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Bacillus nattokinase is a potential low-cost thrombolytic drug without side-effects and has been introduced into the

consumer market as a functional food or dietary supplement.
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1. Nattokinase Is a New Type of Thrombolytic Drug with Great Potential

The incidence of cardiovascular diseases has increased significantly worldwide and showed a trend of younger onset.

Among cardiovascular diseases, cerebral infarction, ischemic stroke, and myocardial infarction are all related to thrombi

formed by the coagulation of fibrin and platelets, and the current clinical application of thrombolytic agents including

urokinase, tissue plasminogen activator (t-PA) and streptokinase all have serious side effects such as bleeding or gastric

ulcer . Therefore, the search for effective and safe thrombolytic drugs has become one of the directions in the field of

cardiovascular disease research.

Natto, which is fermented by inoculating soybeans with Bacillus subtilis, is a traditional food with a long history in Japan.

Intake of natto and other related fermented soy products is inversely related to the incidence of cardiovascular diseases,

hence long-term consumption of natto is considered to be one of the important reasons for the longevity of Japanese .

Nattokinase is a kind of alkaline serine protease with strong fibrinolytic and thrombolytic activity, which is secreted by

Bacillus natto and discovered in natto by Sumi et al. . Compared with traditional thrombolytic drugs, nattokinase has a

relatively lower risk of delivery, a larger tolerable dose, and lacks side effects such as gene mutation and chromosomal

aberration induction . More importantly, nattokinase also has various pharmacological effects, such as improving

microcirculation and lowering blood pressure , anticoagulation , preventing atherosclerosis , relieving retinal

angiogenesis , anticancer , inhibiting inflammation and oxidative stress, etc. . In conclusion, nattokinase is a new

type of thrombolytic drug with great application potential .

2. Bacillus Is the Main Strain for Synthesizing Nattokinase

Nattokinase is mainly produced by fermentation of Bacillus. Some marine organisms  and Pseudomonas sp.  also

produce nattokinase, such as Pseudomonas aeruginosa CMSS  screened from cow’s milk and Pseudomonas sp. 

obtained from the soil. Although nattokinase was first isolated from the Japanese food natto, similar fibrinolytic enzyme-

producing strains are also available from other traditionally fermented foods: Bacillus subtilis Natto B-12  and Bacillus
subtilis JNFE0126  were isolated from natto; Bacillus amyloliquefaciens DC-4 , Bacillus subtilis LD-8547  and

Bacillus sublitis DC33  were obtained from Chinese traditional fermented food tempeh; Bacillus subtilis LSSE-62 

was obtained from Chinese soybean paste; and Bacillus sp. strain CK 11-4  and Bacillus subtilis WRL101  were

isolated from Chungkook-Jang, a traditional Korean fermented food. In addition to fermented food sources, Bacillus
cereus VITSDVM3 , isolated from rust, was also confirmed as a potent nattokinase producer (Table 1). Overall, most of

the current research objects are mainly nattokinase derived from Bacillus subtilis natto screened in Japanese natto.

Table 1. Biodiverse sources of nattokinase.

Strain Source References

Bacillus subtilis Natto B-12 Natto

Bacillus sp. strain CK 11-4 Chungkook-Jang

Bacillus sp. strain DJ-4 Doen-Jang

Bacillus amyloliquefaciens DC-4 Douchi
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Strain Source References

Bacillus subtilis DC33 Douchi

Bacillus subtilis QK02 Fermented soybeans

Bacillus subtilis LD-8547 Douchi

Bacillus subtilis RJAS19 Fermented soy products

Bacillus subtilis YJ1 Fermented soy products

Bacillus subtilis TKU007 Soil

Bacillus sublitis Thailand

Bacillus subtilis LSSE-22 Chinese soybean paste

Pseudomonas sp. TKU015 Soil

Pseudomonas aeruginosa CMSS Milk

Bacilluscereus VITSDVM3 Rust

Bacillus subtilis WRL101 Doen-jang

Bacillus velezensis KMU01 Pickle

Bacillus subtilis VITMS 2 Fermented milk of Vigna unguiculata.

Bacillussubtilis JNFE0126 Natto

Bacillus subtilis K2 Moromi

Bacillussubtilis LSSE-62 Chinese soybean paste

Bacillus subtilis ICTF-1 Ocean

As a probiotic, Bacillus, which can synthesize nattokinase, has great potential in the fields of functional food and

pharmaceutical applications. However, qualified oral nattokinase probiotics need to have the ability to overcome the

special environment (gastric acid, bile salts, protease, etc.) of the human digestive system. However, none of the strains

discovered so far have had their acid resistance and bile salt resistance reported. Therefore, the development of

nattokinase synthetic probiotics adapted to the human digestive system has become one of the future research directions.

3. Structure and Catalytic Mechanism of Nattokinase

3.1. Nattokinase: The Only Member of the Alkaline Serine Protease Family with Thrombolytic Activity

Nattokinase (3.4.21.62) belongs to the family of alkaline serine proteases. As an endogenous fibrinolytic enzyme,

nattokinase is functionally similar to human plasmin (3.4.21.7; 75 kDa). In 1992, Nakamura et al. used the shotgun

method to determine that the gene encoding nattokinase (aprN) starts from GTG, has an open reading frame of 1146 bp,

and encodes 381 amino acids, including a signal peptide of 29 amino acids, a propeptide of 77 amino acids, and a mature

peptide of 275 amino acids with a molecular weight of 27.7 kDa. Since nattokinase is a cysteine-free protease, no

disulfide bonds are observed in its structure. The open reading frame of nattokinase contains three consecutive

terminators (TAATAGTAA) and is regulated by Rho-independent factors . In silico analysis showed that nattokinase had

99.5%, 86%, and 72% sequence homology with subtilisin E, subtilisin BPN′, and subtilisin Carlsberg, which belong to the

same alkaline serine protease family. The three amino acid residues (Ser221, His64 and Asp32) necessary for the

catalytic center of serine proteases and the region near the catalytic triad are highly conserved among the above alkaline

serine protease family members (Figure 1) . Although nattokinase is highly homologous to many subtilisins in the

serine protease family, only a few proteins, such as nattokinase, show high substrate specificity to fibrin and can directly

cleave cross-linked fibrin in vitro and in vivo .
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Figure 1. Multiple sequence alignment of

nattokinase (AprN) compared with other serine protease homologs. Red shading and red words represent identical and

similar residues, respectively. AprE: Subtilisin E; AprJ: Subtilisin BPN′; Apr: Subtilisin Carlsberg.

3.2. Structure and Reaction Mechanism of Nattokinase

The three-dimensional structure of nattokinase derived from Bacillus natto has been successfully analyzed (PDB code:

4DWW (2022) https://www.rcsb.org/structure/4DWW (accessed on 14 June 2022)) (Figure 2A), which shows that

nattokinase is a single-chain polypeptide without disulfide bonds. Mature peptides consist of 9 α-helixes, 9 β-sheets and 2

Ca  binding sites (Gln2, Asp41, Leu75, Asn77, Ile79, Val81, Ala169, Tyr171, Thr174) for structural stability (Figure 2A,B).

The catalytically active center of nattokinase consists of a conserved catalytic triad (Asp32, His64, Ser221), while its

substrate-binding center contains three conserved amino acids (Ser125, Leu126, Gly127) (Figure 2B) . Similarly to

other subtilisin proteases, the seven typical β-sheets of nattokinase are located near the center of the enzyme molecule,

and the other two β-sheets are inversely located in the domain near the C-terminus; the 9 β-sheets of nattokinase are

assembled in reverse with the 9 α-helices, of which 7 α-helices are on the same surface .

Figure 2. Three-

dimensional structure of nattokinase. (A) Calcium binding site of nattokinase. (B) Three-dimensional structure of

nattokinase. (C) Nattokinase triple catalyst. Nattokinase structure diagram taken from

https://www.rcsb.org/structure/4DWW with modifications (accessed on 14 March 2012).

The catalytic mechanism of nattokinase has not yet been reported. Since the three-dimensional structure of nattokinase

highly overlaps with that of other alkaline serine proteases in its family, its molecular mechanism is similar to that of the

alkaline serine protease family. First, the ring nitrogen atom of the His64 residue in the catalytically active center receives

the hydroxyl proton of Ser221, which enhances the nucleophilic ability of Ser221 and attacks the hydroxyl carbon of the

peptide bond of the substrate to form a tetrahedral transition state intermediate. Asp32 stabilizes the protonation state of

His64 through the negative charge of the carboxyl group. Next, His64 donates a proton to the newly formed amino group

2+
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to release the first product (acylation reaction) while forming a covalent acyl-enzyme complex. As the water molecule

nucleophilically attacks the covalent acyl–enzyme complex to form a tetrahedral intermediate, His64 transfers the proton

back to Ser221, and the transition state disintegrates to release the first product, thereby completing the deacylation

reaction .

3.3. The Propeptide of Nattokinase Is Involved in the Correct Folding of Nattokinase as an
Intramolecular Chaperone

The propeptide of nattokinase plays a key role in the correct folding of nattokinase. By comparing the thrombolytic

activities of nattokinase holoenzyme (propeptide + mature peptide) and nattokinase mature peptide, Weng et al. found

that only nattokinase expressing both propeptide and mature peptide has thrombolytic activity, inferring that the

propeptide may be involved in the correct folding of nattokinase as an intramolecular chaperone . Based on the

structural similarity of serine protease family proteins, some studies have elucidated the role of the catalytic triplet in

cleavage between the intramolecular chaperone and the nattokinase mature peptide. Asp32 assists in positioning the

correct tautomer of His64, and Ser221 transfers its proton to His64 with increased nucleophilicity, which in turn completes

substrate cleavage by nucleophilic attack on the carbonyl carbon of the propeptide’s peptide bond. However, the catalytic

mechanism of this theory is being questioned .

The protein structure of nattokinase has now been resolved. However, the molecular mechanism of thrombolysis induced

by nattokinase and the role of propeptide in the correct folding of nattokinase still need to be elucidated.
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