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Hollow box pultruded fibre-reinforced polymers (PFRP) profiles are increasingly used as structural elements in many

structural applications due to their cost-effective manufacturing process, excellent mechanical properties-to-weight ratios,

and superior corrosion resistance. Despite the extensive usage of PFRP profiles, there is still a lack of knowledge in the

design for manufacturing against local buckling on the structural level. 
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1. Introduction

Pultruded fibre-reinforced polymer (PFRP) profiles have flourished in the last few decades and have become a reliable

construction element, especially after the research and development efforts that made pultrusion a more robust and

economic manufacturing process . These profiles developed from being strengthening and rehabilitating elements to

being essential structural members because of their excellent mechanical properties, light weight, and superior corrosion

resistance . They are currently used as beams , decks and panels , and trusses  in buildings and

bridges, frames in marine structures , lighting poles and cross-arms in infrastructure , pipes in the oil

industry , spar caps for wind turbines and cable trays and grating walkways in solar structures in the energy sector

, reinforcements for concrete , piles foundations , and sleepers in railways .

The introduction of pulwinding technology was one of the most prominent developments in pultrusion. In this process, off-

axis wound fibres replace continuous filament mats to be pulled along with the axial fibre rovings, which enables the

laminate to reach a higher value of fibre volume fraction with high-quality control and low defects (resin-rich zones)

content. The wound fibres improve the transverse properties and delamination resistance and enhance the post-

processing endurance, such as jointing and bolting .

2. Local Buckling in Composites

Pultruded FRP profiles are prone to local buckling failure, well below their ultimate load capacity, due to their anisotropic

elasticity and application-driven slenderness . Unlike other failure modes, which depend on the material strength,

local buckling depends on the stiffness, geometry, and boundary and loading conditions of the element and can occur

before reaching the strength limit . Contrary to ductile and isotropic metals, the local buckling behaviour of FRP

composites is different as it is usually accompanied by a growth of cracks and delamination . 

The cross-sectional shape of the PFRP profiles controls their structural performance and their dominant failure mode 

. Regarding local buckling behaviour, PFRP profiles are categorised into two groups of open-section and closed-

section (box) shapes depending on the restraint provided for the flange, as shown in Figure 1. Figure 2 shows the

percentage share of each cross-sectional shape in civil structural applications along with the studies characterising its

local buckling behaviour. The circular tube shape was not considered here since local buckling is not critical in tubular

PFRP profiles used in civil structural applications due to their relatively low slenderness ratio and uniformly distributed

stresses . The I-shape is most common in FRP profiles since it was inherited from the steel industry .

Nevertheless, box profiles are receiving more attention because of their higher structural stability and torsional stiffness

with all walls being restrained . Despite that, the majority of the local buckling studies were conducted on I-shape

profiles, as shown in Figure 3, which compares the number of experimental studies undertaken on I-shape versus box

shape in civil structural applications. The I-shape geometry was studied over three times more frequently than the box

shape up to 2014. With the introduction of pulwinding technology for commercial production, the number of studies on box

profiles was multiplied in 2014. Only three experimental studies on local buckling of pulwound FRP profiles were

undertaken in 2014 , 2016 , and 2019 .
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Figure 1. FRP composite profiles with (a) open-section and (b) closed-section (box) shapes (modified from ).

Figure 2. The percentage share of each cross-sectional shape in civil structural applications along with the studies

(experimental and numerical) characterising its local buckling behaviour (I-shape: 

, Box-shape: 

, C-shape: , L-shape: 

, Z-shape: , and T-shape: ).

Figure 3. The number of experimental studies of local buckling undertaken on I-shape versus box shape for civil structural

applications (Box-shape:  and I-shape: 

).

3. Geometric Parameters of Hollow Box PFRP Profiles

The geometric parameters control the PFRP profile stability and determine its load capacity and failure mode .

3.1. Wall Slenderness

The wall slenderness (width-to-thickness ratio) significantly contributes to the local buckling capacity of thin-walled PFRP

profiles . Reducing the wall slenderness increases the profile stability and buckling capacity exponentially ,

and shifts the failure mode from local buckling to material compressive failure due to the increase in the flexural stiffness
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of the laminated walls . The effect of the wall slenderness was studied extensively for laminated plate geometry

subjected to uniaxial compressive load  and the effect of the layup properties on the buckling load capacity

of slender plates was found to be negligible compared to their dimensions . This finding agrees with the results

of parametric studies on open-section PFRP columns , shown in Figure 4. When the slenderness ratio is

reduced (thicker walls), the effect of the layup properties becomes significant. On the contrary, the effect of the layup

properties becomes negligible when the wall slenderness is increased (thinner walls). Consequently, the layup properties

should be considered carefully in the ultimate strength design of thick open-section profiles, while they can be considered

only in the serviceability limit (deflection) design of thin open-section profiles . However, the interaction of the wall

slenderness with the other geometric parameters and failure modes of box profile geometry was not studied in the

available literature.

Figure 4. Critical buckling stresses versus the wall slenderness of I-shape PFRP profiles for different levels of orthotropy

 (Ex and Ey are the longitudinal and transverse modulus, respectively).

3.2. Cross-Sectional Aspect Ratio

The cross-sectional aspect ratio (web height/flange width) defines the unsupported length of each wall and the major and

minor axes of the cross-section. It affects the critical buckling load and stability of PFRP profiles  and alters their failure

mode . While maintaining a constant cross-sectional area, the flange and web buckling capacities were found

to increase and decrease, respectively, when the cross-sectional aspect ratio is increased for both box  and open-

section beams .

The significant effect of the cross-sectional aspect ratio was characterised under compression and bending for open-

section profiles . Increasing this ratio three times was found to decrease the buckling strength down to 42.8% under

compression while it will increase the buckling strength up to 57.0% under bending. Moreover, the optimal cross-sectional

aspect ratios of open-section PFRP profiles were investigated for column  and beam  applications. In

addition, the interaction between the cross-sectional aspect ratio and the layup properties was studied for box  and I-

shape  GFRP columns. The layup properties became insignificant when the flange width was increased and local

buckling controlled it, as shown in Figure 5a,b, respectively.
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Figure 5. Buckling coefficient (k) versus b /b  for different layup properties of (a) box  and (b) I-shape  GFRP

columns.

3.3. Corner Geometry

The corner (flange-web junction) geometry of PFRP profiles is a critical manufacturing parameter affecting the production

process, the pulling force, and the heated die settings. It is considered to be a weak point of premature failure due to

stresses concentration at this critical zone . It is recommended to increase the inner corner radius (fillet) to

prevent cracking by uniformly distributing the stresses and preventing their concentration , as shown in Figure 6.

Increasing the outer corner radius to be equal to the inner radius plus the wall thickness can also facilitate the production

process and help to avoid thermal-induced cracks .

Figure 6. Recommended configurations of the corner of PFRP profiles .

4. Layup Parameters of Hollow Box PFRP Profiles

The layup properties define the anisotropy and mechanical properties of FRP profiles in the longitudinal and transverse

directions and directly affect their local buckling behaviour . These properties should be designed depending on the

intended application since the design will address a specific geometry and loading condition and cannot be generalised

for all composite structures . 

4.1. Axial-to-Inclined Fibre Ratio

For civil structural applications, the layup of PFRP profiles consists of longitudinal fibre rovings to obtain the required axial

and flexural stiffness and off-axis (inclined) fibres to enhance the shear and transverse properties . The ratio of

these axial-to-inclined fibres shapes the anisotropy and mechanical properties of the laminated walls to achieve the

required axial and flexural stiffness and the desired shear and transverse properties. In general, it is recommended to add

inclined fibres along with the axial plies to enhance the off-axis mechanical properties, damage tolerance, and stability of
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laminated plates . These inclined fibres are also needed to fulfil the web stiffness and strength requirements of

PFRP beams .

Regarding the geometry effect on this ratio, it was found that increasing the axial fibre percentage will increase axial

buckling resistance of laminated plates . On the contrary, increasing the inclined fibre percentage will increase the

local buckling strength of open-section FRP columns due to the higher rotational rigidity between the orthogonal walls

. No study was found on the interaction between the axial-to-inclined fibre ratio and the other layup properties or on its

effect on the geometric parameters of pulwound box FRP profiles.

4.2. Inclined Fibre Angle

The optimal fibre angle to obtain the maximum buckling capacity is a function of the geometry, boundary condition, and

loading condition . Under flexural loading, it was found that increasing the web orthotropy exhibits the highest

increase in the buckling capacity of the flange due to the increase in the rotational restraint at the flange-web junction.

Moreover, the increase in the flange buckling capacity is higher when its orthotropy is low . For open-section FRP

beams, the buckling load was found to decrease when the fibre angle is increased .

Moreover, the interaction between the fibre angle and the stacking sequence was found to be significant and may shift the

optimal fibre angle depending on the geometry and boundary and loading conditions . For instance, antisymmetric

laminated plates require a fibre angle of  to obtain the maximum buckling load unlike symmetric laminates . Even

for symmetric layups, the optimal fibre angle for maximum buckling of GFRP cylindrical shells changes depending on the

introduction or removal of axial fibres , as shown in Figure 7. Stacking the inclined plies at the outer side to confine

the axial fibres enhances the buckling capacity. Regarding the pulwound FRP profiles, no study was found to investigate

the winding angle effect on the corner geometry or its interactions with the other layup parameters under compression or

bending. Assessing the contribution of this parameter on the buckling resistance of pulwound box PFRP profiles will

alleviate the lack of knowledge for this special shape.

Figure 7. Critical buckling load versus varying inclined fibre orientation for different stacking sequences in GFRP

cylindrical shells .
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