption and is economically profitable. Moreover, this method often reduces huge power losses BZ,

The characteristics of energy efficiency techniques are presented as follows [8l:

» Efficient energy devices in households with constant awareness programs towards the better use of energy. An

example is using energy-saving bulbs, such as incandescent bulbs and energy-saving air conditioners.
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» Performance check routine with optimal maintenance techniques on electric power equipment should be

promoted. An example is recovering heat from waste products.

» The utilization of distributed generation, optimized control systems for voltage regulation, load flow power factor
correction on networks, and data acquisition systems using fiber optics, smart meters, and advanced

transformers should be promoted.

On the consumer side, the important criteria to consider when implementing DSEM with a BESS are RES
integration, behind-the-meter energy consumption, the load profile of appliances, load categorization, constraints,
dynamic pricing, and consumer behaviors. The potential solutions that have been identified to tackle these criteria
are peak load shaving, valley filling, load leveling, load shifting, and energy arbitrage. Many control strategies or
programs used in the DSEM assist in reducing the wastage of energy, curbing energy consumption when power

supplies are very low, and minimizing energy and system costs.
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