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Solar energy is one of the most important renewable energies, and the investment of businesses and governments is

increasing every year. Artificial intelligence (AI) is used to solve the most important problems found in photovoltaic (PV)

systems, such as the tracking of the Max Power Point of the PV modules, the forecasting of the energy produced by the

PV system, the estimation of the parameters of the equivalent model of PV modules or the detection of faults found in PV

modules or cells. AI techniques perform better than classical approaches, even though they have some limitations such as

the amount of data and the high computation times needed for performing the training.
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1. Introduction

Energy is essential in our society, being the motor of almost every sector. Fossil-fuels are historically the most important

source of energy, representing 80.2% in 2019  These kinds of energies have different problems; one of them is their

scarcity, since they are limited resources that have been exploited for a long time. Another critical problem is the pollution

caused by the burning and extraction of these fuels, which is hazardous for people  and the environment . To solve

these problems, other energy sources can be used. These alternative energies, renewable energies, have two main

benefits. First of all, they are based on unlimited resources that will not run out, even with extensive exploitation. Their

exploitation is also nonpolluting. Investment in these energies has been rising in the last years, even with a crisis such as

the COVID-19 pandemic .

One of the most important green energies is solar energy. This energy is composed of solar, thermal and photovoltaic

(PV). The latter has been found to be more useful and profitable for industry production  and has been growing

steadily in recent years.

PV energy is produced by photovoltaic modules. Each module is composed of different sub-units, called solar cells, which

absorb the energy emitted by the sun . PV panels are usually connected in series to each other, this is known as a PV

array. Each PV array is connected to a power inverter to control the production and check the performance of the array .

PV farms (also known as PV plants) are usually composed of many PV arrays. The maintenance of these factories is

extremely complex. The production of the modules depends on different conditions, this makes mechanisms of control to

optimize the production necessary. Solar modules are also vulnerable to physical defects, which can reduce or even

nullify the production of one cell, or even the whole modules in the worst cases. This is usually dealt with by human labor,

checking each module in a certain period of time.

Solutions to maintenance problems in PV systems have been traditionally circumscribed either to simplistic automatic

supervision approaches  or costly direct human supervision.

In the past recent years, however, artificial intelligence (AI)-based approaches have emerged. AI techniques are being

applied in almost every research field or industry to improve services or solve problems which are impossible for

traditional methods .

2. Artificial Intelligence Applied to PV Systems

2.1. Maximum Power Point Tracking (MMPT)

The tracking of the Maximum Power Point is vital to optimize the PV systems, and it is probably the most interesting

problem for research. Different techniques have been used to solve this problem, as it can be seen in Figure 1. Some

classical techniques include Incremental Conductance and Perturb and Observe. Recent trends show that AI techniques
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are also used to solve this problem. Metaheuristics and Neural Networks were found as the most used techniques after

surveying the literature.

Figure 1. Taxonomy of most used IA method for Maximum Power Point Tracking (MPPT).

A summary of the Fuzzy Logic methods applied to MPPT can be seen in Table 1.

Table 1. Fuzzy Methods for MPPT.

Method Features

FLC 

FLC systems provide quick responses to changes and low oscillations near MPPT that

reduce the power loss compared with traditional systems. The combination with FCN or the

initial estimation of the MPP voltage further improves the results.

Type-2  
Type-2 FL provides the methods to model and handle uncertainties, boosting the robustness

of the system and hence its results.

T-S 
The parallel distributed control provided by the T-S FL further improves the results of FL

systems, having an acceptable settling time, less oscillations and an accurate output.

Combined with other

methods  
Other methods can take advantage of the benefits of FLC systems to improve their results in

MPPT.

A summary of the commented methods can be found in Table 2.

Table 2. Metaheuristic Algorithms for MPPT.
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Algorithm Features

GA  Genetic Algorithms improves the results of other methods such as ANN or FPSO

PSO  PSO is used to optimize Neural Network learning

FA  This algorithm is used directly to solve MPPT. It assures fast convergence with almost zero oscillations

ABC  In MPPT, this algorithm provides quick converge and accuracy in tracking.

ACO 
ACO is used in the learning process for adjusting weights and biases or the neural networks in other to

improve its results

A summary of the analyzed models in this section can be found in Table 3.

Table 3. Neural Network Models for MPPT.

Type Reference Features

FeedForward Neural

Network

2 networks. Each one with a single hidden layer of 20 nodes.

5 Nodes on a single layer. Data preprocessed by Genetic Algorithm.

Three hidden layers with 8,7,7 nodes, respectively. Bayesian-Regulated

back-propagation for training.

A Single hidden layer with 13 neurons. Data created by a Course Gaussian

Support Vector Machine.

2-3-3-1 structure. The NN is optimized by FPSOGSA.

The topology and best weights are optimized by a PSO algorithm.

ACO is used to optimize the neural network.

Adaptive Neural Fuzzy

System Interface

Bat Algorithm is used to train the network.

Crowded Plant Height Optimization is in charge of performing the learning of

the network.

Combines Fuzzy Logic and Neural Networks. Three intermediate layers in

which the output is based on fuzzy rules.

Recurrent Neural

Network

A hidden layer and a context layer storing the results of the previous outputs

of the hidden layer. A metaheuristic is used to optimize the structure and

weights.
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Type Reference Features

Deep Reinforcement

Learning

Four networks, one for computing the policy, one for the critic and two called

targets that are used to stabilize the learning procedure

2.2. Forecasting

Energy production forecasting has been an important problem, even in traditional systems, and it has been tackled with

different techniques, as it can be seen in Figure 2.

Figure 2. Taxonomy of most used IA methods for forecasting.

In , the researchers found a system that uses Support Vector Machines (SVM) . SVM is mostly used for regression.

The model uses two different inputs: solar irradiance and environmental temperature, with energy production as the

output. This work included the use of a parameter to tune the number of support vectors during the training. The results

show a low error, with a Mean Absolute Percentage Error (MAPE) of 0.1143, but it was really intolerant at errors in the

input data. The method was implemented using MATLAB. Another approach related with SVM is found in . The authors

propose a multi-input support vector. Three different inputs were tested. Only solar power, solar power and solar

irradiance combined and finally solar power, temperature and irradiance. The best predictions were made when the third

vector was used to train the network with. The model showed better results than analytical methods with a MAPE of 36%,

but it was found that it was weak against changes in the climate. The method was implemented using MATLAB.

In , a Neural Network was used for Short-Term Forecasting. The input data were composed of the the deviation of load

power and temperature of 30 days before the forecast day and the same data of 60 days before and after the forecast day

in the previous year. If the forecast day is changed, the neural network needs to be retrained. The network is composed of

9 inputs nodes, 20 hidden nodes and one output neuron. The results show a Mean Absolute Percentage Error (MAPE) of

1.63% on average.

The work of  tries to go further, presenting a neural network of 2 hidden layers, one of 6 nodes and the second with 4.

This model has nine inputs (Day, Time, Cloud Cover Index, Air Temperature, Wind speed, Air Humidity, UV index,

precipitation and air pressure) and is trained using a hybrid metaheuristic, which combines PSO and GA . This hybrid is

faster and more robust than back-propagation for this problem.

Neural Networks have been found to be sensitive to many factors, including the architecture or the initialization of weights.

Combining different NNs in an ensemble has been found to be a strategy to reduce these problems. The work of 

tested different combinations using temperature and solar irradiance as inputs. Every combination was found to be better

than using only a single NN. The data were composed of 7300 data from 365 different days. The findings were that the

best architecture for forecasting is the one which uses an iterative methodology to find the outputs, forecasting one at a

time with a Mean Absolute Error (MAE) of 51.48% and Mean Relative Error (MRE) of 17.24%.

The work in  used a fixed methodology, changing activation functions, learning rules and architecture in order to find

the best neural network for their dataset. The data were acquired along a period of 70 days, obtaining 11,200 examples.

The best network had 1 hidden layer with a Linear Sigmoid Activation Function. The learning rule as Conjugate Gradient

, which uses second derivatives to determinate the weight update, inputs temperature and photovoltaic power and

outputs next-day forecasting of PV power output. The validation study indicates that this network is simple and versatile
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and can precisely forecast with a minimum MAPE of 0.8655. The experiments were implemented using the

NeuroSolutions .

Another problem of NN is that training can be slow since back-propagation is highly demanding. For solving this problem,

the work in  used the extreme learning machine (ELM) technique to train the network. ELM  has a faster learning

speed while obtaining better generalization performance, and it also optimizes the number of hidden neurons. The system

is composed of three networks, one for each kind of weather. The network is trained with the PV output history and the

weather history data. Based on the weather report of the next day, the model is chosen to forecast the day-ahead PV. The

results show that ELM networks outperformed BP networks with a MAPE of 2.78% in the best case. The experiments

were implemented using MATLAB.

Another improvement can be found in ; the neural network is aided by a technique known as Wavelet Transform (WT)

. This algorithm is specialized in isolating the spikes produced by continuous fluctuations of the PV data. It has two

stages: decomposition of the input signal, which is performed before the neural networks, and reconstruction, which is

performed with the output of the NN. The model used is a Radial Basic Neural Networks (RBNN) , which needs less

computation time and is more effective than Backpropagation Neural Networks and takes as input the PV, solar irradiance

and temperature of the current hour, twelve hours before and twenty hours before in order to predict the one-hour-ahead

power output. The results show that the proposed model outperformed RBNN without WT for hourly PV for the horizon of

12 hours with a MAPE of 2.38% in the best case.

WT is used along other architectures as in . RNNs are probed to be useful in order to predict from time series and WT

deals with the fluctuations on the data provided by the meteorological time series obtained from sampling at intervals of

10 min and stored as time series. This combination proved to be able to forecast 2 days ahead more accurately than other

Neural Networks.

A recent use of WT is found in . This work presents a hybrid algorithm composed of WT, PSO and RBFNN used to

forecast from 1 to 6 hours ahead. The inputs that are used in the model are set as Actual PV, irradiance and temperature.

The WT is used to perform an data filtering on the past 15 days before the forecast day. The RBFNN is optimized by the

PSO algorithm. The network performed better than the compared methods, with an MAE of 4.22% on average for a 1-

hour-ahead forecast, 7.04% for a 3-hour-ahead one and 9.13% for 6-hour- ahead one.

Recurrent Neural Networks are also used in . Deep Recurrent Neural Networks (DRNN), RNNs with many hidden

layers, are used to forecast. These networks are capable of representing complex functions more efficiently than RNNs.

The input data are composed of high-resolution time series, which are preprocessed and normalized to obtain a high-

resolution time-series dataset of four different days. The architecture used was a DRNN with Long Short-Term Memory

(LSMT)  units with two hidden layers of 35 neurons. Other models showed lower accuracies and more bias error than

the proposed method that obtained an RMSE of 0.086. The experiments were implemented using MATLAB and the Keras

library (now on tensorflow) in Python.

Another RNN method is found in . The authors compared 5 different architectures of RNN: A basic LSTM, an LSTM

with the window technique, an LSTM with time steps, an LSTM with memory between batches and stacked LSTMs with

memory between batches. Two datasets of different cities were used to test the 3 models. The results show the third

proposal with an RMSE of 82.15 in the first dataset and an RMSE of 136.87 in the second, which uses prior time steps in

the PV series as inputs, is the most accurate and reliable, even compared with other methods such as ANN. The

experiments were implemented using Keras.

The authors of  present an interesting modification of RNN. This work used the networks know as Echo State Network

. ESN presented a dynamical reservoir instead of the traditional hidden layers of RNN. Their main advantage is that

only the output weights need to be trained since the reservoir and input ones are random. These networks can obtain

better results than typical RNN. A restricted Boltzmann machine (RBM)  and principal component analysis (PCA) 

are used in order to determine the number of reservoirs and inputs. The network parameters are found by a DFP Quasi-

Newton algorithm . Compared with other PV forecasting methods, the results show that the proposed model could

outperform other forecasting systems with a MAPE of 0.00195%.

A complex hybrid is found in . This system uses NN aided by different algorithms trained on data obtained during a

year. Random Forest (RF)  is used to rank the different factors that affect PV in order to eliminate the less important

ones. This importance degree, computed by RF, is transferred to Improved Gray Ideal Value Approximation (IGIVA)  as

weights to determine the similar days of different climates type. The objective of this is to improve the quality of datasets.

After that, the original sequence is decomposed by Complementary Ensemble Empirical Mode Decomposition (CEEMD)
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 to reduce the fluctuation of the original data. Finally, the neural network is optimized by a modification of PSO known

as dynamic inertial factor particle swarm optimization (DIFPSO) . The proposed model reduced training time and

improved the forecasting accuracy with an MAE of 2.84 on sunny days, 10.12 on cloudy days and 13.01 on rainy or

snowy days.

Another interesting approach is the Neuro-Fuzzy hybrid found in . Fuzzy Logic is applied as a filter to the input data

obtained in the energy production and weather forecast for 12 months (day, irradiance, temperature, humidity, pressure,

wind speed and cloud clover) in order to speed up the system. The neural structure is composed of 7 inputs, 2 hidden

layers of 9 and 5 nodes, respectively, and input. The network is trained by BP aided by a combination of PSO and GA,

known as Genetic Swarm Optimization . This method improved convergence speed and the predictive performance

over other hourly forecast methods. The experiments were implemented using MATLAB Convolutional Neural Networks

have also been applied to time-series data since they are able to learn filters that represent repeated patterns in the data

without needing any prior knowledge. They also work well with noisy data. In , CNNs are applied for forecasting PV

power using Solar Data and Electricity Data as inputs. The CNNs used the ReLu activation function, Adam optimizer and

dropout to avoid overfitting. The parameters were selected by testing different architectures and choosing the most

promising. The models were compared of an FFNN and an RNN of 128 hidden nodes. The results show that CNN

performed similarly to LSTM and better than MLP with an MAE of 114.38.

An interesting approach mixing Big Data and Deep Learning is found in . This method was used to next-day-ahead

forecast in 30 min intervals. It used a multistep methodology that decomposes the forecasting problem in different

subproblems. For the Big Data, Spark Apache was used. The neural Network parameters were searched using the grid

search strategy. The best structure was found with 3 hidden layers with between 12 and 32 neurons. The method

demonstrated that DL is suitable for big solar data since it has a linear increase in training time and performs better than

other methods.

The work of  makes use of a new kind of Neural Network, the Dendritic Neuron Network , in order to forecast PV

power. These kinds of neurons have 4 types of layers: synaptic layer, branch layer, membrane layer and cell-body layer.

The input data (temperature and irradiance of the actual moment and the last) are transferred to the synaptic layers where

they are converted by the sigmoid function and summarized to the branch layer. The results are transported to the cell-

body layer for numerical judgment. This layer will transmit the data thought the axon to other neurons when the data

exceed a given threshold. This new kind of network provides higher convergence speed and enhanced fitting ability. The

network is also aided by WT. The results show that the model outperformed typical Feed-Forward models with an average

MAPE of 10.9, with strong fluctuations and 4.55 on weak fluctuations. The experiments were run using MATLAB.

In Table 4, a summary of the reviewed models is presented.

Table 4. Models for forecasting.
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Type Features

Feed-Forward Neural

Network

Nine inputs, 20 hidden nodes on a single layer. 

Nine inputs, 2 hidden layers with 6 and 4 nodes, respectively. Trained by a hybrid PSO GA

algorithm. 

Two inputs, creates ensembles of neural networks. 

Two inputs, 1 hidden layer, Conjugate Gradient as learning rule. 

Three neural networks, one for each kind of weather. Uses Extreme Learning to optimize the

parameters and architecture.  

Fuzzy Logic is applied as a filter to the input data. Seven inputs, 2 hidden layers of 9 and 5

nodes, respectively. Trained by a hybrid of PSO and GA. 

Uses Big Data. Multistep methodology decomposes the problems into subproblems. 

Convolutional Neural

Networks
Two inputs. Parameters are selected by testing different combinations.  

Dendritic Neural

Networks
Aided by WT. Provides better convergence speed and better fitting ability.  

Radial Basis Network

Two inputs, aided by Wavelet Transform to preprocess the input data. 

High-resolution time series as input. Aided by Wavelet Transform to preprocess input data

and PSO to optimize the neural network. 

Recurrent Neural

Network

Aided by Wavelet Transform to deal with fluctuation in time series input data. 

Preprocessed and normalized high-resolution time series as input. Two hidden layers of

35 neurons. 

Tested Different RRN architectures. LSTM, which uses previous time steps, found the best

one. 

Uses Echo State Networks aided by Restricted Boltzmann Machine, Principal Component

Analysis and DFP Quasi-Newton Algorithm to optimize the network. 

Support Vector

Machines

Two inputs. A parameter to tune the number of SVM during training. 

SMV compared with KNN. SMV was found to be better. 

Multi-input SV. Different combinations of inputs were tested. Three inputs was the best one

found. 
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2.3. Parameter Estimation

Finding the parameters of the PV models is vital to simulate their behavior and to optimize their production. This problem

is simplified by finding the unknown parameters in order to optimize the output power. Different techniques, most of them

metaheuristics, have been used to solve this problem, as can be seen in Figure 3.

Figure 3. Taxonomy of most used metaheuristics for parameter estimation.

Metaheuristics are the most used techniques to estimate PV parameters. Different kinds of algorithms have been

evaluated in recent years. The work in  compares different evolutionary algorithms, comparing Genetic Algorithms ,

Particle Swarm Optimization  and differential evolution . DE is an evolutionary algorithm similar to Genetic

Algorithms but which uses real numbers to codify the problem, this solves the problem of GA when it comes to converging

speed. The fitness function was computed as the sum of the absolute errors in current and voltage. The findings showed

that the best results were given by DE and the worst ones by GA. The authors also implemented different hybrids: Tabu

Search  assisted differential evolution to avoid falling in local minimums, PSO assisted DE in which PSO is activated

after 5 generations of DE and DE assisted by Tabu Search where DE is used to search for the optimal solution in a subset

of the whole search space, while TS is used to move the local search within the global space. These hybrids performed

better than the originals and provided more stability. DE assisted TS and provided the best results, and it was the fastest.

2.4. Defects Detection

Finding defects on the surface of the PV cells is a problem completely related to computer vision. As observed in the

bibliography, the most used technique for photographing the images is electroluminescence. The datasets are usually

private, but there are some exceptions. It can be seen in Figure 4 the most used techniques for detecting defects.

Figure 4. Most used IA method for defect detection.

Classical approaches as found in , which tried to detect defects in the solar modules using image processing

techniques. In order to segment the different modules, they used the first derivative of the statistic curve in order to find

the division line between each chip. After that, they used another technique, the otsu method, to obtain a binary image.

Finally, the algorithm tries to identify the state of the module using the geometry of the resulting image. This algorithm

produced interesting results, with a recognition rate of 80% on cracked modules, 95% on fragmented and 99% on good

state modules. The recognition was also quite fast. The algorithms were implemented and applied via MATLAB.

Another approach is found in . This method combines the image processing techniques with Support Vector Machines.

The dataset featured 13,392 samples of EL images of solar cells. The images are preprocessed in order to reduce spatial

noises and to accurately highlight crack pixels in images. After that, binary processing is performed, and finally, the

features are extracted from the image. These features are used by different SVMs in order to classify the cells. The results

present that the SVM with penalty parameter weighting is the best SVM, with a correct detection rate of 91%, with

specificity and accuracy of more than 97%. The experiments were run in MATLAB.
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In , the author compare Convolutional Neural Networks with SVM. The SVM is trained with data from the ELPV

dataset, composed of 2624 EL images of solar cells, obtained by finding the features of the images using different feature

descriptors. The CNN used was a pretrained VGG19 with the upper layers changed and trained with the examples. The

models were tested with both monocrystalline and polycrystalline modules. The results show that both classifiers were

useful for visual inspection, both with an average accuracy of 82.4%. The algorithms were implemented in Python, using

Keras for the Neural Network.

The work in  presented a similar approach using SVM and CNN. The CNN was composed of two convolutional layers

with leaky-relu and max-pooling. The convolutional part was aided by two leaky-relu dense layers and the output layer.

The SVM was trained with different features extracted from the images. The dataset was built with 90 images of full-sized

commercial modules that were segmented afterward, obtaining 540 cells. The results show similar behavior in both

methods, with an accuracy of 98%. The article also tackled unsupervised learning, trying to cluster the images by two

features. This resulted in a model that was able to assign the correct label in 66% of cases.The algorithms were

implemented in Python, using Tensorflow and OpenCV.

The work found in  presents a CNN with 13 convolutional layers, an adaptation of the VGG16 architecture. The dataset

was obtained by photographing solar modules of 6 × 12 cells with an EL camera. The network was trained using

oversampling and data augmentation in order to reduce the error. The results show that the network performed the best

when both oversampling and data augmentation were presented with a Balance Error Rate of 7.73% on binary

classification problems of quick convergence. The method was implemented with Keras. The preprocessing was

performed with OpenCV.

The authors of  present new models that are trained not only with images with cracks but also with corrosion. The

images were obtained by photographing modules with the EL technique and performing segmentation afterward, obtaining

5400 images. The models are SVM and CNN. The CNN is composed of two convolutional layers. The SVM parameters

are optimized by a grid search. The results show a precision of 99%, an improvement over other methods. The

experiments were conducted via Keras and Tensorflow.

A variation of convolutional networks is found in . A multichannel CNN is presented. This network has different

convolutional layers for each kind of input. This network also can use inputs of different sizes. After each convolutional

layer, a dense layer is applied. Finally, a final dense layer combines all the previous data in order to classify the image.

This multichannel CNN improves the feature extraction of single-channel CNNs. The dataset was made by 8301 different

EL images of cells. The results show a 96.76% accuracy, much more than the 86% presented by single-channel CNNs.

The algorithms were implemented in Python using Keras.

The model presented in  is composed of six convolutional layers using different regularization techniques such as batch

optimization. The dataset used was the ELPV dataset, with 2624 images. The resulting network is a light architecture that

achieved high performance using few parameters with an accuracy of 93%.The experiments were run on Tensorflow.

In order to further improve the results, a new approach is presented in . The authors use Fully Convolutional Neural

Networks. An FCNN is a CNN without any dense layer. The model used is the U-net, which has been used previously in

biomedical image problems with low data. This dataset was composed of 542 EL images. It is composed of 21

convolutional layers of different sizes. The results show that it was better to accept a slight decrease in the performance in

order to improve the speed of the system. The algorithms were implemented in python using Keras and Tensorflow.

Wavelet Transform is used in . This method combines two kinds of WT: Discrete WT and Stationary WT in order to

extract textural and edge features from solar cells that have been previously preprocessed. The dataset was composed of

2300 EL images. Finally, two different classifiers are used: An SVM and an FFNN. The best model was the FFNN with

93.6% accuracy, over the 92.6% presented by the SVM.

Another Neural Network used is the Complementary Attention Network in . The CAN is composed of a channel-wise

attention subnetwork connected with a spatial attention subnetwork. This CAN can be grouped with any CNN, Fast R

CNN  being the one chosen by the authors. Two datasets were used, one composed of 2029 images and another of

2129 EL images. The network was used for classification and detection, obtaining an accuracy of 99.17% for classification

and a mean average precision of 87.38%. The network was faster and had similar parameter numbers to other

commercial methods. The algorithms were implemented using Python.

A very interesting approach is presented in . This method is Deep-Feature-Based, extracting features through

convolutional neural networks that are classified afterward for classification algorithms such as SVM, KNN or FNN. The
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particularity of this system is that it used features from different networks. These features are combined using minimum

redundancy and maximum relevance for feature selection. The dataset used was the ELPV dataset, with 2624 images.

The selected CNNs for feature extraction are Resnet-50, VGG-16, VGG-19 and DarkNet-19. The best method was found

with SVM, selecting 2000 features with an accuracy of 94.52% in two-class classification and 89.63% in four-class

classification.

In the Table 5, a summary of the reviewed models is presented.

Table 5. Models for detection of faults.

Type Features Accuracy
Dataset

Size

Image Processing

Techniques
Segmentation + obtention of binary image + classification.  from 80% to 99% —

SVM + Image

Processing

Techniques

Images are preprocessed and features are extracted from the

image. These features are used in an SVM with penalty

parameter weighting. 

97% 13,392

SVM and CNN

Pretrained VGG19 using different feature descriptors. Similar

results for both methods. 
82.4% 2624

CNN is composed of 2 layers using leaky-relu. SVM trained with

different features extracted from the images. Similar behavior in

both models. 

98% 540

CNN is composed of 2 convolutional layers. SVM parameters

optimized by search grid. 
96%. 2840

CNN

Thirteen convolutional layers, an adaptation of VGG16. Uses

oversampling and data augmentation. 

Uses a different

measurement
5400

Multichannel CNN. Accepts inputs of different sizes. Improves

the feature extraction of single-channel CNN. 
96.76% 8301

Six convolutional layers. Regulation techniques such as batch

optimization. 
93% 2624

Fully Convolutional Neural Network. Pretrained u-net,

composed of 21 convolutional layers. 

Uses a different

measurement
542

CNN aided by a Complementary Attention Network, composed

of a channel-wise attention subnetwork connected with a spatial

attention subnetwork. Usable with different CNNs. 

99.17% 2300

WT+ SVM and

FFNN

Combines discrete WT and stationary WT to extract features

and SVM and FFNN to classify them. 
93.6% 2029
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Type Features Accuracy
Dataset

Size

CNN + SVM,

KNN, etc.

Extracts features from different networks, combining them with

minimum redundancy and maximum relevance for feature

selection. Uses Resnet-50, VGG-16, VGG-19 and DarkNet-

19. 

94.52% 2624
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